Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evolution of phenotypic plasticity in extreme environments.

Identifieur interne : 000C68 ( PubMed/Checkpoint ); précédent : 000C67; suivant : 000C69

Evolution of phenotypic plasticity in extreme environments.

Auteurs : Luis-Miguel Chevin [France] ; Ary A. Hoffmann [Australie]

Source :

RBID : pubmed:28483868

Abstract

Phenotypic plasticity, if adaptive, may allow species to counter the detrimental effects of extreme conditions, but the infrequent occurrence of extreme environments and/or their restriction to low-quality habitats within a species range means that they exert little direct selection on reaction norms. Plasticity could, therefore, be maladaptive under extreme environments, unless genetic correlations are strong between extreme and non-extreme environmental states, and the optimum phenotype changes smoothly with the environment. Empirical evidence suggests that populations and species from more variable environments show higher levels of plasticity that might preadapt them to extremes, but genetic variance for plastic responses can also be low, and genetic variation may not be expressed for some classes of traits under extreme conditions. Much of the empirical literature on plastic responses to extremes has not yet been linked to ecologically relevant conditions, such as asymmetrical fluctuations in the case of temperature extremes. Nevertheless, evolved plastic responses are likely to be important for natural and agricultural species increasingly exposed to climate extremes, and there is an urgent need to collect empirical information and link this to model predictions.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'.

DOI: 10.1098/rstb.2016.0138
PubMed: 28483868


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:28483868

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evolution of phenotypic plasticity in extreme environments.</title>
<author>
<name sortKey="Chevin, Luis Miguel" sort="Chevin, Luis Miguel" uniqKey="Chevin L" first="Luis-Miguel" last="Chevin">Luis-Miguel Chevin</name>
<affiliation wicri:level="1">
<nlm:affiliation>CEFE UMR 5175, CNRS-Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919 route de Mende, 34293 Montpellier, CEDEX 5, France luis-miguel.chevin@cefe.cnrs.fr.</nlm:affiliation>
<country wicri:rule="url">France</country>
<wicri:regionArea>CEFE UMR 5175, CNRS-Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919 route de Mende, 34293 Montpellier, CEDEX 5</wicri:regionArea>
<wicri:noRegion>CEDEX 5</wicri:noRegion>
<wicri:noRegion>CEDEX 5</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hoffmann, Ary A" sort="Hoffmann, Ary A" uniqKey="Hoffmann A" first="Ary A" last="Hoffmann">Ary A. Hoffmann</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of BioSciences, Bio21 Institute, University of Melbourne, Melbourne 3010, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of BioSciences, Bio21 Institute, University of Melbourne, Melbourne 3010</wicri:regionArea>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
<settlement type="city">Melbourne</settlement>
</placeName>
<orgName type="university">Université de Melbourne</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28483868</idno>
<idno type="pmid">28483868</idno>
<idno type="doi">10.1098/rstb.2016.0138</idno>
<idno type="wicri:Area/PubMed/Corpus">000A48</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000A48</idno>
<idno type="wicri:Area/PubMed/Curation">000A45</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000A45</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000A45</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000A45</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Evolution of phenotypic plasticity in extreme environments.</title>
<author>
<name sortKey="Chevin, Luis Miguel" sort="Chevin, Luis Miguel" uniqKey="Chevin L" first="Luis-Miguel" last="Chevin">Luis-Miguel Chevin</name>
<affiliation wicri:level="1">
<nlm:affiliation>CEFE UMR 5175, CNRS-Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919 route de Mende, 34293 Montpellier, CEDEX 5, France luis-miguel.chevin@cefe.cnrs.fr.</nlm:affiliation>
<country wicri:rule="url">France</country>
<wicri:regionArea>CEFE UMR 5175, CNRS-Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919 route de Mende, 34293 Montpellier, CEDEX 5</wicri:regionArea>
<wicri:noRegion>CEDEX 5</wicri:noRegion>
<wicri:noRegion>CEDEX 5</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hoffmann, Ary A" sort="Hoffmann, Ary A" uniqKey="Hoffmann A" first="Ary A" last="Hoffmann">Ary A. Hoffmann</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of BioSciences, Bio21 Institute, University of Melbourne, Melbourne 3010, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of BioSciences, Bio21 Institute, University of Melbourne, Melbourne 3010</wicri:regionArea>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
<settlement type="city">Melbourne</settlement>
</placeName>
<orgName type="university">Université de Melbourne</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Philosophical transactions of the Royal Society of London. Series B, Biological sciences</title>
<idno type="eISSN">1471-2970</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Phenotypic plasticity, if adaptive, may allow species to counter the detrimental effects of extreme conditions, but the infrequent occurrence of extreme environments and/or their restriction to low-quality habitats within a species range means that they exert little direct selection on reaction norms. Plasticity could, therefore, be maladaptive under extreme environments, unless genetic correlations are strong between extreme and non-extreme environmental states, and the optimum phenotype changes smoothly with the environment. Empirical evidence suggests that populations and species from more variable environments show higher levels of plasticity that might preadapt them to extremes, but genetic variance for plastic responses can also be low, and genetic variation may not be expressed for some classes of traits under extreme conditions. Much of the empirical literature on plastic responses to extremes has not yet been linked to ecologically relevant conditions, such as asymmetrical fluctuations in the case of temperature extremes. Nevertheless, evolved plastic responses are likely to be important for natural and agricultural species increasingly exposed to climate extremes, and there is an urgent need to collect empirical information and link this to model predictions.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">28483868</PMID>
<DateCreated>
<Year>2017</Year>
<Month>05</Month>
<Day>09</Day>
</DateCreated>
<DateRevised>
<Year>2017</Year>
<Month>05</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1471-2970</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>372</Volume>
<Issue>1723</Issue>
<PubDate>
<Year>2017</Year>
<Month>Jun</Month>
<Day>19</Day>
</PubDate>
</JournalIssue>
<Title>Philosophical transactions of the Royal Society of London. Series B, Biological sciences</Title>
<ISOAbbreviation>Philos. Trans. R. Soc. Lond., B, Biol. Sci.</ISOAbbreviation>
</Journal>
<ArticleTitle>Evolution of phenotypic plasticity in extreme environments.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">20160138</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1098/rstb.2016.0138</ELocationID>
<Abstract>
<AbstractText>Phenotypic plasticity, if adaptive, may allow species to counter the detrimental effects of extreme conditions, but the infrequent occurrence of extreme environments and/or their restriction to low-quality habitats within a species range means that they exert little direct selection on reaction norms. Plasticity could, therefore, be maladaptive under extreme environments, unless genetic correlations are strong between extreme and non-extreme environmental states, and the optimum phenotype changes smoothly with the environment. Empirical evidence suggests that populations and species from more variable environments show higher levels of plasticity that might preadapt them to extremes, but genetic variance for plastic responses can also be low, and genetic variation may not be expressed for some classes of traits under extreme conditions. Much of the empirical literature on plastic responses to extremes has not yet been linked to ecologically relevant conditions, such as asymmetrical fluctuations in the case of temperature extremes. Nevertheless, evolved plastic responses are likely to be important for natural and agricultural species increasingly exposed to climate extremes, and there is an urgent need to collect empirical information and link this to model predictions.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'.</AbstractText>
<CopyrightInformation>© 2017 The Author(s).</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chevin</LastName>
<ForeName>Luis-Miguel</ForeName>
<Initials>LM</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-4188-4618</Identifier>
<AffiliationInfo>
<Affiliation>CEFE UMR 5175, CNRS-Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919 route de Mende, 34293 Montpellier, CEDEX 5, France luis-miguel.chevin@cefe.cnrs.fr.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hoffmann</LastName>
<ForeName>Ary A</ForeName>
<Initials>AA</Initials>
<AffiliationInfo>
<Affiliation>School of BioSciences, Bio21 Institute, University of Melbourne, Melbourne 3010, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Philos Trans R Soc Lond B Biol Sci</MedlineTA>
<NlmUniqueID>7503623</NlmUniqueID>
<ISSNLinking>0962-8436</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2000 Sep 22;289(5487):2068-74</RefSource>
<PMID Version="1">11000103</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2017 Jun 19;372(1723):</RefSource>
<PMID Version="1">28483864</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ecol Lett. 2012 Feb;15(2):159-63</RefSource>
<PMID Version="1">22188553</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Evol Biol. 2008 Sep;21(5):1321-34</RefSource>
<PMID Version="1">18557796</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Anim Breed Genet. 2016 Apr;133(2):92-104</RefSource>
<PMID Version="1">26061790</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Oecologia. 1980 Jan;46(2):272-282</RefSource>
<PMID Version="1">28309684</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Oecologia. 2014 Jun;175(2):577-87</RefSource>
<PMID Version="1">24705694</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Biochem Zool. 2014 Mar-Apr;87(2):203-15</RefSource>
<PMID Version="1">24642538</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Anim Ecol. 2013 Jan;82(1):131-44</RefSource>
<PMID Version="1">22862682</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Evol Biol. 2013 Feb;26(2):443-50</RefSource>
<PMID Version="1">23194053</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4712-7</RefSource>
<PMID Version="1">15070783</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genet Sel Evol. 2016 Jan 14;48:3</RefSource>
<PMID Version="1">26767704</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Evol Biol. 2012 Aug;25(8):1676-85</RefSource>
<PMID Version="1">22694151</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2015 Jul 22;282(1811):null</RefSource>
<PMID Version="1">26136447</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Evolution. 2000 Feb;54(1):1-12</RefSource>
<PMID Version="1">10937177</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am Nat. 2000 Aug;156(2):121-130</RefSource>
<PMID Version="1">10856196</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2005 Apr;166(1):101-17</RefSource>
<PMID Version="1">15760355</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Ecol Evol. 1999 Mar;14(3):96-101</RefSource>
<PMID Version="1">10322508</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Ecol Evol. 1998 Feb 1;13(2):77-81</RefSource>
<PMID Version="1">21238209</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2010 Jul 22;466(7305):482-5</RefSource>
<PMID Version="1">20651690</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am Nat. 2014 Jan;183(1):108-25</RefSource>
<PMID Version="1">24334740</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2009 Nov 17;106 Suppl 2:19659-65</RefSource>
<PMID Version="1">19903876</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2017 Jun 19;372(1723):</RefSource>
<PMID Version="1">28483875</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4399-404</RefSource>
<PMID Version="1">25805817</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Evolution. 2010 Apr 1;64(4):1143-50</RefSource>
<PMID Version="1">19863583</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Glob Chang Biol. 2015 Jan;21(1):181-94</RefSource>
<PMID Version="1">25155644</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2017 Jun 19;372(1723):null</RefSource>
<PMID Version="1">28483865</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):17029-33</RefSource>
<PMID Version="1">18955707</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2015 Jan 7;282(1798):20142205</RefSource>
<PMID Version="1">25392477</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Theor Biol. 1967 Jul;16(1):1-14</RefSource>
<PMID Version="1">6035758</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2016 Sep 28;283(1839):</RefSource>
<PMID Version="1">27655762</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2015 Sep;38(9):1752-64</RefSource>
<PMID Version="1">25132508</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Evol Biol. 2011 Jul;24(7):1462-76</RefSource>
<PMID Version="1">21545421</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Ecol. 2013 Jun;22(11):3090-7</RefSource>
<PMID Version="1">23452191</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Evol Biol. 2009 Apr;22(4):852-60</RefSource>
<PMID Version="1">19226418</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Evol Biol. 2009 Jul;22(7):1435-46</RefSource>
<PMID Version="1">19467134</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Evolution. 2005 Jun;59(6):1362-71</RefSource>
<PMID Version="1">16050111</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2013 Jan 19;368(1610):20120089</RefSource>
<PMID Version="1">23209170</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ecol Evol. 2015 Sep;5(17):3818-29</RefSource>
<PMID Version="1">26380708</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2013 Jan 19;368(1610):20120084</RefSource>
<PMID Version="1">23209166</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Evolution. 2007 Aug;61(8):1912-24</RefSource>
<PMID Version="1">17683433</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Evol Biol. 2008 May;21(3):705-15</RefSource>
<PMID Version="1">18355186</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Genet. 2014 Apr;15(4):247-58</RefSource>
<PMID Version="1">24614309</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Bot. 2015 Nov;116(6):953-62</RefSource>
<PMID Version="1">26424784</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Evol Biol. 2006 Aug 30;6:67</RefSource>
<PMID Version="1">16942614</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2001 Jan;204(Pt 2):315-23</RefSource>
<PMID Version="1">11136617</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2010 Apr 27;8(4):e1000357</RefSource>
<PMID Version="1">20463950</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2013 Jan 19;368(1610):20120289</RefSource>
<PMID Version="1">23209174</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2004 Feb 22;271(1537):415-23</RefSource>
<PMID Version="1">15101701</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ecol Lett. 2011 Jun;14(6):603-14</RefSource>
<PMID Version="1">21518209</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Evol Biol. 2007 May;20(3):892-900</RefSource>
<PMID Version="1">17465900</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2017 Jun 19;372(1723):</RefSource>
<PMID Version="1">28483873</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2015 Jul;218(Pt 14):2218-25</RefSource>
<PMID Version="1">25987738</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2010 Oct 12;365(1555):3149-60</RefSource>
<PMID Version="1">20819809</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2010 Mar 15;213(6):870-80</RefSource>
<PMID Version="1">20190112</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Anim Sci. 2013 Jun;91(6):2555-65</RefSource>
<PMID Version="1">23508033</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am Nat. 2014 Apr;183(4):453-67</RefSource>
<PMID Version="1">24642491</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2017 Jun 19;372(1723):</RefSource>
<PMID Version="1">28483866</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am Nat. 2011 Sep;178(3):397-410</RefSource>
<PMID Version="1">21828995</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Glob Chang Biol. 2016 Oct;22(10):3259-72</RefSource>
<PMID Version="1">27173755</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):184-9</RefSource>
<PMID Version="1">25422451</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Evol Appl. 2014 Jan;7(1):1-14</RefSource>
<PMID Version="1">24454544</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Evolution. 2015 Apr;69(4):950-68</RefSource>
<PMID Version="1">25809121</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2017 Jun 19;372(1723):</RefSource>
<PMID Version="1">28483862</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Evolution. 2013 Oct;67(10):2923-35</RefSource>
<PMID Version="1">24094343</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Ecol. 2008 Jan;17(1):157-66</RefSource>
<PMID Version="1">17850269</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2010 Feb 22;277(1681):503-11</RefSource>
<PMID Version="1">19846457</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2009 Jul 24;325(5939):464-7</RefSource>
<PMID Version="1">19574350</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2008 Mar 22;275(1635):649-59</RefSource>
<PMID Version="1">18211875</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Anim Ecol. 2014 Jul;83(4):769-78</RefSource>
<PMID Version="1">24372332</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Evol Biol. 2005 Jul;18(4):873-83</RefSource>
<PMID Version="1">16033559</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ecol Lett. 2013 Feb;16(2):271-80</RefSource>
<PMID Version="1">23205937</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Ecol Evol. 2012 Nov;27(11):637-47</RefSource>
<PMID Version="1">22898151</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2011 Feb 24;470(7335):479-85</RefSource>
<PMID Version="1">21350480</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2013 Jul;11(7):e1001605</RefSource>
<PMID Version="1">23874152</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2008 May 9;320(5877):800-3</RefSource>
<PMID Version="1">18467590</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome. 1989;31(2):778-83</RefSource>
<PMID Version="1">2632351</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2017 Jun 19;372(1723):</RefSource>
<PMID Version="1">28483869</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2010 Nov 22;277(1699):3391-400</RefSource>
<PMID Version="1">20554553</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Evol Biol. 2013 Mar 19;13:68</RefSource>
<PMID Version="1">23510136</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Evolution. 2015 Sep;69(9):2319-32</RefSource>
<PMID Version="1">26227394</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2007 Oct 22;274(1625):2531-7</RefSource>
<PMID Version="1">17686728</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Ecol Evol. 2010 Aug;25(8):450-8</RefSource>
<PMID Version="1">20538366</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Ecol. 2008 Jan;17(1):167-78</RefSource>
<PMID Version="1">18173499</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Evol Biol. 2010 Nov;23(11):2484-93</RefSource>
<PMID Version="1">20874849</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am Nat. 2016 Mar;187(3):283-94</RefSource>
<PMID Version="1">26913942</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Evol Biol. 2014 May;27(5):866-75</RefSource>
<PMID Version="1">24724972</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2005 Jul 22;272(1571):1415-25</RefSource>
<PMID Version="1">16011915</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am Nat. 2011 Oct;178 Suppl 1:S80-96</RefSource>
<PMID Version="1">21956094</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2011 Nov 15;214(Pt 22):3713-25</RefSource>
<PMID Version="1">22031735</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Evolution. 2015 Aug;69(8):2034-49</RefSource>
<PMID Version="1">26140293</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Anim Ecol. 2016 Nov;85(6):1625-1635</RefSource>
<PMID Version="1">27392281</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2005 Oct 14;310(5746):304-6</RefSource>
<PMID Version="1">16224020</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am Nat. 1997 Jul;150(1):1-23</RefSource>
<PMID Version="1">18811273</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ecol Evol. 2015 Sep 14;5(19):4315-26</RefSource>
<PMID Version="1">26664681</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am Nat. 2013 Jul;182(1):13-27</RefSource>
<PMID Version="1">23778223</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">adaptation</Keyword>
<Keyword MajorTopicYN="N">environmental stress</Keyword>
<Keyword MajorTopicYN="N">environmental tolerance</Keyword>
<Keyword MajorTopicYN="N">extreme environments</Keyword>
<Keyword MajorTopicYN="N">genetic constraints</Keyword>
<Keyword MajorTopicYN="N">phenotypic plasticity</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>09</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2018</Year>
<Month>06</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28483868</ArticleId>
<ArticleId IdType="pii">rstb.2016.0138</ArticleId>
<ArticleId IdType="doi">10.1098/rstb.2016.0138</ArticleId>
<ArticleId IdType="pmc">PMC5434089</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
<region>
<li>Victoria (État)</li>
</region>
<settlement>
<li>Melbourne</li>
</settlement>
<orgName>
<li>Université de Melbourne</li>
</orgName>
</list>
<tree>
<country name="France">
<noRegion>
<name sortKey="Chevin, Luis Miguel" sort="Chevin, Luis Miguel" uniqKey="Chevin L" first="Luis-Miguel" last="Chevin">Luis-Miguel Chevin</name>
</noRegion>
</country>
<country name="Australie">
<region name="Victoria (État)">
<name sortKey="Hoffmann, Ary A" sort="Hoffmann, Ary A" uniqKey="Hoffmann A" first="Ary A" last="Hoffmann">Ary A. Hoffmann</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C68 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000C68 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:28483868
   |texte=   Evolution of phenotypic plasticity in extreme environments.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:28483868" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024