Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements.

Identifieur interne : 002B33 ( PubMed/Corpus ); précédent : 002B32; suivant : 002B34

Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements.

Auteurs : David Secco ; Chuang Wang ; Huixia Shou ; Matthew D. Schultz ; Serge Chiarenza ; Laurent Nussaume ; Joseph R. Ecker ; James Whelan ; Ryan Lister

Source :

RBID : pubmed:26196146

English descriptors

Abstract

Cytosine DNA methylation (mC) is a genome modification that can regulate the expression of coding and non-coding genetic elements. However, little is known about the involvement of mC in response to environmental cues. Using whole genome bisulfite sequencing to assess the spatio-temporal dynamics of mC in rice grown under phosphate starvation and recovery conditions, we identified widespread phosphate starvation-induced changes in mC, preferentially localized in transposable elements (TEs) close to highly induced genes. These changes in mC occurred after changes in nearby gene transcription, were mostly DCL3a-independent, and could partially be propagated through mitosis, however no evidence of meiotic transmission was observed. Similar analyses performed in Arabidopsis revealed a very limited effect of phosphate starvation on mC, suggesting a species-specific mechanism. Overall, this suggests that TEs in proximity to environmentally induced genes are silenced via hypermethylation, and establishes the temporal hierarchy of transcriptional and epigenomic changes in response to stress.

DOI: 10.7554/eLife.09343
PubMed: 26196146

Links to Exploration step

pubmed:26196146

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements.</title>
<author>
<name sortKey="Secco, David" sort="Secco, David" uniqKey="Secco D" first="David" last="Secco">David Secco</name>
<affiliation>
<nlm:affiliation>ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Chuang" sort="Wang, Chuang" uniqKey="Wang C" first="Chuang" last="Wang">Chuang Wang</name>
<affiliation>
<nlm:affiliation>State Key laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shou, Huixia" sort="Shou, Huixia" uniqKey="Shou H" first="Huixia" last="Shou">Huixia Shou</name>
<affiliation>
<nlm:affiliation>State Key laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schultz, Matthew D" sort="Schultz, Matthew D" uniqKey="Schultz M" first="Matthew D" last="Schultz">Matthew D. Schultz</name>
<affiliation>
<nlm:affiliation>Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chiarenza, Serge" sort="Chiarenza, Serge" uniqKey="Chiarenza S" first="Serge" last="Chiarenza">Serge Chiarenza</name>
<affiliation>
<nlm:affiliation>UMR 6191 CEA, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, Saint-Paul-lez-Durance, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nussaume, Laurent" sort="Nussaume, Laurent" uniqKey="Nussaume L" first="Laurent" last="Nussaume">Laurent Nussaume</name>
<affiliation>
<nlm:affiliation>UMR 6191 CEA, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, Saint-Paul-lez-Durance, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ecker, Joseph R" sort="Ecker, Joseph R" uniqKey="Ecker J" first="Joseph R" last="Ecker">Joseph R. Ecker</name>
<affiliation>
<nlm:affiliation>Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Whelan, James" sort="Whelan, James" uniqKey="Whelan J" first="James" last="Whelan">James Whelan</name>
<affiliation>
<nlm:affiliation>Joint Research Laboratory in Genomics and Nutriomics, Zhejiang University, Hangzhou, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lister, Ryan" sort="Lister, Ryan" uniqKey="Lister R" first="Ryan" last="Lister">Ryan Lister</name>
<affiliation>
<nlm:affiliation>ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26196146</idno>
<idno type="pmid">26196146</idno>
<idno type="doi">10.7554/eLife.09343</idno>
<idno type="wicri:Area/PubMed/Corpus">002B33</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002B33</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements.</title>
<author>
<name sortKey="Secco, David" sort="Secco, David" uniqKey="Secco D" first="David" last="Secco">David Secco</name>
<affiliation>
<nlm:affiliation>ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Chuang" sort="Wang, Chuang" uniqKey="Wang C" first="Chuang" last="Wang">Chuang Wang</name>
<affiliation>
<nlm:affiliation>State Key laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shou, Huixia" sort="Shou, Huixia" uniqKey="Shou H" first="Huixia" last="Shou">Huixia Shou</name>
<affiliation>
<nlm:affiliation>State Key laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schultz, Matthew D" sort="Schultz, Matthew D" uniqKey="Schultz M" first="Matthew D" last="Schultz">Matthew D. Schultz</name>
<affiliation>
<nlm:affiliation>Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chiarenza, Serge" sort="Chiarenza, Serge" uniqKey="Chiarenza S" first="Serge" last="Chiarenza">Serge Chiarenza</name>
<affiliation>
<nlm:affiliation>UMR 6191 CEA, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, Saint-Paul-lez-Durance, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nussaume, Laurent" sort="Nussaume, Laurent" uniqKey="Nussaume L" first="Laurent" last="Nussaume">Laurent Nussaume</name>
<affiliation>
<nlm:affiliation>UMR 6191 CEA, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, Saint-Paul-lez-Durance, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ecker, Joseph R" sort="Ecker, Joseph R" uniqKey="Ecker J" first="Joseph R" last="Ecker">Joseph R. Ecker</name>
<affiliation>
<nlm:affiliation>Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Whelan, James" sort="Whelan, James" uniqKey="Whelan J" first="James" last="Whelan">James Whelan</name>
<affiliation>
<nlm:affiliation>Joint Research Laboratory in Genomics and Nutriomics, Zhejiang University, Hangzhou, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lister, Ryan" sort="Lister, Ryan" uniqKey="Lister R" first="Ryan" last="Lister">Ryan Lister</name>
<affiliation>
<nlm:affiliation>ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">eLife</title>
<idno type="eISSN">2050-084X</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>5-Methylcytosine (analysis)</term>
<term>Arabidopsis (physiology)</term>
<term>DNA Methylation</term>
<term>DNA, Plant (chemistry)</term>
<term>DNA, Plant (metabolism)</term>
<term>Gene Expression Regulation</term>
<term>Genome, Plant</term>
<term>Oryza (physiology)</term>
<term>Phosphates (metabolism)</term>
<term>Regulatory Elements, Transcriptional</term>
<term>Sequence Analysis, DNA</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>5-Methylcytosine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA, Plant</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA, Plant</term>
<term>Phosphates</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Arabidopsis</term>
<term>Oryza</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>DNA Methylation</term>
<term>Gene Expression Regulation</term>
<term>Genome, Plant</term>
<term>Regulatory Elements, Transcriptional</term>
<term>Sequence Analysis, DNA</term>
<term>Stress, Physiological</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cytosine DNA methylation (mC) is a genome modification that can regulate the expression of coding and non-coding genetic elements. However, little is known about the involvement of mC in response to environmental cues. Using whole genome bisulfite sequencing to assess the spatio-temporal dynamics of mC in rice grown under phosphate starvation and recovery conditions, we identified widespread phosphate starvation-induced changes in mC, preferentially localized in transposable elements (TEs) close to highly induced genes. These changes in mC occurred after changes in nearby gene transcription, were mostly DCL3a-independent, and could partially be propagated through mitosis, however no evidence of meiotic transmission was observed. Similar analyses performed in Arabidopsis revealed a very limited effect of phosphate starvation on mC, suggesting a species-specific mechanism. Overall, this suggests that TEs in proximity to environmentally induced genes are silenced via hypermethylation, and establishes the temporal hierarchy of transcriptional and epigenomic changes in response to stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26196146</PMID>
<DateCreated>
<Year>2015</Year>
<Month>08</Month>
<Day>18</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>05</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>08</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2050-084X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>4</Volume>
<PubDate>
<Year>2015</Year>
<Month>Jul</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>eLife</Title>
<ISOAbbreviation>Elife</ISOAbbreviation>
</Journal>
<ArticleTitle>Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.7554/eLife.09343</ELocationID>
<Abstract>
<AbstractText>Cytosine DNA methylation (mC) is a genome modification that can regulate the expression of coding and non-coding genetic elements. However, little is known about the involvement of mC in response to environmental cues. Using whole genome bisulfite sequencing to assess the spatio-temporal dynamics of mC in rice grown under phosphate starvation and recovery conditions, we identified widespread phosphate starvation-induced changes in mC, preferentially localized in transposable elements (TEs) close to highly induced genes. These changes in mC occurred after changes in nearby gene transcription, were mostly DCL3a-independent, and could partially be propagated through mitosis, however no evidence of meiotic transmission was observed. Similar analyses performed in Arabidopsis revealed a very limited effect of phosphate starvation on mC, suggesting a species-specific mechanism. Overall, this suggests that TEs in proximity to environmentally induced genes are silenced via hypermethylation, and establishes the temporal hierarchy of transcriptional and epigenomic changes in response to stress.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Secco</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Chuang</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>State Key laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shou</LastName>
<ForeName>Huixia</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>State Key laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schultz</LastName>
<ForeName>Matthew D</ForeName>
<Initials>MD</Initials>
<AffiliationInfo>
<Affiliation>Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chiarenza</LastName>
<ForeName>Serge</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>UMR 6191 CEA, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, Saint-Paul-lez-Durance, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nussaume</LastName>
<ForeName>Laurent</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>UMR 6191 CEA, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, Saint-Paul-lez-Durance, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ecker</LastName>
<ForeName>Joseph R</ForeName>
<Initials>JR</Initials>
<AffiliationInfo>
<Affiliation>Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Whelan</LastName>
<ForeName>James</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Joint Research Laboratory in Genomics and Nutriomics, Zhejiang University, Hangzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lister</LastName>
<ForeName>Ryan</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>07</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Elife</MedlineTA>
<NlmUniqueID>101579614</NlmUniqueID>
<ISSNLinking>2050-084X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010710">Phosphates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6R795CQT4H</RegistryNumber>
<NameOfSubstance UI="D044503">5-Methylcytosine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2013 May;162(1):116-31</RefSource>
<PMID Version="1">23542151</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Plant Biol. 2013 May;16(2):164-9</RefSource>
<PMID Version="1">23562565</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Plant Sci. 2013 Jul;18(7):367-76</RefSource>
<PMID Version="1">23618952</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Rep. 2013 Aug;32(8):1151-9</RefSource>
<PMID Version="1">23719757</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2013 Aug 9;341(6146):1237905</RefSource>
<PMID Version="1">23828890</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2013 Jul;25(7):2400-15</RefSource>
<PMID Version="1">23881411</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Signal Behav. 2013 Aug;8(8). pii: e25206. doi: 10.4161/psb.25206</RefSource>
<PMID Version="1">23759554</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2013 Oct;25(10):4061-74</RefSource>
<PMID Version="1">24122828</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2013 Nov;25(11):4285-304</RefSource>
<PMID Version="1">24249833</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2014 Jan;26(1):454-64</RefSource>
<PMID Version="1">24474629</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3877-82</RefSource>
<PMID Version="1">24554078</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO Rep. 2014 Apr;15(4):446-52</RefSource>
<PMID Version="1">24562611</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2014 Apr 17;508(7496):411-5</RefSource>
<PMID Version="1">24670663</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Genet. 2014 Jun;15(6):394-408</RefSource>
<PMID Version="1">24805120</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2014 Jun;65(10):2801-12</RefSource>
<PMID Version="1">24744427</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8547-52</RefSource>
<PMID Version="1">24912148</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genet. 2014;15 Suppl 1:S9</RefSource>
<PMID Version="1">25080211</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Biol. 2012;13(10):249</RefSource>
<PMID Version="1">23058244</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14953-8</RefSource>
<PMID Version="1">25271318</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14947-52</RefSource>
<PMID Version="1">25271326</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2014 Nov 27;515(7528):587-90</RefSource>
<PMID Version="1">25219852</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Genet. 2015 Jan;11(1):e1004920</RefSource>
<PMID Version="1">25569172</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):917-22</RefSource>
<PMID Version="1">25561534</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2008 May 2;133(3):523-36</RefSource>
<PMID Version="1">18423832</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Oncogene. 2001 Oct 25;20(48):7120-7</RefSource>
<PMID Version="1">11704838</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Dev. 2002 Jan 1;16(1):6-21</RefSource>
<PMID Version="1">11782440</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8449-54</RefSource>
<PMID Version="1">8710891</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Mol Biol. 2004 Jul;55(5):727-41</RefSource>
<PMID Version="1">15604713</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11934-9</RefSource>
<PMID Version="1">16085708</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2006 Jan;29(1):115-25</RefSource>
<PMID Version="1">17086758</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2007 Jan;49(1):38-45</RefSource>
<PMID Version="1">17144899</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Genet Genomics. 2007 May;277(5):589-600</RefSource>
<PMID Version="1">17273870</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2007 Aug;39(8):1033-7</RefSource>
<PMID Version="1">17643101</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2007 Dec;145(4):1460-70</RefSource>
<PMID Version="1">17932308</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2008 Mar 13;452(7184):215-9</RefSource>
<PMID Version="1">18278030</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Rep. 2008 Jun;27(6):1065-73</RefSource>
<PMID Version="1">18309491</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2009 Jan;57(2):322-31</RefSource>
<PMID Version="1">18808455</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2009 Mar;57(5):895-904</RefSource>
<PMID Version="1">19000161</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Plant Biol. 2009 Apr;12(2):133-9</RefSource>
<PMID Version="1">19179104</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2009 Aug;19(8):1419-28</RefSource>
<PMID Version="1">19478138</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2010 Jan;152(1):217-25</RefSource>
<PMID Version="1">19897606</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2010;5(3):e9514</RefSource>
<PMID Version="1">20209086</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Plant. 2010 Mar;3(2):288-99</RefSource>
<PMID Version="1">20142416</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2010 May 11;107(19):8689-94</RefSource>
<PMID Version="1">20395551</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2010 May 14;328(5980):916-9</RefSource>
<PMID Version="1">20395474</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell. 2010 May 14;38(3):465-75</RefSource>
<PMID Version="1">20381393</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Plant Biol. 2011;11:10</RefSource>
<PMID Version="1">21226959</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2011 Mar;65(5):820-8</RefSource>
<PMID Version="1">21251104</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2011 Mar;62(6):1951-60</RefSource>
<PMID Version="1">21193578</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Genet. 2011 Mar;7(3):e1002021</RefSource>
<PMID Version="1">21455488</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Genet. 2010 Mar;11(3):204-20</RefSource>
<PMID Version="1">20142834</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Plant Biol. 2011;62:185-206</RefSource>
<PMID Version="1">21370979</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2011 Apr;23(4):1523-35</RefSource>
<PMID Version="1">21521698</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Plant Sci. 2011 Aug;16(8):442-50</RefSource>
<PMID Version="1">21684794</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2011 Aug;1809(8):459-68</RefSource>
<PMID Version="1">21515434</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2011 Sep 1;39(16):6919-31</RefSource>
<PMID Version="1">21586580</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Genet Genomics. 2011 Sep 20;38(9):419-24</RefSource>
<PMID Version="1">21930101</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2011 Oct 21;334(6054):369-73</RefSource>
<PMID Version="1">21921155</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2011 Dec 8;480(7376):245-9</RefSource>
<PMID Version="1">22057020</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2012 Feb;69(3):462-74</RefSource>
<PMID Version="1">21973320</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Protoc. 2012 Mar;7(3):562-78</RefSource>
<PMID Version="1">22383036</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2012 Mar;193(4):842-51</RefSource>
<PMID Version="1">22403821</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Physiol. 2012 May;53(5):801-8</RefSource>
<PMID Version="1">22457398</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(6):e40203</RefSource>
<PMID Version="1">22761959</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2012 Aug 7;109(32):E2183-91</RefSource>
<PMID Version="1">22733782</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genomics. 2012;13:300</RefSource>
<PMID Version="1">22747568</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Evol. 2012 Oct;29(10):3193-203</RefSource>
<PMID Version="1">22593226</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2012 Sep 28;151(1):167-80</RefSource>
<PMID Version="1">23021223</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(11):e49331</RefSource>
<PMID Version="1">23145152</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Genet. 2012;8(12):e1003127</RefSource>
<PMID Version="1">23271981</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Biotechnol. 2013 Jan;31(1):46-53</RefSource>
<PMID Version="1">23222703</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Biotechnol. 2013 Feb;31(2):154-9</RefSource>
<PMID Version="1">23354102</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013;8(2):e55772</RefSource>
<PMID Version="1">23418457</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2013 Mar 28;153(1):193-205</RefSource>
<PMID Version="1">23540698</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biometrics. 2013 Mar;69(1):1-7</RefSource>
<PMID Version="1">23379645</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D044503" MajorTopicYN="N">5-Methylcytosine</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019175" MajorTopicYN="Y">DNA Methylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="Y">Gene Expression Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010710" MajorTopicYN="N">Phosphates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050436" MajorTopicYN="Y">Regulatory Elements, Transcriptional</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="Y">Stress, Physiological</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4534844</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">DNA methylation</Keyword>
<Keyword MajorTopicYN="N">arabidopsis</Keyword>
<Keyword MajorTopicYN="N">epigenome</Keyword>
<Keyword MajorTopicYN="N">evolutionary biology</Keyword>
<Keyword MajorTopicYN="N">genomics</Keyword>
<Keyword MajorTopicYN="N">nutrient stress</Keyword>
<Keyword MajorTopicYN="N">phosphate starvation</Keyword>
<Keyword MajorTopicYN="N">plant biology</Keyword>
<Keyword MajorTopicYN="N">rice</Keyword>
<Keyword MajorTopicYN="N">transcriptome</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>06</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>07</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>7</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>7</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26196146</ArticleId>
<ArticleId IdType="doi">10.7554/eLife.09343</ArticleId>
<ArticleId IdType="pmc">PMC4534844</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B33 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002B33 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26196146
   |texte=   Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26196146" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024