Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Processes driving nocturnal transpiration and implications for estimating land evapotranspiration.

Identifieur interne : 002D09 ( PubMed/Corpus ); précédent : 002D08; suivant : 002D10

Processes driving nocturnal transpiration and implications for estimating land evapotranspiration.

Auteurs : Víctor Resco De Dios ; Jacques Roy ; Juan Pedro Ferrio ; Josu G. Alday ; Damien Landais ; Alexandru Milcu ; Arthur Gessler

Source :

RBID : pubmed:26074373

English descriptors

Abstract

Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12-23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51-98 vs. 7-8 mm yr(-1)). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake.

DOI: 10.1038/srep10975
PubMed: 26074373

Links to Exploration step

pubmed:26074373

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Processes driving nocturnal transpiration and implications for estimating land evapotranspiration.</title>
<author>
<name sortKey="De Dios, Victor Resco" sort="De Dios, Victor Resco" uniqKey="De Dios V" first="Víctor Resco" last="De Dios">Víctor Resco De Dios</name>
<affiliation>
<nlm:affiliation>1] Department of Crop and Forest Sciences-AGROTECNIO Center, Universitat de Lleida, 25198 Lleida, Spain [2] Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW 2753, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Roy, Jacques" sort="Roy, Jacques" uniqKey="Roy J" first="Jacques" last="Roy">Jacques Roy</name>
<affiliation>
<nlm:affiliation>Ecotron Européen de Montpellier, UPS 3248, CNRS, Campus Baillarguet, 34980, Montferrier-sur-Lez, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ferrio, Juan Pedro" sort="Ferrio, Juan Pedro" uniqKey="Ferrio J" first="Juan Pedro" last="Ferrio">Juan Pedro Ferrio</name>
<affiliation>
<nlm:affiliation>Department of Crop and Forest Sciences-AGROTECNIO Center, Universitat de Lleida, 25198 Lleida, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Alday, Josu G" sort="Alday, Josu G" uniqKey="Alday J" first="Josu G" last="Alday">Josu G. Alday</name>
<affiliation>
<nlm:affiliation>School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Landais, Damien" sort="Landais, Damien" uniqKey="Landais D" first="Damien" last="Landais">Damien Landais</name>
<affiliation>
<nlm:affiliation>Ecotron Européen de Montpellier, UPS 3248, CNRS, Campus Baillarguet, 34980, Montferrier-sur-Lez, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Milcu, Alexandru" sort="Milcu, Alexandru" uniqKey="Milcu A" first="Alexandru" last="Milcu">Alexandru Milcu</name>
<affiliation>
<nlm:affiliation>1] Ecotron Européen de Montpellier, UPS 3248, CNRS, Campus Baillarguet, 34980, Montferrier-sur-Lez, France [2] CNRS, Centre d'Ecologie Fonctionnelle et Evolutive (CEFE, UMR-5175), 1919, route de Mende, 34293, Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gessler, Arthur" sort="Gessler, Arthur" uniqKey="Gessler A" first="Arthur" last="Gessler">Arthur Gessler</name>
<affiliation>
<nlm:affiliation>1] Swiss Federal Institute for Forest, Snow and Landscape Research WSL Long-term Forest Ecosystem Research (LWF), 8903 Birmensdorf, Switzerland [2] Institute for Landscape Biogeochemistry, Leibniz-Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26074373</idno>
<idno type="pmid">26074373</idno>
<idno type="doi">10.1038/srep10975</idno>
<idno type="wicri:Area/PubMed/Corpus">002D09</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002D09</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Processes driving nocturnal transpiration and implications for estimating land evapotranspiration.</title>
<author>
<name sortKey="De Dios, Victor Resco" sort="De Dios, Victor Resco" uniqKey="De Dios V" first="Víctor Resco" last="De Dios">Víctor Resco De Dios</name>
<affiliation>
<nlm:affiliation>1] Department of Crop and Forest Sciences-AGROTECNIO Center, Universitat de Lleida, 25198 Lleida, Spain [2] Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW 2753, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Roy, Jacques" sort="Roy, Jacques" uniqKey="Roy J" first="Jacques" last="Roy">Jacques Roy</name>
<affiliation>
<nlm:affiliation>Ecotron Européen de Montpellier, UPS 3248, CNRS, Campus Baillarguet, 34980, Montferrier-sur-Lez, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ferrio, Juan Pedro" sort="Ferrio, Juan Pedro" uniqKey="Ferrio J" first="Juan Pedro" last="Ferrio">Juan Pedro Ferrio</name>
<affiliation>
<nlm:affiliation>Department of Crop and Forest Sciences-AGROTECNIO Center, Universitat de Lleida, 25198 Lleida, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Alday, Josu G" sort="Alday, Josu G" uniqKey="Alday J" first="Josu G" last="Alday">Josu G. Alday</name>
<affiliation>
<nlm:affiliation>School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Landais, Damien" sort="Landais, Damien" uniqKey="Landais D" first="Damien" last="Landais">Damien Landais</name>
<affiliation>
<nlm:affiliation>Ecotron Européen de Montpellier, UPS 3248, CNRS, Campus Baillarguet, 34980, Montferrier-sur-Lez, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Milcu, Alexandru" sort="Milcu, Alexandru" uniqKey="Milcu A" first="Alexandru" last="Milcu">Alexandru Milcu</name>
<affiliation>
<nlm:affiliation>1] Ecotron Européen de Montpellier, UPS 3248, CNRS, Campus Baillarguet, 34980, Montferrier-sur-Lez, France [2] CNRS, Centre d'Ecologie Fonctionnelle et Evolutive (CEFE, UMR-5175), 1919, route de Mende, 34293, Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gessler, Arthur" sort="Gessler, Arthur" uniqKey="Gessler A" first="Arthur" last="Gessler">Arthur Gessler</name>
<affiliation>
<nlm:affiliation>1] Swiss Federal Institute for Forest, Snow and Landscape Research WSL Long-term Forest Ecosystem Research (LWF), 8903 Birmensdorf, Switzerland [2] Institute for Landscape Biogeochemistry, Leibniz-Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atmosphere</term>
<term>Carbon Dioxide (chemistry)</term>
<term>Ecosystem</term>
<term>Gossypium (physiology)</term>
<term>Models, Statistical</term>
<term>Phaseolus (physiology)</term>
<term>Photoperiod</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Transpiration (physiology)</term>
<term>Soil (chemistry)</term>
<term>Temperature</term>
<term>Volatilization</term>
<term>Water (chemistry)</term>
<term>Water (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Carbon Dioxide</term>
<term>Soil</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Gossypium</term>
<term>Phaseolus</term>
<term>Plant Leaves</term>
<term>Plant Transpiration</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Atmosphere</term>
<term>Ecosystem</term>
<term>Models, Statistical</term>
<term>Photoperiod</term>
<term>Temperature</term>
<term>Volatilization</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12-23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51-98 vs. 7-8 mm yr(-1)). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26074373</PMID>
<DateCreated>
<Year>2015</Year>
<Month>06</Month>
<Day>15</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>05</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>11</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<PubDate>
<Year>2015</Year>
<Month>Jun</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Processes driving nocturnal transpiration and implications for estimating land evapotranspiration.</ArticleTitle>
<Pagination>
<MedlinePgn>10975</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/srep10975</ELocationID>
<Abstract>
<AbstractText>Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12-23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51-98 vs. 7-8 mm yr(-1)). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>de Dios</LastName>
<ForeName>Víctor Resco</ForeName>
<Initials>VR</Initials>
<AffiliationInfo>
<Affiliation>1] Department of Crop and Forest Sciences-AGROTECNIO Center, Universitat de Lleida, 25198 Lleida, Spain [2] Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW 2753, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Roy</LastName>
<ForeName>Jacques</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Ecotron Européen de Montpellier, UPS 3248, CNRS, Campus Baillarguet, 34980, Montferrier-sur-Lez, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ferrio</LastName>
<ForeName>Juan Pedro</ForeName>
<Initials>JP</Initials>
<AffiliationInfo>
<Affiliation>Department of Crop and Forest Sciences-AGROTECNIO Center, Universitat de Lleida, 25198 Lleida, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Alday</LastName>
<ForeName>Josu G</ForeName>
<Initials>JG</Initials>
<AffiliationInfo>
<Affiliation>School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Landais</LastName>
<ForeName>Damien</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Ecotron Européen de Montpellier, UPS 3248, CNRS, Campus Baillarguet, 34980, Montferrier-sur-Lez, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Milcu</LastName>
<ForeName>Alexandru</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>1] Ecotron Européen de Montpellier, UPS 3248, CNRS, Campus Baillarguet, 34980, Montferrier-sur-Lez, France [2] CNRS, Centre d'Ecologie Fonctionnelle et Evolutive (CEFE, UMR-5175), 1919, route de Mende, 34293, Montpellier, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gessler</LastName>
<ForeName>Arthur</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>1] Swiss Federal Institute for Forest, Snow and Landscape Research WSL Long-term Forest Ecosystem Research (LWF), 8903 Birmensdorf, Switzerland [2] Institute for Landscape Biogeochemistry, Leibniz-Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>06</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2014 Jun;37(6):1364-70</RefSource>
<PMID Version="1">24895756</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2010 Aug;30(8):988-1000</RefSource>
<PMID Version="1">20566582</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2004 Oct;24(10):1119-27</RefSource>
<PMID Version="1">15294758</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2007 Jun;30(6):711-21</RefSource>
<PMID Version="1">17470147</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2003 Aug 21;424(6951):901-8</RefSource>
<PMID Version="1">12931178</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2007 Jan;143(1):4-10</RefSource>
<PMID Version="1">17210908</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Signal Behav. 2013 Nov;8(11):e26964</RefSource>
<PMID Version="1">24300129</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Planta. 1993 Mar;189(3):369-76</RefSource>
<PMID Version="1">24178493</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2007 Jul 13;317(5835):233-5</RefSource>
<PMID Version="1">17540863</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2010 Oct 21;467(7318):951-4</RefSource>
<PMID Version="1">20935626</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2014 Jul;34(7):757-65</RefSource>
<PMID Version="1">24990866</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2013 Nov;33(11):1206-15</RefSource>
<PMID Version="1">24271087</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2012 Apr;194(2):464-76</RefSource>
<PMID Version="1">22348404</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ecol Lett. 2009 Jun;12(6):583-92</RefSource>
<PMID Version="1">19504722</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ecol Lett. 2014 Apr;17(4):435-44</RefSource>
<PMID Version="1">24393400</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2009 Jan;32(1):58-63</RefSource>
<PMID Version="1">19076531</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2013 Nov;200(3):743-52</RefSource>
<PMID Version="1">23795820</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001272" MajorTopicYN="N">Atmosphere</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003368" MajorTopicYN="N">Gossypium</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015233" MajorTopicYN="Y">Models, Statistical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027805" MajorTopicYN="N">Phaseolus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017440" MajorTopicYN="N">Photoperiod</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018526" MajorTopicYN="N">Plant Transpiration</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014835" MajorTopicYN="N">Volatilization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4466595</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>01</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>04</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>6</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>6</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26074373</ArticleId>
<ArticleId IdType="pii">srep10975</ArticleId>
<ArticleId IdType="doi">10.1038/srep10975</ArticleId>
<ArticleId IdType="pmc">PMC4466595</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D09 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002D09 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26074373
   |texte=   Processes driving nocturnal transpiration and implications for estimating land evapotranspiration.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26074373" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024