Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Increased genomic prediction accuracy in wheat breeding using a large Australian panel.

Identifieur interne : 000075 ( PubMed/Corpus ); précédent : 000074; suivant : 000076

Increased genomic prediction accuracy in wheat breeding using a large Australian panel.

Auteurs : Adam Norman ; Julian Taylor ; Emi Tanaka ; Paul Telfer ; James Edwards ; Jean-Pierre Martinant ; Haydn Kuchel

Source :

RBID : pubmed:28887586

English descriptors

Abstract

Genomic prediction accuracy within a large panel was found to be substantially higher than that previously observed in smaller populations, and also higher than QTL-based prediction. In recent years, genomic selection for wheat breeding has been widely studied, but this has typically been restricted to population sizes under 1000 individuals. To assess its efficacy in germplasm representative of commercial breeding programmes, we used a panel of 10,375 Australian wheat breeding lines to investigate the accuracy of genomic prediction for grain yield, physical grain quality and other physiological traits. To achieve this, the complete panel was phenotyped in a dedicated field trial and genotyped using a custom Axiom(TM) Affymetrix SNP array. A high-quality consensus map was also constructed, allowing the linkage disequilibrium present in the germplasm to be investigated. Using the complete SNP array, genomic prediction accuracies were found to be substantially higher than those previously observed in smaller populations and also more accurate compared to prediction approaches using a finite number of selected quantitative trait loci. Multi-trait genetic correlations were also assessed at an additive and residual genetic level, identifying a negative genetic correlation between grain yield and protein as well as a positive genetic correlation between grain size and test weight.

DOI: 10.1007/s00122-017-2975-4
PubMed: 28887586

Links to Exploration step

pubmed:28887586

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Increased genomic prediction accuracy in wheat breeding using a large Australian panel.</title>
<author>
<name sortKey="Norman, Adam" sort="Norman, Adam" uniqKey="Norman A" first="Adam" last="Norman">Adam Norman</name>
<affiliation>
<nlm:affiliation>School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, Australia. adam.norman@agtbreeding.com.au.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Taylor, Julian" sort="Taylor, Julian" uniqKey="Taylor J" first="Julian" last="Taylor">Julian Taylor</name>
<affiliation>
<nlm:affiliation>School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tanaka, Emi" sort="Tanaka, Emi" uniqKey="Tanaka E" first="Emi" last="Tanaka">Emi Tanaka</name>
<affiliation>
<nlm:affiliation>National Institute for Applied Statistics Research Australia (NIASRA), School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Telfer, Paul" sort="Telfer, Paul" uniqKey="Telfer P" first="Paul" last="Telfer">Paul Telfer</name>
<affiliation>
<nlm:affiliation>School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Edwards, James" sort="Edwards, James" uniqKey="Edwards J" first="James" last="Edwards">James Edwards</name>
<affiliation>
<nlm:affiliation>School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Martinant, Jean Pierre" sort="Martinant, Jean Pierre" uniqKey="Martinant J" first="Jean-Pierre" last="Martinant">Jean-Pierre Martinant</name>
<affiliation>
<nlm:affiliation>Centre of Research, Limagrain Field Seeds Pty Ltd, Chappes, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kuchel, Haydn" sort="Kuchel, Haydn" uniqKey="Kuchel H" first="Haydn" last="Kuchel">Haydn Kuchel</name>
<affiliation>
<nlm:affiliation>School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, Australia.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28887586</idno>
<idno type="pmid">28887586</idno>
<idno type="doi">10.1007/s00122-017-2975-4</idno>
<idno type="wicri:Area/PubMed/Corpus">000075</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000075</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Increased genomic prediction accuracy in wheat breeding using a large Australian panel.</title>
<author>
<name sortKey="Norman, Adam" sort="Norman, Adam" uniqKey="Norman A" first="Adam" last="Norman">Adam Norman</name>
<affiliation>
<nlm:affiliation>School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, Australia. adam.norman@agtbreeding.com.au.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Taylor, Julian" sort="Taylor, Julian" uniqKey="Taylor J" first="Julian" last="Taylor">Julian Taylor</name>
<affiliation>
<nlm:affiliation>School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tanaka, Emi" sort="Tanaka, Emi" uniqKey="Tanaka E" first="Emi" last="Tanaka">Emi Tanaka</name>
<affiliation>
<nlm:affiliation>National Institute for Applied Statistics Research Australia (NIASRA), School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Telfer, Paul" sort="Telfer, Paul" uniqKey="Telfer P" first="Paul" last="Telfer">Paul Telfer</name>
<affiliation>
<nlm:affiliation>School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Edwards, James" sort="Edwards, James" uniqKey="Edwards J" first="James" last="Edwards">James Edwards</name>
<affiliation>
<nlm:affiliation>School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Martinant, Jean Pierre" sort="Martinant, Jean Pierre" uniqKey="Martinant J" first="Jean-Pierre" last="Martinant">Jean-Pierre Martinant</name>
<affiliation>
<nlm:affiliation>Centre of Research, Limagrain Field Seeds Pty Ltd, Chappes, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kuchel, Haydn" sort="Kuchel, Haydn" uniqKey="Kuchel H" first="Haydn" last="Kuchel">Haydn Kuchel</name>
<affiliation>
<nlm:affiliation>School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, Australia.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik</title>
<idno type="eISSN">1432-2242</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Australia</term>
<term>Chromosome Mapping</term>
<term>Genomics</term>
<term>Genotype</term>
<term>Linear Models</term>
<term>Linkage Disequilibrium</term>
<term>Models, Genetic</term>
<term>Phenotype</term>
<term>Plant Breeding</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Quantitative Trait Loci</term>
<term>Triticum (genetics)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Australia</term>
<term>Chromosome Mapping</term>
<term>Genomics</term>
<term>Genotype</term>
<term>Linear Models</term>
<term>Linkage Disequilibrium</term>
<term>Models, Genetic</term>
<term>Phenotype</term>
<term>Plant Breeding</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Quantitative Trait Loci</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Genomic prediction accuracy within a large panel was found to be substantially higher than that previously observed in smaller populations, and also higher than QTL-based prediction. In recent years, genomic selection for wheat breeding has been widely studied, but this has typically been restricted to population sizes under 1000 individuals. To assess its efficacy in germplasm representative of commercial breeding programmes, we used a panel of 10,375 Australian wheat breeding lines to investigate the accuracy of genomic prediction for grain yield, physical grain quality and other physiological traits. To achieve this, the complete panel was phenotyped in a dedicated field trial and genotyped using a custom Axiom(TM) Affymetrix SNP array. A high-quality consensus map was also constructed, allowing the linkage disequilibrium present in the germplasm to be investigated. Using the complete SNP array, genomic prediction accuracies were found to be substantially higher than those previously observed in smaller populations and also more accurate compared to prediction approaches using a finite number of selected quantitative trait loci. Multi-trait genetic correlations were also assessed at an additive and residual genetic level, identifying a negative genetic correlation between grain yield and protein as well as a positive genetic correlation between grain size and test weight.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28887586</PMID>
<DateCreated>
<Year>2017</Year>
<Month>09</Month>
<Day>09</Day>
</DateCreated>
<DateCompleted>
<Year>2017</Year>
<Month>11</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>11</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-2242</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>130</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2017</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik</Title>
<ISOAbbreviation>Theor. Appl. Genet.</ISOAbbreviation>
</Journal>
<ArticleTitle>Increased genomic prediction accuracy in wheat breeding using a large Australian panel.</ArticleTitle>
<Pagination>
<MedlinePgn>2543-2555</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00122-017-2975-4</ELocationID>
<Abstract>
<AbstractText Label="KEY MESSAGE" NlmCategory="UNASSIGNED">Genomic prediction accuracy within a large panel was found to be substantially higher than that previously observed in smaller populations, and also higher than QTL-based prediction. In recent years, genomic selection for wheat breeding has been widely studied, but this has typically been restricted to population sizes under 1000 individuals. To assess its efficacy in germplasm representative of commercial breeding programmes, we used a panel of 10,375 Australian wheat breeding lines to investigate the accuracy of genomic prediction for grain yield, physical grain quality and other physiological traits. To achieve this, the complete panel was phenotyped in a dedicated field trial and genotyped using a custom Axiom(TM) Affymetrix SNP array. A high-quality consensus map was also constructed, allowing the linkage disequilibrium present in the germplasm to be investigated. Using the complete SNP array, genomic prediction accuracies were found to be substantially higher than those previously observed in smaller populations and also more accurate compared to prediction approaches using a finite number of selected quantitative trait loci. Multi-trait genetic correlations were also assessed at an additive and residual genetic level, identifying a negative genetic correlation between grain yield and protein as well as a positive genetic correlation between grain size and test weight.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Norman</LastName>
<ForeName>Adam</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-0794-4907</Identifier>
<AffiliationInfo>
<Affiliation>School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, Australia. adam.norman@agtbreeding.com.au.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Australian Grain Technologies Pty Ltd, Perkins Building, Roseworthy Campus, Roseworthy, SA, Australia. adam.norman@agtbreeding.com.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Taylor</LastName>
<ForeName>Julian</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tanaka</LastName>
<ForeName>Emi</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>National Institute for Applied Statistics Research Australia (NIASRA), School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Telfer</LastName>
<ForeName>Paul</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Australian Grain Technologies Pty Ltd, Perkins Building, Roseworthy Campus, Roseworthy, SA, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Edwards</LastName>
<ForeName>James</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Australian Grain Technologies Pty Ltd, Perkins Building, Roseworthy Campus, Roseworthy, SA, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Martinant</LastName>
<ForeName>Jean-Pierre</ForeName>
<Initials>JP</Initials>
<AffiliationInfo>
<Affiliation>Centre of Research, Limagrain Field Seeds Pty Ltd, Chappes, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kuchel</LastName>
<ForeName>Haydn</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Australian Grain Technologies Pty Ltd, Perkins Building, Roseworthy Campus, Roseworthy, SA, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>09</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Theor Appl Genet</MedlineTA>
<NlmUniqueID>0145600</NlmUniqueID>
<ISSNLinking>0040-5752</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Theor Appl Genet. 2007 Dec;116(1):95-111</RefSource>
<PMID Version="1">17952402</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2010 Oct;186(2):713-24</RefSource>
<PMID Version="1">20813882</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Theor Appl Genet. 2015 Jan;128(1):145-58</RefSource>
<PMID Version="1">25367380</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Theor Appl Genet. 2015 Feb;128(2):353-63</RefSource>
<PMID Version="1">25490985</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>G3 (Bethesda). 2014 Sep 18;4(9):1603-10</RefSource>
<PMID Version="1">25237112</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome. 2007 Jun;50(6):557-67</RefSource>
<PMID Version="1">17632577</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>G3 (Bethesda). 2013 Mar;3(3):427-39</RefSource>
<PMID Version="1">23449944</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Theor Appl Genet. 2017 Apr;130(4):635-647</RefSource>
<PMID Version="1">27995275</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genet Sel Evol. 2011 Jan 05;43:1</RefSource>
<PMID Version="1">21208445</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Theor Appl Genet. 2016 Feb;129(2):203-13</RefSource>
<PMID Version="1">26649866</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genomics. 2010 Dec 29;11:727</RefSource>
<PMID Version="1">21190581</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Theor Appl Genet. 2016 Mar;129(3):641-51</RefSource>
<PMID Version="1">26747048</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genet Res. 2005 Aug;86(1):77-87</RefSource>
<PMID Version="1">16181525</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2008 Feb 12;363(1491):557-72</RefSource>
<PMID Version="1">17715053</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Biotechnol J. 2012 Sep;10(7):826-39</RefSource>
<PMID Version="1">22594629</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>G3 (Bethesda). 2013 Dec 09;3(12):2105-14</RefSource>
<PMID Version="1">24082033</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genet Res (Camb). 2012 Dec;94(6):291-306</RefSource>
<PMID Version="1">23374240</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Biotechnol J. 2016 Jun;14 (6):1406-17</RefSource>
<PMID Version="1">26801965</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011 Feb 18;6(2):e17279</RefSource>
<PMID Version="1">21365016</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Theor Appl Genet. 2014 Dec;127(12 ):2619-33</RefSource>
<PMID Version="1">25273129</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 1998;14(7):632-53</RefSource>
<PMID Version="1">9730929</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Bot. 2012 Nov;110(6):1303-16</RefSource>
<PMID Version="1">22645117</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genomics. 2013 Dec 06;14:860</RefSource>
<PMID Version="1">24314298</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2010 Apr;42(4):355-60</RefSource>
<PMID Version="1">20208535</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Anim Breed Genet. 2007 Dec;124(6):342-55</RefSource>
<PMID Version="1">18076471</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE/ACM Trans Comput Biol Bioinform. 2011 Mar-Apr;8(2):381-94</RefSource>
<PMID Version="1">20479505</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Genet. 2008 Oct;4(10):e1000212</RefSource>
<PMID Version="1">18846212</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013 Sep 05;8(9):e74612</RefSource>
<PMID Version="1">24040295</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Plant Sci. 2014 Sep;19(9):592-601</RefSource>
<PMID Version="1">24970707</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Biotechnol J. 2014 Aug;12(6):787-96</RefSource>
<PMID Version="1">24646323</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Genome. 2016 Jul;9(2):null</RefSource>
<PMID Version="1">27898810</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Biotechnol. 2003 Feb;21(2):59-63</RefSource>
<PMID Version="1">12573853</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2001 Apr;157(4):1819-29</RefSource>
<PMID Version="1">11290733</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2013 May 14;110(20):8057-62</RefSource>
<PMID Version="1">23630259</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Theor Appl Genet. 1976 Jan;47(1):35-9</RefSource>
<PMID Version="1">24414317</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2014 Nov 18;9(11):e113287</RefSource>
<PMID Version="1">25405621</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Dairy Sci. 2009 Jun;92(6):2971-5</RefSource>
<PMID Version="1">19448030</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genomics. 2009 Dec 04;10:582</RefSource>
<PMID Version="1">19961604</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Genet. 2002 Jan;3(1):22-32</RefSource>
<PMID Version="1">11823788</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2001 Jun;17(6):520-5</RefSource>
<PMID Version="1">11395428</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Theor Appl Genet. 2012 Jul;125(2):255-71</RefSource>
<PMID Version="1">22374139</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2010 Apr;42(4):348-54</RefSource>
<PMID Version="1">20208533</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001315" MajorTopicYN="N">Australia</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="N">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="Y">Genomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016014" MajorTopicYN="N">Linear Models</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015810" MajorTopicYN="N">Linkage Disequilibrium</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000069600" MajorTopicYN="Y">Plant Breeding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040641" MajorTopicYN="N">Quantitative Trait Loci</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>05</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>08</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>11</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28887586</ArticleId>
<ArticleId IdType="doi">10.1007/s00122-017-2975-4</ArticleId>
<ArticleId IdType="pii">10.1007/s00122-017-2975-4</ArticleId>
<ArticleId IdType="pmc">PMC5668360</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000075 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000075 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28887586
   |texte=   Increased genomic prediction accuracy in wheat breeding using a large Australian panel.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28887586" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024