Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Advances in the understanding of mitochondrial DNA as a pathogenic factor in inflammatory diseases

Identifieur interne : 002F23 ( Pmc/Corpus ); précédent : 002F22; suivant : 002F24

Advances in the understanding of mitochondrial DNA as a pathogenic factor in inflammatory diseases

Auteurs : Ray K. Boyapati ; Arina Tamborska ; David A. Dorward ; Gwo-Tzer Ho

Source :

RBID : PMC:5321122

Abstract

Mitochondrial DNA (mtDNA) has many similarities with bacterial DNA because of their shared common ancestry. Increasing evidence demonstrates mtDNA to be a potent danger signal that is recognised by the innate immune system and can directly modulate the inflammatory response. In humans, elevated circulating mtDNA is found in conditions with significant tissue injury such as trauma and sepsis and increasingly in chronic organ-specific and systemic illnesses such as steatohepatitis and systemic lupus erythematosus. In this review, we examine our current understanding of mtDNA-mediated inflammation and how the mechanisms regulating mitochondrial homeostasis and mtDNA release represent exciting and previously under-recognised important factors in many human inflammatory diseases, offering many new translational opportunities.


Url:
DOI: 10.12688/f1000research.10397.1
PubMed: 28299196
PubMed Central: 5321122

Links to Exploration step

PMC:5321122

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Advances in the understanding of mitochondrial DNA as a pathogenic factor in inflammatory diseases</title>
<author>
<name sortKey="Boyapati, Ray K" sort="Boyapati, Ray K" uniqKey="Boyapati R" first="Ray K." last="Boyapati">Ray K. Boyapati</name>
<affiliation>
<nlm:aff id="a1">MRC Centre for Inflammation Research Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">Department of Gastroenterology, Monash Health, Clayton, VIC, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tamborska, Arina" sort="Tamborska, Arina" uniqKey="Tamborska A" first="Arina" last="Tamborska">Arina Tamborska</name>
<affiliation>
<nlm:aff id="a1">MRC Centre for Inflammation Research Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dorward, David A" sort="Dorward, David A" uniqKey="Dorward D" first="David A." last="Dorward">David A. Dorward</name>
<affiliation>
<nlm:aff id="a1">MRC Centre for Inflammation Research Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ho, Gwo Tzer" sort="Ho, Gwo Tzer" uniqKey="Ho G" first="Gwo-Tzer" last="Ho">Gwo-Tzer Ho</name>
<affiliation>
<nlm:aff id="a1">MRC Centre for Inflammation Research Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">28299196</idno>
<idno type="pmc">5321122</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5321122</idno>
<idno type="RBID">PMC:5321122</idno>
<idno type="doi">10.12688/f1000research.10397.1</idno>
<date when="2017">2017</date>
<idno type="wicri:Area/Pmc/Corpus">002F23</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002F23</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Advances in the understanding of mitochondrial DNA as a pathogenic factor in inflammatory diseases</title>
<author>
<name sortKey="Boyapati, Ray K" sort="Boyapati, Ray K" uniqKey="Boyapati R" first="Ray K." last="Boyapati">Ray K. Boyapati</name>
<affiliation>
<nlm:aff id="a1">MRC Centre for Inflammation Research Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">Department of Gastroenterology, Monash Health, Clayton, VIC, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tamborska, Arina" sort="Tamborska, Arina" uniqKey="Tamborska A" first="Arina" last="Tamborska">Arina Tamborska</name>
<affiliation>
<nlm:aff id="a1">MRC Centre for Inflammation Research Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dorward, David A" sort="Dorward, David A" uniqKey="Dorward D" first="David A." last="Dorward">David A. Dorward</name>
<affiliation>
<nlm:aff id="a1">MRC Centre for Inflammation Research Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ho, Gwo Tzer" sort="Ho, Gwo Tzer" uniqKey="Ho G" first="Gwo-Tzer" last="Ho">Gwo-Tzer Ho</name>
<affiliation>
<nlm:aff id="a1">MRC Centre for Inflammation Research Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">F1000Research</title>
<idno type="eISSN">2046-1402</idno>
<imprint>
<date when="2017">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Mitochondrial DNA (mtDNA) has many similarities with bacterial DNA because of their shared common ancestry. Increasing evidence demonstrates mtDNA to be a potent danger signal that is recognised by the innate immune system and can directly modulate the inflammatory response. In humans, elevated circulating mtDNA is found in conditions with significant tissue injury such as trauma and sepsis and increasingly in chronic organ-specific and systemic illnesses such as steatohepatitis and systemic lupus erythematosus. In this review, we examine our current understanding of mtDNA-mediated inflammation and how the mechanisms regulating mitochondrial homeostasis and mtDNA release represent exciting and previously under-recognised important factors in many human inflammatory diseases, offering many new translational opportunities.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="West, Ap" uniqKey="West A">AP West</name>
</author>
<author>
<name sortKey="Shadel, Gs" uniqKey="Shadel G">GS Shadel</name>
</author>
<author>
<name sortKey="Ghosh, S" uniqKey="Ghosh S">S Ghosh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nunnari, J" uniqKey="Nunnari J">J Nunnari</name>
</author>
<author>
<name sortKey="Suomalainen, A" uniqKey="Suomalainen A">A Suomalainen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dyall, Sd" uniqKey="Dyall S">SD Dyall</name>
</author>
<author>
<name sortKey="Brown, Mt" uniqKey="Brown M">MT Brown</name>
</author>
<author>
<name sortKey="Johnson, Pj" uniqKey="Johnson P">PJ Johnson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Galluzzi, L" uniqKey="Galluzzi L">L Galluzzi</name>
</author>
<author>
<name sortKey="Kepp, O" uniqKey="Kepp O">O Kepp</name>
</author>
<author>
<name sortKey="Trojel Hansen, C" uniqKey="Trojel Hansen C">C Trojel-Hansen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boyapati, Rk" uniqKey="Boyapati R">RK Boyapati</name>
</author>
<author>
<name sortKey="Rossi, Ag" uniqKey="Rossi A">AG Rossi</name>
</author>
<author>
<name sortKey="Satsangi, J" uniqKey="Satsangi J">J Satsangi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Hc" uniqKey="Lee H">HC Lee</name>
</author>
<author>
<name sortKey="Li, Sh" uniqKey="Li S">SH Li</name>
</author>
<author>
<name sortKey="Lin, Jc" uniqKey="Lin J">JC Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lam, Ny" uniqKey="Lam N">NY Lam</name>
</author>
<author>
<name sortKey="Rainer, Th" uniqKey="Rainer T">TH Rainer</name>
</author>
<author>
<name sortKey="Chiu, Rw" uniqKey="Chiu R">RW Chiu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Q" uniqKey="Zhang Q">Q Zhang</name>
</author>
<author>
<name sortKey="Raoof, M" uniqKey="Raoof M">M Raoof</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Q" uniqKey="Zhang Q">Q Zhang</name>
</author>
<author>
<name sortKey="Itagaki, K" uniqKey="Itagaki K">K Itagaki</name>
</author>
<author>
<name sortKey="Hauser, Cj" uniqKey="Hauser C">CJ Hauser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simmons, Jd" uniqKey="Simmons J">JD Simmons</name>
</author>
<author>
<name sortKey="Lee, Y" uniqKey="Lee Y">Y Lee</name>
</author>
<author>
<name sortKey="Mulekar, S" uniqKey="Mulekar S">S Mulekar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamanouchi, S" uniqKey="Yamanouchi S">S Yamanouchi</name>
</author>
<author>
<name sortKey="Kudo, D" uniqKey="Kudo D">D Kudo</name>
</author>
<author>
<name sortKey="Yamada, M" uniqKey="Yamada M">M Yamada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gu, X" uniqKey="Gu X">X Gu</name>
</author>
<author>
<name sortKey="Yao, Y" uniqKey="Yao Y">Y Yao</name>
</author>
<author>
<name sortKey="Wu, G" uniqKey="Wu G">G Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hauser, Cj" uniqKey="Hauser C">CJ Hauser</name>
</author>
<author>
<name sortKey="Sursal, T" uniqKey="Sursal T">T Sursal</name>
</author>
<author>
<name sortKey="Rodriguez, Ek" uniqKey="Rodriguez E">EK Rodriguez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Timmermans, K" uniqKey="Timmermans K">K Timmermans</name>
</author>
<author>
<name sortKey="Kox, M" uniqKey="Kox M">M Kox</name>
</author>
<author>
<name sortKey="Vaneker, M" uniqKey="Vaneker M">M Vaneker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prikhodko, As" uniqKey="Prikhodko A">AS Prikhodko</name>
</author>
<author>
<name sortKey="Shabanov, Ak" uniqKey="Shabanov A">AK Shabanov</name>
</author>
<author>
<name sortKey="Zinovkina, La" uniqKey="Zinovkina L">LA Zinovkina</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kung, Ct" uniqKey="Kung C">CT Kung</name>
</author>
<author>
<name sortKey="Hsiao, Sy" uniqKey="Hsiao S">SY Hsiao</name>
</author>
<author>
<name sortKey="Tsai, Tc" uniqKey="Tsai T">TC Tsai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bhagirath, Vc" uniqKey="Bhagirath V">VC Bhagirath</name>
</author>
<author>
<name sortKey="Dwivedi, Dj" uniqKey="Dwivedi D">DJ Dwivedi</name>
</author>
<author>
<name sortKey="Liaw, Pc" uniqKey="Liaw P">PC Liaw</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Timmermans, K" uniqKey="Timmermans K">K Timmermans</name>
</author>
<author>
<name sortKey="Kox, M" uniqKey="Kox M">M Kox</name>
</author>
<author>
<name sortKey="Scheffer, Gj" uniqKey="Scheffer G">GJ Scheffer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, Ch" uniqKey="Lu C">CH Lu</name>
</author>
<author>
<name sortKey="Chang, Wn" uniqKey="Chang W">WN Chang</name>
</author>
<author>
<name sortKey="Tsai, Nw" uniqKey="Tsai N">NW Tsai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garrabou, G" uniqKey="Garrabou G">G Garrabou</name>
</author>
<author>
<name sortKey="Moren, C" uniqKey="Moren C">C Morén</name>
</author>
<author>
<name sortKey="L Pez, S" uniqKey="L Pez S">S López</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Di Caro, V" uniqKey="Di Caro V">V Di Caro</name>
</author>
<author>
<name sortKey="Walko, Td" uniqKey="Walko "> TD Walko</name>
</author>
<author>
<name sortKey="Bola, Ra" uniqKey="Bola R">RA Bola</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, M" uniqKey="Yu M">M Yu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakahira, K" uniqKey="Nakahira K">K Nakahira</name>
</author>
<author>
<name sortKey="Kyung, Sy" uniqKey="Kyung S">SY Kyung</name>
</author>
<author>
<name sortKey="Rogers, Aj" uniqKey="Rogers A">AJ Rogers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krychtiuk, Ka" uniqKey="Krychtiuk K">KA Krychtiuk</name>
</author>
<author>
<name sortKey="Ruhittel, S" uniqKey="Ruhittel S">S Ruhittel</name>
</author>
<author>
<name sortKey="Hohensinner, Pj" uniqKey="Hohensinner P">PJ Hohensinner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcgill, Mr" uniqKey="Mcgill M">MR McGill</name>
</author>
<author>
<name sortKey="Staggs, Vs" uniqKey="Staggs V">VS Staggs</name>
</author>
<author>
<name sortKey="Sharpe, Mr" uniqKey="Sharpe M">MR Sharpe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marques, Pe" uniqKey="Marques P">PE Marques</name>
</author>
<author>
<name sortKey="Amaral, Ss" uniqKey="Amaral S">SS Amaral</name>
</author>
<author>
<name sortKey="Pires, Da" uniqKey="Pires D">DA Pires</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcgill, Mr" uniqKey="Mcgill M">MR McGill</name>
</author>
<author>
<name sortKey="Sharpe, Mr" uniqKey="Sharpe M">MR Sharpe</name>
</author>
<author>
<name sortKey="Williams, Cd" uniqKey="Williams C">CD Williams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bliksoen, M" uniqKey="Bliksoen M">M Bliksoen</name>
</author>
<author>
<name sortKey="Mariero, Lh" uniqKey="Mariero L">LH Mariero</name>
</author>
<author>
<name sortKey="Ohm, Ik" uniqKey="Ohm I">IK Ohm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L Wang</name>
</author>
<author>
<name sortKey="Xie, L" uniqKey="Xie L">L Xie</name>
</author>
<author>
<name sortKey="Zhang, Q" uniqKey="Zhang Q">Q Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qin, C" uniqKey="Qin C">C Qin</name>
</author>
<author>
<name sortKey="Gu, J" uniqKey="Gu J">J Gu</name>
</author>
<author>
<name sortKey="Liu, R" uniqKey="Liu R">R Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J Liu</name>
</author>
<author>
<name sortKey="Cai, X" uniqKey="Cai X">X Cai</name>
</author>
<author>
<name sortKey="Xie, L" uniqKey="Xie L">L Xie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J Liu</name>
</author>
<author>
<name sortKey="Zou, Y" uniqKey="Zou Y">Y Zou</name>
</author>
<author>
<name sortKey="Tang, Y" uniqKey="Tang Y">Y Tang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsai, Nw" uniqKey="Tsai N">NW Tsai</name>
</author>
<author>
<name sortKey="Lin, Tk" uniqKey="Lin T">TK Lin</name>
</author>
<author>
<name sortKey="Chen, Sd" uniqKey="Chen S">SD Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Hc" uniqKey="Wang H">HC Wang</name>
</author>
<author>
<name sortKey="Yang, Tm" uniqKey="Yang T">TM Yang</name>
</author>
<author>
<name sortKey="Lin, Wc" uniqKey="Lin W">WC Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Hc" uniqKey="Wang H">HC Wang</name>
</author>
<author>
<name sortKey="Lin, Yj" uniqKey="Lin Y">YJ Lin</name>
</author>
<author>
<name sortKey="Lin, Wc" uniqKey="Lin W">WC Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Walko, Td" uniqKey="Walko T">TD Walko</name>
</author>
<author>
<name sortKey="Bola, Ra" uniqKey="Bola R">RA Bola</name>
</author>
<author>
<name sortKey="Hong, Jd" uniqKey="Hong J">JD Hong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hajizadeh, S" uniqKey="Hajizadeh S">S Hajizadeh</name>
</author>
<author>
<name sortKey="Degroot, J" uniqKey="Degroot J">J DeGroot</name>
</author>
<author>
<name sortKey="Tekoppele, Jm" uniqKey="Tekoppele J">JM TeKoppele</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Surmiak, Mp" uniqKey="Surmiak M">MP Surmiak</name>
</author>
<author>
<name sortKey="Hubalewska Mazgaj, M" uniqKey="Hubalewska Mazgaj M">M Hubalewska-Mazgaj</name>
</author>
<author>
<name sortKey="Wawrzycka Adamczyk, K" uniqKey="Wawrzycka Adamczyk K">K Wawrzycka-Adamczyk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Caielli, S" uniqKey="Caielli S">S Caielli</name>
</author>
<author>
<name sortKey="Athale, S" uniqKey="Athale S">S Athale</name>
</author>
<author>
<name sortKey="Domic, B" uniqKey="Domic B">B Domic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
<author>
<name sortKey="Li, T" uniqKey="Li T">T Li</name>
</author>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lood, C" uniqKey="Lood C">C Lood</name>
</author>
<author>
<name sortKey="Blanco, Lp" uniqKey="Blanco L">LP Blanco</name>
</author>
<author>
<name sortKey="Purmalek, Mm" uniqKey="Purmalek M">MM Purmalek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garcia Martinez, I" uniqKey="Garcia Martinez I">I Garcia-Martinez</name>
</author>
<author>
<name sortKey="Santoro, N" uniqKey="Santoro N">N Santoro</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Collins, Lv" uniqKey="Collins L">LV Collins</name>
</author>
<author>
<name sortKey="Hajizadeh, S" uniqKey="Hajizadeh S">S Hajizadeh</name>
</author>
<author>
<name sortKey="Holme, E" uniqKey="Holme E">E Holme</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, Q" uniqKey="Hu Q">Q Hu</name>
</author>
<author>
<name sortKey="Wood, Cr" uniqKey="Wood C">CR Wood</name>
</author>
<author>
<name sortKey="Cimen, S" uniqKey="Cimen S">S Cimen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsuji, N" uniqKey="Tsuji N">N Tsuji</name>
</author>
<author>
<name sortKey="Tsuji, T" uniqKey="Tsuji T">T Tsuji</name>
</author>
<author>
<name sortKey="Ohashi, N" uniqKey="Ohashi N">N Ohashi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gan, L" uniqKey="Gan L">L Gan</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X Chen</name>
</author>
<author>
<name sortKey="Sun, T" uniqKey="Sun T">T Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Latz, E" uniqKey="Latz E">E Latz</name>
</author>
<author>
<name sortKey="Schoenemeyer, A" uniqKey="Schoenemeyer A">A Schoenemeyer</name>
</author>
<author>
<name sortKey="Visintin, A" uniqKey="Visintin A">A Visintin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leifer, Ca" uniqKey="Leifer C">CA Leifer</name>
</author>
<author>
<name sortKey="Kennedy, Mn" uniqKey="Kennedy M">MN Kennedy</name>
</author>
<author>
<name sortKey="Mazzoni, A" uniqKey="Mazzoni A">A Mazzoni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moseman, Ea" uniqKey="Moseman E">EA Moseman</name>
</author>
<author>
<name sortKey="Liang, X" uniqKey="Liang X">X Liang</name>
</author>
<author>
<name sortKey="Dawson, Aj" uniqKey="Dawson A">AJ Dawson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hemmi, H" uniqKey="Hemmi H">H Hemmi</name>
</author>
<author>
<name sortKey="Takeuchi, O" uniqKey="Takeuchi O">O Takeuchi</name>
</author>
<author>
<name sortKey="Kawai, T" uniqKey="Kawai T">T Kawai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bauer, S" uniqKey="Bauer S">S Bauer</name>
</author>
<author>
<name sortKey="Kirschning, Cj" uniqKey="Kirschning C">CJ Kirschning</name>
</author>
<author>
<name sortKey="H Cker, H" uniqKey="H Cker H">H Häcker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sasai, M" uniqKey="Sasai M">M Sasai</name>
</author>
<author>
<name sortKey="Linehan, Mm" uniqKey="Linehan M">MM Linehan</name>
</author>
<author>
<name sortKey="Iwasaki, A" uniqKey="Iwasaki A">A Iwasaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Petrasek, J" uniqKey="Petrasek J">J Petrasek</name>
</author>
<author>
<name sortKey="Dolganiuc, A" uniqKey="Dolganiuc A">A Dolganiuc</name>
</author>
<author>
<name sortKey="Csak, T" uniqKey="Csak T">T Csak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wei, X" uniqKey="Wei X">X Wei</name>
</author>
<author>
<name sortKey="Shao, B" uniqKey="Shao B">B Shao</name>
</author>
<author>
<name sortKey="He, Z" uniqKey="He Z">Z He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bakker, Pj" uniqKey="Bakker P">PJ Bakker</name>
</author>
<author>
<name sortKey="Scantlebery, Am" uniqKey="Scantlebery A">AM Scantlebery</name>
</author>
<author>
<name sortKey="Butter, Lm" uniqKey="Butter L">LM Butter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arnalich, F" uniqKey="Arnalich F">F Arnalich</name>
</author>
<author>
<name sortKey="Codoceo, R" uniqKey="Codoceo R">R Codoceo</name>
</author>
<author>
<name sortKey="L Pez Collazo, E" uniqKey="L Pez Collazo E">E López-Collazo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sudakov, Np" uniqKey="Sudakov N">NP Sudakov</name>
</author>
<author>
<name sortKey="Popkova, Tp" uniqKey="Popkova T">TP Popkova</name>
</author>
<author>
<name sortKey="Katyshev, Ai" uniqKey="Katyshev A">AI Katyshev</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gu, X" uniqKey="Gu X">X Gu</name>
</author>
<author>
<name sortKey="Wu, G" uniqKey="Wu G">G Wu</name>
</author>
<author>
<name sortKey="Yao, Y" uniqKey="Yao Y">Y Yao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barton, Gm" uniqKey="Barton G">GM Barton</name>
</author>
<author>
<name sortKey="Kagan, Jc" uniqKey="Kagan J">JC Kagan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ziello, Je" uniqKey="Ziello J">JE Ziello</name>
</author>
<author>
<name sortKey="Huang, Y" uniqKey="Huang Y">Y Huang</name>
</author>
<author>
<name sortKey="Jovin, Is" uniqKey="Jovin I">IS Jovin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maeda, A" uniqKey="Maeda A">A Maeda</name>
</author>
<author>
<name sortKey="Fadeel, B" uniqKey="Fadeel B">B Fadeel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zitvogel, L" uniqKey="Zitvogel L">L Zitvogel</name>
</author>
<author>
<name sortKey="Kepp, O" uniqKey="Kepp O">O Kepp</name>
</author>
<author>
<name sortKey="Kroemer, G" uniqKey="Kroemer G">G Kroemer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tian, J" uniqKey="Tian J">J Tian</name>
</author>
<author>
<name sortKey="Avalos, Am" uniqKey="Avalos A">AM Avalos</name>
</author>
<author>
<name sortKey="Mao, Sy" uniqKey="Mao S">SY Mao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Viglianti, Ga" uniqKey="Viglianti G">GA Viglianti</name>
</author>
<author>
<name sortKey="Lau, Cm" uniqKey="Lau C">CM Lau</name>
</author>
<author>
<name sortKey="Hanley, Tm" uniqKey="Hanley T">TM Hanley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dasari, P" uniqKey="Dasari P">P Dasari</name>
</author>
<author>
<name sortKey="Nicholson, Ic" uniqKey="Nicholson I">IC Nicholson</name>
</author>
<author>
<name sortKey="Hodge, G" uniqKey="Hodge G">G Hodge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baiyee, Ee" uniqKey="Baiyee E">EE Baiyee</name>
</author>
<author>
<name sortKey="Flohe, S" uniqKey="Flohe S">S Flohe</name>
</author>
<author>
<name sortKey="Lendemans, S" uniqKey="Lendemans S">S Lendemans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eaton Bassiri, A" uniqKey="Eaton Bassiri A">A Eaton-Bassiri</name>
</author>
<author>
<name sortKey="Dillon, Sb" uniqKey="Dillon S">SB Dillon</name>
</author>
<author>
<name sortKey="Cunningham, M" uniqKey="Cunningham M">M Cunningham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saikh, Ku" uniqKey="Saikh K">KU Saikh</name>
</author>
<author>
<name sortKey="Kissner, Tl" uniqKey="Kissner T">TL Kissner</name>
</author>
<author>
<name sortKey="Sultana, A" uniqKey="Sultana A">A Sultana</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lindau, D" uniqKey="Lindau D">D Lindau</name>
</author>
<author>
<name sortKey="Mussard, J" uniqKey="Mussard J">J Mussard</name>
</author>
<author>
<name sortKey="Wagner, Bj" uniqKey="Wagner B">BJ Wagner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, J" uniqKey="Lee J">J Lee</name>
</author>
<author>
<name sortKey="Mo, Jh" uniqKey="Mo J">JH Mo</name>
</author>
<author>
<name sortKey="Shen, C" uniqKey="Shen C">C Shen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ewaschuk, Jb" uniqKey="Ewaschuk J">JB Ewaschuk</name>
</author>
<author>
<name sortKey="Backer, Jl" uniqKey="Backer J">JL Backer</name>
</author>
<author>
<name sortKey="Churchill, Ta" uniqKey="Churchill T">TA Churchill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gurung, P" uniqKey="Gurung P">P Gurung</name>
</author>
<author>
<name sortKey="Lukens, Jr" uniqKey="Lukens J">JR Lukens</name>
</author>
<author>
<name sortKey="Kanneganti, Td" uniqKey="Kanneganti T">TD Kanneganti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakahira, K" uniqKey="Nakahira K">K Nakahira</name>
</author>
<author>
<name sortKey="Haspel, Ja" uniqKey="Haspel J">JA Haspel</name>
</author>
<author>
<name sortKey="Rathinam, Va" uniqKey="Rathinam V">VA Rathinam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, R" uniqKey="Zhou R">R Zhou</name>
</author>
<author>
<name sortKey="Yazdi, As" uniqKey="Yazdi A">AS Yazdi</name>
</author>
<author>
<name sortKey="Menu, P" uniqKey="Menu P">P Menu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shimada, K" uniqKey="Shimada K">K Shimada</name>
</author>
<author>
<name sortKey="Crother, Tr" uniqKey="Crother T">TR Crother</name>
</author>
<author>
<name sortKey="Karlin, J" uniqKey="Karlin J">J Karlin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z Zhang</name>
</author>
<author>
<name sortKey="Xu, X" uniqKey="Xu X">X Xu</name>
</author>
<author>
<name sortKey="Ma, J" uniqKey="Ma J">J Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Won, Jh" uniqKey="Won J">JH Won</name>
</author>
<author>
<name sortKey="Park, S" uniqKey="Park S">S Park</name>
</author>
<author>
<name sortKey="Hong, S" uniqKey="Hong S">S Hong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dombrowski, Y" uniqKey="Dombrowski Y">Y Dombrowski</name>
</author>
<author>
<name sortKey="Peric, M" uniqKey="Peric M">M Peric</name>
</author>
<author>
<name sortKey="Koglin, S" uniqKey="Koglin S">S Koglin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holmstrom, Km" uniqKey="Holmstrom K">KM Holmström</name>
</author>
<author>
<name sortKey="Finkel, T" uniqKey="Finkel T">T Finkel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ding, Z" uniqKey="Ding Z">Z Ding</name>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S Liu</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakahira, K" uniqKey="Nakahira K">K Nakahira</name>
</author>
<author>
<name sortKey="Hisata, S" uniqKey="Hisata S">S Hisata</name>
</author>
<author>
<name sortKey="Choi, Am" uniqKey="Choi A">AM Choi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bauernfeind, Fg" uniqKey="Bauernfeind F">FG Bauernfeind</name>
</author>
<author>
<name sortKey="Horvath, G" uniqKey="Horvath G">G Horvath</name>
</author>
<author>
<name sortKey="Stutz, A" uniqKey="Stutz A">A Stutz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Imaeda, Ab" uniqKey="Imaeda A">AB Imaeda</name>
</author>
<author>
<name sortKey="Watanabe, A" uniqKey="Watanabe A">A Watanabe</name>
</author>
<author>
<name sortKey="Sohail, Ma" uniqKey="Sohail M">MA Sohail</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Williams, Cd" uniqKey="Williams C">CD Williams</name>
</author>
<author>
<name sortKey="Antoine, Dj" uniqKey="Antoine D">DJ Antoine</name>
</author>
<author>
<name sortKey="Shaw, Pj" uniqKey="Shaw P">PJ Shaw</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ishikawa, H" uniqKey="Ishikawa H">H Ishikawa</name>
</author>
<author>
<name sortKey="Barber, Gn" uniqKey="Barber G">GN Barber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barber, Gn" uniqKey="Barber G">GN Barber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rongvaux, A" uniqKey="Rongvaux A">A Rongvaux</name>
</author>
<author>
<name sortKey="Jackson, R" uniqKey="Jackson R">R Jackson</name>
</author>
<author>
<name sortKey="Harman, Cc" uniqKey="Harman C">CC Harman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, Mj" uniqKey="White M">MJ White</name>
</author>
<author>
<name sortKey="Mcarthur, K" uniqKey="Mcarthur K">K McArthur</name>
</author>
<author>
<name sortKey="Metcalf, D" uniqKey="Metcalf D">D Metcalf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="West, Ap" uniqKey="West A">AP West</name>
</author>
<author>
<name sortKey="Khoury Hanold, W" uniqKey="Khoury Hanold W">W Khoury-Hanold</name>
</author>
<author>
<name sortKey="Staron, M" uniqKey="Staron M">M Staron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Patrushev, M" uniqKey="Patrushev M">M Patrushev</name>
</author>
<author>
<name sortKey="Kasymov, V" uniqKey="Kasymov V">V Kasymov</name>
</author>
<author>
<name sortKey="Patrusheva, V" uniqKey="Patrusheva V">V Patrusheva</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ding, Z" uniqKey="Ding Z">Z Ding</name>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S Liu</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaczmarek, A" uniqKey="Kaczmarek A">A Kaczmarek</name>
</author>
<author>
<name sortKey="Vandenabeele, P" uniqKey="Vandenabeele P">P Vandenabeele</name>
</author>
<author>
<name sortKey="Krysko, Dv" uniqKey="Krysko D">DV Krysko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mangalmurti, N" uniqKey="Mangalmurti N">N Mangalmurti</name>
</author>
<author>
<name sortKey="Qing, D" uniqKey="Qing D">D Qing</name>
</author>
<author>
<name sortKey="Hotz, M" uniqKey="Hotz M">M Hotz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boudreau, Lh" uniqKey="Boudreau L">LH Boudreau</name>
</author>
<author>
<name sortKey="Duchez, Ac" uniqKey="Duchez A">AC Duchez</name>
</author>
<author>
<name sortKey="Cloutier, N" uniqKey="Cloutier N">N Cloutier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xin, G" uniqKey="Xin G">G Xin</name>
</author>
<author>
<name sortKey="Wei, Z" uniqKey="Wei Z">Z Wei</name>
</author>
<author>
<name sortKey="Ji, C" uniqKey="Ji C">C Ji</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Islam, Mn" uniqKey="Islam M">MN Islam</name>
</author>
<author>
<name sortKey="Das, Sr" uniqKey="Das S">SR Das</name>
</author>
<author>
<name sortKey="Emin, Mt" uniqKey="Emin M">MT Emin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Waldenstrom, A" uniqKey="Waldenstrom A">A Waldenström</name>
</author>
<author>
<name sortKey="Genneb Ck, N" uniqKey="Genneb Ck N">N Gennebäck</name>
</author>
<author>
<name sortKey="Hellman, U" uniqKey="Hellman U">U Hellman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Balaj, L" uniqKey="Balaj L">L Balaj</name>
</author>
<author>
<name sortKey="Lessard, R" uniqKey="Lessard R">R Lessard</name>
</author>
<author>
<name sortKey="Dai, L" uniqKey="Dai L">L Dai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guescini, M" uniqKey="Guescini M">M Guescini</name>
</author>
<author>
<name sortKey="Guidolin, D" uniqKey="Guidolin D">D Guidolin</name>
</author>
<author>
<name sortKey="Vallorani, L" uniqKey="Vallorani L">L Vallorani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guescini, M" uniqKey="Guescini M">M Guescini</name>
</author>
<author>
<name sortKey="Genedani, S" uniqKey="Genedani S">S Genedani</name>
</author>
<author>
<name sortKey="Stocchi, V" uniqKey="Stocchi V">V Stocchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pazmandi, K" uniqKey="Pazmandi K">K Pazmandi</name>
</author>
<author>
<name sortKey="Agod, Z" uniqKey="Agod Z">Z Agod</name>
</author>
<author>
<name sortKey="Kumar, Bv" uniqKey="Kumar B">BV Kumar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oka, T" uniqKey="Oka T">T Oka</name>
</author>
<author>
<name sortKey="Hikoso, S" uniqKey="Hikoso S">S Hikoso</name>
</author>
<author>
<name sortKey="Yamaguchi, O" uniqKey="Yamaguchi O">O Yamaguchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boyapati, R" uniqKey="Boyapati R">R Boyapati</name>
</author>
<author>
<name sortKey="Satsangi, J" uniqKey="Satsangi J">J Satsangi</name>
</author>
<author>
<name sortKey="Ho, G" uniqKey="Ho G">G Ho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Botezatu, I" uniqKey="Botezatu I">I Botezatu</name>
</author>
<author>
<name sortKey="Serdyuk, O" uniqKey="Serdyuk O">O Serdyuk</name>
</author>
<author>
<name sortKey="Potapova, G" uniqKey="Potapova G">G Potapova</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Whitaker, Rm" uniqKey="Whitaker R">RM Whitaker</name>
</author>
<author>
<name sortKey="Stallons, Lj" uniqKey="Stallons L">LJ Stallons</name>
</author>
<author>
<name sortKey="Kneff, Je" uniqKey="Kneff J">JE Kneff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stacey, Kj" uniqKey="Stacey K">KJ Stacey</name>
</author>
<author>
<name sortKey="Sweet, Mj" uniqKey="Sweet M">MJ Sweet</name>
</author>
<author>
<name sortKey="Hume, Da" uniqKey="Hume D">DA Hume</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lo, Ym" uniqKey="Lo Y">YM Lo</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
<author>
<name sortKey="Leung, Tn" uniqKey="Leung T">TN Leung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Okabe, Y" uniqKey="Okabe Y">Y Okabe</name>
</author>
<author>
<name sortKey="Kawane, K" uniqKey="Kawane K">K Kawane</name>
</author>
<author>
<name sortKey="Akira, S" uniqKey="Akira S">S Akira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, Mp" uniqKey="Chan M">MP Chan</name>
</author>
<author>
<name sortKey="Onji, M" uniqKey="Onji M">M Onji</name>
</author>
<author>
<name sortKey="Fukui, R" uniqKey="Fukui R">R Fukui</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dhondup, Y" uniqKey="Dhondup Y">Y Dhondup</name>
</author>
<author>
<name sortKey="Ueland, T" uniqKey="Ueland T">T Ueland</name>
</author>
<author>
<name sortKey="Dahl, Cp" uniqKey="Dahl C">CP Dahl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kohler, C" uniqKey="Kohler C">C Kohler</name>
</author>
<author>
<name sortKey="Radpour, R" uniqKey="Radpour R">R Radpour</name>
</author>
<author>
<name sortKey="Barekati, Z" uniqKey="Barekati Z">Z Barekati</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zachariah, Rr" uniqKey="Zachariah R">RR Zachariah</name>
</author>
<author>
<name sortKey="Schmid, S" uniqKey="Schmid S">S Schmid</name>
</author>
<author>
<name sortKey="Buerki, N" uniqKey="Buerki N">N Buerki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ellinger, J" uniqKey="Ellinger J">J Ellinger</name>
</author>
<author>
<name sortKey="Albers, P" uniqKey="Albers P">P Albers</name>
</author>
<author>
<name sortKey="Muller, Sc" uniqKey="Muller S">SC Müller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ellinger, J" uniqKey="Ellinger J">J Ellinger</name>
</author>
<author>
<name sortKey="Muller, Dc" uniqKey="Muller D">DC Müller</name>
</author>
<author>
<name sortKey="Muller, Sc" uniqKey="Muller S">SC Müller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ellinger, J" uniqKey="Ellinger J">J Ellinger</name>
</author>
<author>
<name sortKey="Muller, Sc" uniqKey="Muller S">SC Müller</name>
</author>
<author>
<name sortKey="Wernert, N" uniqKey="Wernert N">N Wernert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, M" uniqKey="Yu M">M Yu</name>
</author>
<author>
<name sortKey="Wan, Yf" uniqKey="Wan Y">YF Wan</name>
</author>
<author>
<name sortKey="Zou, Qh" uniqKey="Zou Q">QH Zou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hou, Yl" uniqKey="Hou Y">YL Hou</name>
</author>
<author>
<name sortKey="Chen, Jj" uniqKey="Chen J">JJ Chen</name>
</author>
<author>
<name sortKey="Wu, Yf" uniqKey="Wu Y">YF Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mehra, N" uniqKey="Mehra N">N Mehra</name>
</author>
<author>
<name sortKey="Penning, M" uniqKey="Penning M">M Penning</name>
</author>
<author>
<name sortKey="Maas, J" uniqKey="Maas J">J Maas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Cy" uniqKey="Huang C">CY Huang</name>
</author>
<author>
<name sortKey="Chen, Ym" uniqKey="Chen Y">YM Chen</name>
</author>
<author>
<name sortKey="Wu, Ch" uniqKey="Wu C">CH Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Budnik, Lt" uniqKey="Budnik L">LT Budnik</name>
</author>
<author>
<name sortKey="Kloth, S" uniqKey="Kloth S">S Kloth</name>
</author>
<author>
<name sortKey="Baur, X" uniqKey="Baur X">X Baur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, H" uniqKey="Lu H">H Lu</name>
</author>
<author>
<name sortKey="Busch, J" uniqKey="Busch J">J Busch</name>
</author>
<author>
<name sortKey="Jung, M" uniqKey="Jung M">M Jung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cossarizza, A" uniqKey="Cossarizza A">A Cossarizza</name>
</author>
<author>
<name sortKey="Pinti, M" uniqKey="Pinti M">M Pinti</name>
</author>
<author>
<name sortKey="Nasi, M" uniqKey="Nasi M">M Nasi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dai, Z" uniqKey="Dai Z">Z Dai</name>
</author>
<author>
<name sortKey="Cai, W" uniqKey="Cai W">W Cai</name>
</author>
<author>
<name sortKey="Hu, F" uniqKey="Hu F">F Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lauring, As" uniqKey="Lauring A">AS Lauring</name>
</author>
<author>
<name sortKey="Lee, Th" uniqKey="Lee T">TH Lee</name>
</author>
<author>
<name sortKey="Martin, Jn" uniqKey="Martin J">JN Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pinti, M" uniqKey="Pinti M">M Pinti</name>
</author>
<author>
<name sortKey="Cevenini, E" uniqKey="Cevenini E">E Cevenini</name>
</author>
<author>
<name sortKey="Nasi, M" uniqKey="Nasi M">M Nasi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Verschoor, Cp" uniqKey="Verschoor C">CP Verschoor</name>
</author>
<author>
<name sortKey="Loukov, D" uniqKey="Loukov D">D Loukov</name>
</author>
<author>
<name sortKey="Naidoo, A" uniqKey="Naidoo A">A Naidoo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jylh V, J" uniqKey="Jylh V J">J Jylhävä</name>
</author>
<author>
<name sortKey="Nevalainen, T" uniqKey="Nevalainen T">T Nevalainen</name>
</author>
<author>
<name sortKey="Marttila, S" uniqKey="Marttila S">S Marttila</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shockett, Pe" uniqKey="Shockett P">PE Shockett</name>
</author>
<author>
<name sortKey="Khanal, J" uniqKey="Khanal J">J Khanal</name>
</author>
<author>
<name sortKey="Sitaula, A" uniqKey="Sitaula A">A Sitaula</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nasi, M" uniqKey="Nasi M">M Nasi</name>
</author>
<author>
<name sortKey="Cristani, A" uniqKey="Cristani A">A Cristani</name>
</author>
<author>
<name sortKey="Pinti, M" uniqKey="Pinti M">M Pinti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chou, Cc" uniqKey="Chou C">CC Chou</name>
</author>
<author>
<name sortKey="Fang, Hy" uniqKey="Fang H">HY Fang</name>
</author>
<author>
<name sortKey="Chen, Yl" uniqKey="Chen Y">YL Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sabatino, L" uniqKey="Sabatino L">L Sabatino</name>
</author>
<author>
<name sortKey="Botto, N" uniqKey="Botto N">N Botto</name>
</author>
<author>
<name sortKey="Borghini, A" uniqKey="Borghini A">A Borghini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, B" uniqKey="Zhang B">B Zhang</name>
</author>
<author>
<name sortKey="Angelidou, A" uniqKey="Angelidou A">A Angelidou</name>
</author>
<author>
<name sortKey="Alysandratos, Kd" uniqKey="Alysandratos K">KD Alysandratos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cao, H" uniqKey="Cao H">H Cao</name>
</author>
<author>
<name sortKey="Ye, H" uniqKey="Ye H">H Ye</name>
</author>
<author>
<name sortKey="Sun, Z" uniqKey="Sun Z">Z Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y Zhao</name>
</author>
<author>
<name sortKey="Wen, S" uniqKey="Wen S">S Wen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stertz, L" uniqKey="Stertz L">L Stertz</name>
</author>
<author>
<name sortKey="Fries, Gr" uniqKey="Fries G">GR Fries</name>
</author>
<author>
<name sortKey="Rosa, Ar" uniqKey="Rosa A">AR Rosa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borghini, A" uniqKey="Borghini A">A Borghini</name>
</author>
<author>
<name sortKey="Mercuri, A" uniqKey="Mercuri A">A Mercuri</name>
</author>
<author>
<name sortKey="Turchi, S" uniqKey="Turchi S">S Turchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dantham, S" uniqKey="Dantham S">S Dantham</name>
</author>
<author>
<name sortKey="Srivastava, Ak" uniqKey="Srivastava A">AK Srivastava</name>
</author>
<author>
<name sortKey="Gulati, S" uniqKey="Gulati S">S Gulati</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yasui, K" uniqKey="Yasui K">K Yasui</name>
</author>
<author>
<name sortKey="Matsuyama, N" uniqKey="Matsuyama N">N Matsuyama</name>
</author>
<author>
<name sortKey="Kuroishi, A" uniqKey="Kuroishi A">A Kuroishi</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">F1000Res</journal-id>
<journal-id journal-id-type="iso-abbrev">F1000Res</journal-id>
<journal-id journal-id-type="pmc">F1000Research</journal-id>
<journal-title-group>
<journal-title>F1000Research</journal-title>
</journal-title-group>
<issn pub-type="epub">2046-1402</issn>
<publisher>
<publisher-name>F1000Research</publisher-name>
<publisher-loc>London, UK</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">28299196</article-id>
<article-id pub-id-type="pmc">5321122</article-id>
<article-id pub-id-type="doi">10.12688/f1000research.10397.1</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
<subj-group>
<subject>Articles</subject>
<subj-group>
<subject>Acute Cardiovascular Problems</subject>
</subj-group>
<subj-group>
<subject>Acute Renal Failure</subject>
</subj-group>
<subj-group>
<subject>Autoimmunity</subject>
</subj-group>
<subj-group>
<subject>Bleeding & Coagulation Disorders</subject>
</subj-group>
<subj-group>
<subject>Cell Signaling</subject>
</subj-group>
<subj-group>
<subject>Cellular Death & Stress Responses</subject>
</subj-group>
<subj-group>
<subject>Cellular Microbiology & Pathogenesis</subject>
</subj-group>
<subj-group>
<subject>Clinical Immunology</subject>
</subj-group>
<subj-group>
<subject>Coronary Artery Disease</subject>
</subj-group>
<subj-group>
<subject>Diabetes & Obesity</subject>
</subj-group>
<subj-group>
<subject>Emergency Medicine</subject>
</subj-group>
<subj-group>
<subject>Etiology, Pathogenesis & Animal Models of Rheumatic Disease</subject>
</subj-group>
<subj-group>
<subject>Genetics of the Immune System</subject>
</subj-group>
<subj-group>
<subject>Heart Failure</subject>
</subj-group>
<subj-group>
<subject>Immune & Inflammatory Rheumatic Diseases (incl. Arthritis)</subject>
</subj-group>
<subj-group>
<subject>Immune Response</subject>
</subj-group>
<subj-group>
<subject>Immunity to Infections</subject>
</subj-group>
<subj-group>
<subject>Immunopharmacology & Hematologic Pharmacology</subject>
</subj-group>
<subj-group>
<subject>Innate Immunity</subject>
</subj-group>
<subj-group>
<subject>Leukocyte Signaling & Gene Expression</subject>
</subj-group>
<subj-group>
<subject>Liver Biology & Pathobiology</subject>
</subj-group>
<subj-group>
<subject>Medical Microbiology</subject>
</subj-group>
<subj-group>
<subject>Membranes & Sorting</subject>
</subj-group>
<subj-group>
<subject>Neurobiology of Disease & Regeneration</subject>
</subj-group>
<subj-group>
<subject>Nuclear Structure & Function</subject>
</subj-group>
<subj-group>
<subject>Pediatric Problems in Critical Care</subject>
</subj-group>
<subj-group>
<subject>Sepsis & Multiple Organ Failure in Critical Care</subject>
</subj-group>
<subj-group>
<subject>Virology</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Advances in the understanding of mitochondrial DNA as a pathogenic factor in inflammatory diseases</article-title>
<fn-group content-type="pub-status">
<fn>
<p>[version 1; referees: 3 approved]</p>
</fn>
</fn-group>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Boyapati</surname>
<given-names>Ray K.</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tamborska</surname>
<given-names>Arina</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dorward</surname>
<given-names>David A.</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ho</surname>
<given-names>Gwo-Tzer</given-names>
</name>
<xref ref-type="corresp" rid="c1">a</xref>
<xref ref-type="aff" rid="a1">1</xref>
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0002-6014-372X</contrib-id>
</contrib>
<aff id="a1">
<label>1</label>
MRC Centre for Inflammation Research Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK</aff>
<aff id="a2">
<label>2</label>
Department of Gastroenterology, Monash Health, Clayton, VIC, Australia</aff>
</contrib-group>
<author-notes>
<corresp id="c1">
<label>a</label>
<email xlink:href="mailto:gho@staffmail.ed.ac.uk">gho@staffmail.ed.ac.uk</email>
</corresp>
<fn fn-type="COI-statement">
<p>
<bold>Competing interests: </bold>
The authors declare that they have no competing interests.</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>20</day>
<month>2</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="collection">
<year>2017</year>
</pub-date>
<volume>6</volume>
<elocation-id>169</elocation-id>
<history>
<date date-type="accepted">
<day>17</day>
<month>2</month>
<year>2017</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright: © 2017 Boyapati RK et al.</copyright-statement>
<copyright-year>2017</copyright-year>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:type="simple" xlink:href="f1000research-6-11203.pdf"></self-uri>
<abstract>
<p>Mitochondrial DNA (mtDNA) has many similarities with bacterial DNA because of their shared common ancestry. Increasing evidence demonstrates mtDNA to be a potent danger signal that is recognised by the innate immune system and can directly modulate the inflammatory response. In humans, elevated circulating mtDNA is found in conditions with significant tissue injury such as trauma and sepsis and increasingly in chronic organ-specific and systemic illnesses such as steatohepatitis and systemic lupus erythematosus. In this review, we examine our current understanding of mtDNA-mediated inflammation and how the mechanisms regulating mitochondrial homeostasis and mtDNA release represent exciting and previously under-recognised important factors in many human inflammatory diseases, offering many new translational opportunities.</p>
</abstract>
<kwd-group kwd-group-type="author">
<kwd>mitochondrial DNA</kwd>
<kwd>mtDNA</kwd>
<kwd>mtDNA-mediated inflammation</kwd>
<kwd>inflammatory diseases</kwd>
</kwd-group>
<funding-group>
<funding-statement>This work was supported by Medical Research Council grant G0701898, Crohn’s and Colitis UK M16-1, ECCO IBD Investigator’s Award 2010, Chief Scientist Office ETM/75 award (to G-TH); Edinburgh GI Trustees Grant (2014) (to RKB); Medical Research Society UK Vac-982-2016 (to AT); and Wellcome Trust grant WT096497 (to DAD).</funding-statement>
<funding-statement>
<italic>The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</italic>
</funding-statement>
</funding-group>
</article-meta>
<notes>
<sec sec-type="editor-note">
<title>Editorial Note on the Review Process</title>
<p>
<ext-link ext-link-type="uri" xlink:href="http://f1000research.com/browse/f1000-faculty-reviews">F1000 Faculty Reviews</ext-link>
are commissioned from members of the prestigious
<ext-link ext-link-type="uri" xlink:href="http://f1000.com/prime/thefaculty">F1000 Faculty</ext-link>
and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).</p>
<p>The referees who approved this article are: </p>
<list list-type="simple" list-content="reviewer-list">
<list-item>
<p>
<named-content content-type="reviewer-name">Augustine M.K. Choi</named-content>
, Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
<fn fn-type="COI-statement">
<p>No competing interests were disclosed.</p>
</fn>
</p>
</list-item>
<list-item>
<p>
<named-content content-type="reviewer-name">Kiichi Nakahira</named-content>
, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
<fn fn-type="COI-statement">
<p>No competing interests were disclosed.</p>
</fn>
</p>
</list-item>
<list-item>
<p>
<named-content content-type="reviewer-name">Mitchell R. McGill</named-content>
, Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, 63110, USA
<fn fn-type="COI-statement">
<p>No competing interests were disclosed.</p>
</fn>
</p>
</list-item>
<list-item>
<p>
<named-content content-type="reviewer-name">Antonio Ferrante</named-content>
, Women and Children's Hospital Campus, University of Adelaide, Adelaide, Australia
<fn fn-type="COI-statement">
<p>No competing interests were disclosed.</p>
</fn>
</p>
</list-item>
</list>
</sec>
</notes>
</front>
<body>
<sec sec-type="intro">
<title>Introduction</title>
<p>Mitochondria are intracellular double-membrane-bound organelles (“cellular powerhouses”) with many essential physiological roles in energy production, programmed cell death, calcium homeostasis, and the synthesis of lipids, amino acids, and haem. In addition, they are involved in antibacterial, antiviral, and stress responses to hypoxia and tissue injury
<sup>
<xref rid="ref-1" ref-type="bibr">1</xref>
,
<xref rid="ref-2" ref-type="bibr">2</xref>
</sup>
. Mitochondria are evolutionarily derived from energy-producing alpha-bacteria, engulfed by archezoan cells approximately 2 billion years ago leading to a symbiotic relationship that forms the basis of the eukaryotic cells
<sup>
<xref rid="ref-3" ref-type="bibr">3</xref>
</sup>
. The mitochondria share several features with bacteria, including the double-membrane structure, a circular genome that replicates independently of nuclear DNA, and the synthesis of
<italic>N</italic>
-formylated proteins
<sup>
<xref rid="ref-4" ref-type="bibr">4</xref>
</sup>
. As the innate immune system recognises conserved bacterial molecules, mitochondrial constituents are similarly immunogenic, acting as damage-associated molecular patterns (DAMPs) when released into the cytosol and extracellular environment, triggering innate immune responses, and promoting inflammation
<sup>
<xref rid="ref-5" ref-type="bibr">5</xref>
</sup>
. In this review, we focus particularly on the role of mitochondrial DNA (mtDNA) as a specific inflammatory factor, the mechanisms behind its abnormal release, and its effects on downstream inflammatory pathways in human inflammatory diseases.</p>
</sec>
<sec>
<title>Elevated circulating mtDNA in human diseases</title>
<p>Freely circulating mtDNA can be detected, and over 60 studies have quantified mtDNA by quantitative polymerase chain reaction (PCR) in plasma and serum in human diseases (
<xref ref-type="table" rid="T1">Table 1</xref>
). In general, they are increased in conditions with acute tissue injury such as trauma, acute myocardial infarction, and sepsis, implicating major cellular stress and uncontrolled cell death as key factors in the release of mtDNA (
<xref ref-type="fig" rid="f1">Figure 1</xref>
). In cancer, where its role as “liquid biopsies” is a topic of considerable interest, the pattern is less clear, and relatively lower circulating levels are found in some cancers
<sup>
<xref rid="ref-6" ref-type="bibr">6</xref>
</sup>
.</p>
<table-wrap id="T1" orientation="portrait" position="anchor">
<label>Table 1. </label>
<caption>
<title>Circulating mitochondrial DNA in human disease.</title>
</caption>
<table frame="hsides" rules="groups" content-type="article-table">
<thead>
<tr>
<th align="left" valign="top" rowspan="1" colspan="1">Disease
<break></break>
category</th>
<th align="left" valign="top" rowspan="1" colspan="1">Disease</th>
<th align="left" valign="top" rowspan="1" colspan="1">Blood
<break></break>
fraction</th>
<th align="left" valign="top" rowspan="1" colspan="1">Finding</th>
<th align="left" valign="top" rowspan="1" colspan="1">Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Trauma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Trauma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">High mtDNA levels in trauma compared with HCs and correlated
<break></break>
with injury severity</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-7" ref-type="bibr">7</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Trauma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">High mtDNA levels in trauma</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-8" ref-type="bibr">8</xref>
,
<xref rid="ref-9" ref-type="bibr">9</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Trauma with MODS</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Higher levels of mtDNA had higher relative risk for mortality
<break></break>
Higher levels of mtDNA in those with SIRS/MODS compared with
<break></break>
those without</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-10" ref-type="bibr">10</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Trauma and severe sepsis</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">mtDNA higher in patients with trauma compared with HCs on day
<break></break>
1
<break></break>
mtDNA correlates with injury severity scores in trauma patients
<break></break>
mtDNA higher on day 1 in non-survivors compared with survivors</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-11" ref-type="bibr">11</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Post-traumatic SIRS</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">mtDNA is an independent predictor for post-traumatic SIRS</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-12" ref-type="bibr">12</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Trauma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">mtDNA higher in trauma patients with correlation with injury
<break></break>
severity</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-7" ref-type="bibr">7</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Trauma (femur
<break></break>
fracture)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">mtDNA higher in trauma patients than HCs</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-13" ref-type="bibr">13</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Trauma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">mtDNA higher in trauma patients compared with HCs at two time
<break></break>
points (pre-hospital and day 1)</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-14" ref-type="bibr">14</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Trauma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">mtDNA higher in trauma patients than HCs
<break></break>
mtDNA higher in non-survivors compared with survivors</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-15" ref-type="bibr">15</xref>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Sepsis</td>
<td align="left" valign="top" rowspan="1" colspan="1">Severe sepsis</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">mtDNA higher in patients with severe sepsis compared with HCs
<break></break>
No significant difference in mtDNA between non-survivors and
<break></break>
survivors in severe sepsis</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-11" ref-type="bibr">11</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Severe sepsis in the ED</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">mtDNA higher on admission in severe septic patients than in HCs
<break></break>
mtDNA is higher in non-survivors than in survivors, increases
<break></break>
initially and gradually decreases after antimicrobial therapy, and is
<break></break>
an independent predictor of fatality</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-16" ref-type="bibr">16</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Sepsis</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">mtDNA higher in septic patients compared with HCs</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-17" ref-type="bibr">17</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Septic shock</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">mtDNA higher in patients with septic shock</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-18" ref-type="bibr">18</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Adult community-
<break></break>
acquired bacterial
<break></break>
meningitis</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">mtDNA levels were higher in patients with aseptic or bacterial
<break></break>
meningitis compared with HCs
<break></break>
mtDNA levels fall during course of admission
<break></break>
High mtDNA levels associated with poorer outcome in adult
<break></break>
community-acquired bacterial meningitis</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-19" ref-type="bibr">19</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Infectious SIRS</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">mtDNA higher in septic patients compared with HCs</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-20" ref-type="bibr">20</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Paediatric sepsis</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">mtDNA higher in septic patients compared with critically ill non-
<break></break>
septic and HC patients</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-21" ref-type="bibr">21</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Severe sepsis in
<break></break>
the ED</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">No significant difference in mtDNA between sepsis and HC
<break></break>
cohorts</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-22" ref-type="bibr">22</xref>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Critically ill
<break></break>
patients</td>
<td align="left" valign="top" rowspan="1" colspan="1">ICU patients</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Increased mtDNA levels associated with medical ICU mortality</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-23" ref-type="bibr">23</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Critically ill patients
<break></break>
(in the ICU)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Patients with highest quartile of mtDNA in plasma had higher risk
<break></break>
of dying When stratified by TLR9 expression, only patients with high
<break></break>
expression of TLR9 had an association with mortality and mtDNA
<break></break>
level</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-24" ref-type="bibr">24</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Out-of-hospital
<break></break>
cardiac arrest</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Significantly higher levels in non-survivors than in survivors</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-56" ref-type="bibr">56</xref>
<sup>
<xref ref-type="other" rid="fn1">a</xref>
</sup>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Liver failure</td>
<td align="left" valign="top" rowspan="1" colspan="1">Acetaminophen-
<break></break>
induced acute liver
<break></break>
failure</td>
<td align="left" valign="top" rowspan="1" colspan="1">Serum</td>
<td align="left" valign="top" rowspan="1" colspan="1">mtDNA higher in acetaminophen-induced acute liver failure
<break></break>
patients compared with HCs
<break></break>
mtDNA higher in non-survivors compared with survivors</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-25" ref-type="bibr">25</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Acetaminophen-
<break></break>
induced acute liver
<break></break>
injury</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">mtDNA higher in patients with acetaminophen overdose with
<break></break>
abnormal liver function tests compared with HCs and those with
<break></break>
acetaminophen overdose but normal liver function tests</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-27" ref-type="bibr">27</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Fulminant liver
<break></break>
failure</td>
<td align="left" valign="top" rowspan="1" colspan="1">Serum</td>
<td align="left" valign="top" rowspan="1" colspan="1">Higher during acute liver injury</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-26" ref-type="bibr">26</xref>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Heart disease</td>
<td align="left" valign="top" rowspan="1" colspan="1">AMI</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Significantly higher mtDNA in ST elevation myocardial infarction
<break></break>
patients than in stable angina pectoris patients (reducing rapidly
<break></break>
to similar levels 3 days after PCI)</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-28" ref-type="bibr">28</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">AMI</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Significantly higher levels in AMI patients compared with HCs
<break></break>
Levels dropped to normal immediately after PCI</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-29" ref-type="bibr">29</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">AMI</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Significantly higher levels in acute AMI patients compared with
<break></break>
HCs on admission</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-30" ref-type="bibr">30</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">T2DM with CAD</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Significantly elevated levels in T2DM compared with HCs
<break></break>
Higher levels in those with diabetes mellitus and CAD compared
<break></break>
with those without CAD
<break></break>
mtDNA levels correlated with C-reactive protein in patients with
<break></break>
CAD</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-31" ref-type="bibr">31</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">T2DM with CAD</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Significantly higher levels in CAD patients with T2DM</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-32" ref-type="bibr">32</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Heart failure</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Higher levels of mtDNA in heart failure patients compared with
<break></break>
age- and sex-matched HCs; no association with disease severity</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-110" ref-type="bibr">110</xref>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Stroke</td>
<td align="left" valign="top" rowspan="1" colspan="1">Acute ischaemic
<break></break>
stroke</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">mtDNA levels higher in acute cerebral infarction than in HCs
<break></break>
No significant difference in mtDNA between good versus poor
<break></break>
outcome cohorts</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-33" ref-type="bibr">33</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Subarachnoid
<break></break>
haemorrhage</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">No significant difference in mtDNA between subarachnoid
<break></break>
haemorrahge and HC groups
<break></break>
Overall plasma mtDNA not a good marker of prognosis</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-34" ref-type="bibr">34</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Intracerebral
<break></break>
haemorrhage</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">No significant difference in mtDNA between intracerebral
<break></break>
haemorrhage and HC groups
<break></break>
No correlation between mtDNA and disease severity</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-35" ref-type="bibr">35</xref>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Malignancy</td>
<td align="left" valign="top" rowspan="1" colspan="1">Breast cancer</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Reduced levels of mtDNA in benign or malignant breast cancer
<break></break>
compared with HCs</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-111" ref-type="bibr">111</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Ovarian cancer</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma and
<break></break>
serum</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma: significantly higher levels of mtDNA in ovarian cancer
<break></break>
group compared with HCs and ovarian benign tumour group
<break></break>
Serum: no significant difference between groups above</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-112" ref-type="bibr">112</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Testicular germ cell
<break></break>
cancer</td>
<td align="left" valign="top" rowspan="1" colspan="1">Serum</td>
<td align="left" valign="top" rowspan="1" colspan="1">mtDNA levels were significantly higher in patients with testicular
<break></break>
cancer than in HCs, although it did not correlate with any
<break></break>
clinicopathological variable of disease status</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-113" ref-type="bibr">113</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Urological
<break></break>
malignancies</td>
<td align="left" valign="top" rowspan="1" colspan="1">Serum</td>
<td align="left" valign="top" rowspan="1" colspan="1">mtDNA were significantly higher in “urological malignancies”
<break></break>
(bladder cell, renal cell, and prostate cancer)</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-114" ref-type="bibr">114</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Prostate cancer</td>
<td align="left" valign="top" rowspan="1" colspan="1">Serum</td>
<td align="left" valign="top" rowspan="1" colspan="1">mtDNA could not distinguish between benign prostatic
<break></break>
hypertrophy and prostate cancer
<break></break>
Patients with early biochemical recurrence after radical
<break></break>
prostatectomy have higher mtDNA levels</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-115" ref-type="bibr">115</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Ewing’s sarcoma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Serum</td>
<td align="left" valign="top" rowspan="1" colspan="1">mtDNA significantly lower in patients with Ewing’s sarcoma
<break></break>
compared with HCs</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-116" ref-type="bibr">116</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Lung cancer</td>
<td align="left" valign="top" rowspan="1" colspan="1">Serum</td>
<td align="left" valign="top" rowspan="1" colspan="1">mtDNA significantly higher in lung cancer patients compared
<break></break>
with those with benign lung diseases and healthy individuals and
<break></break>
closely associated with tumour, lymph node, metastasis (TNM)
<break></break>
stage</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-117" ref-type="bibr">117</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Advanced prostate
<break></break>
cancer</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">mtDNA levels are elevated in advanced prostate cancer patients
<break></break>
and are associated with decreased survival</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-118" ref-type="bibr">118</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Adenocarcinoma of
<break></break>
the lung in patients
<break></break>
receiving erlotinib</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Rise in mtDNA levels in patients with partial response; drop in
<break></break>
mtDNA levels in those with progressive disease or no response
<break></break>
No correlation with progression-free survival</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-119" ref-type="bibr">119</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Exposure to
<break></break>
carcinogenic
<break></break>
halo-alkane-based
<break></break>
pesticides</td>
<td align="left" valign="top" rowspan="1" colspan="1">Serum</td>
<td align="left" valign="top" rowspan="1" colspan="1">Exposure to these carcinogens was significantly associated with
<break></break>
elevated serum levels of circulating mtDNA (case control study)</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-120" ref-type="bibr">120</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Renal cell
<break></break>
carcinoma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Higher levels in metastatic compared with non-metastatic patients
<break></break>
and controls</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-121" ref-type="bibr">121</xref>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">HIV</td>
<td align="left" valign="top" rowspan="1" colspan="1">HIV</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Higher levels in acute HIV infection, late presenters compared with
<break></break>
long-term non-progressors and HCs
<break></break>
Also correlated with viral load</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-122" ref-type="bibr">122</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Lipodystrophy
<break></break>
in HIV patients
<break></break>
treated with highly
<break></break>
active anti-retroviral therapy</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Significantly higher levels in HIV-infected versus non-infected
<break></break>
individuals
<break></break>
Significantly higher levels in those with lipodystrophy compared
<break></break>
with those without lipodystrophy at month 24</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-123" ref-type="bibr">123</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">HIV</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">No significant association between HIV disease status and mtDNA</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-124" ref-type="bibr">124</xref>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Inflammatory
<break></break>
autoimmune
<break></break>
conditions</td>
<td align="left" valign="top" rowspan="1" colspan="1">Rheumatoid arthritis</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Higher percentage of detectable levels in rheumatoid arthritis
<break></break>
patients compared with controls</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-37" ref-type="bibr">37</xref>
<sup>
<xref ref-type="other" rid="fn1">b</xref>
</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Granulomatosis with
<break></break>
polyangiitis</td>
<td align="left" valign="top" rowspan="1" colspan="1">Serum</td>
<td align="left" valign="top" rowspan="1" colspan="1">Significantly higher levels in granulomatosis with polyangiitis
<break></break>
patients compared with controls</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-38" ref-type="bibr">38</xref>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Age and
<break></break>
exercise</td>
<td align="left" valign="top" rowspan="1" colspan="1">Age</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">mtDNA levels increased gradually after the fifth decade of life</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-125" ref-type="bibr">125</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Age</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">No association with age but mtDNA associated with HLA-DR</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-126" ref-type="bibr">126</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Aging and “frailty”</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Aging: no difference in mtDNA between younger and older
<break></break>
subjects
<break></break>
Frailty: mtDNA copy number directly correlated with frailty score</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-127" ref-type="bibr">127</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Exercise</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Reduced mtDNA in response to exercise</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-128" ref-type="bibr">128</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Male volleyball
<break></break>
players</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Lower levels in professional volleyball players compared with
<break></break>
healthy non-athlete controls</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-129" ref-type="bibr">129</xref>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Miscellaneous</td>
<td align="left" valign="top" rowspan="1" colspan="1">Corrosive injury
<break></break>
(gastrointestinal
<break></break>
ingestion)</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Significantly higher mtDNA in mortality group versus survival
<break></break>
group at presentation and after
<break></break>
12 hours</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-130" ref-type="bibr">130</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Pulmonary
<break></break>
embolism</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Predictor of 15-day mortality</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-131" ref-type="bibr">131</xref>
<sup>
<xref ref-type="other" rid="fn1">c</xref>
</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Autism</td>
<td align="left" valign="top" rowspan="1" colspan="1">Serum</td>
<td align="left" valign="top" rowspan="1" colspan="1">Significantly higher mtDNA in young autistic children compared
<break></break>
with HCs</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-132" ref-type="bibr">132</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Haemodialysis</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Significantly higher levels in maintenance haemodialysis patients
<break></break>
compared with HCs</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-133" ref-type="bibr">133</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">End-stage renal
<break></break>
failure in Han
<break></break>
population</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">End-stage renal failure patients had higher mtDNA copy number</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-134" ref-type="bibr">134</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Bipolar disorder</td>
<td align="left" valign="top" rowspan="1" colspan="1">Serum</td>
<td align="left" valign="top" rowspan="1" colspan="1">No difference between bipolar disorder and HC groups
<break></break>
Higher levels in bipolar disorder group compared with sepsis</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-135" ref-type="bibr">135</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Low levels of
<break></break>
ionising radiation</td>
<td align="left" valign="top" rowspan="1" colspan="1">Serum</td>
<td align="left" valign="top" rowspan="1" colspan="1">Higher levels in interventional cardiologists exposed to low levels
<break></break>
of ionising radiation compared with controls</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-136" ref-type="bibr">136</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Friedreich’s ataxia</td>
<td align="left" valign="top" rowspan="1" colspan="1">Plasma</td>
<td align="left" valign="top" rowspan="1" colspan="1">Significantly reduced mtDNA in Friedreich’s ataxia patients
<break></break>
compared with HCs</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-137" ref-type="bibr">137</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" valign="top" rowspan="1" colspan="1">Non-haemolytic
<break></break>
transfusion reaction</td>
<td align="left" valign="top" rowspan="1" colspan="1">Platelet
<break></break>
concentrates</td>
<td align="left" valign="top" rowspan="1" colspan="1">Higher mtDNA copy number in non-haemolytic transfusion
<break></break>
reaction platelet concentrate versus normal platelet concentrate</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<xref rid="ref-138" ref-type="bibr">138</xref>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p id="fn1">This table lists studies reporting mitochondrial DNA (mtDNA) analysed by polymerase chain reaction (PCR) on serum or plasma—that is, circulating as a damage-associated molecular pattern (DAMP)—in human diseases.
<sup>a</sup>
Letter.
<sup>b</sup>
PCR rather than quantitative PCR used.
<sup>c</sup>
Earlier study in 2010 not included. AMI, acute myocardial infarction; CAD, coronary artery disease; ED, emergency department; HC, healthy control; HIV, human immunodeficiency virus; HLA-DR, human leukocyte antigen–antigen D related; ICU, intensive care unit; MODS, multiple organ dysfunction syndrome; PCI, percutaneous coronary intervention; SIRS, systemic inflammatory response syndrome; T2DM, type 2 diabetes mellitus; TLR9, Toll-like receptor 9.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<fig fig-type="figure" id="f1" orientation="portrait" position="float">
<label>Figure 1. </label>
<caption>
<title>The contribution of mitochondrial DNA to disease pathogenesis.</title>
<p>Medical conditions are in italics. Where and how mitochondria are released are indicated in red. Box in dotted line frames mitochondrial DNA (mtDNA) sensor target. cGAS, cyclic GMP-AMP synthetase; IFN, interferon; IL, interleukin; MAPK, mitogen-activated protein kinase; MMP, matrix metalloproteinase; mtROS, mitochondria-derived reactive oxygen species; NET, neutrophil extracellular trap; NFκB, nuclear factor kappa B; pDC, plasmacytoid dendritic cell; SIRS, systemic inflammatory response syndrome; SLE, systemic lupus erythematosus; STING, stimulator of interferon genes; TLR9, Toll-like receptor 9.</p>
</caption>
<graphic xlink:href="f1000research-6-11203-g0000"></graphic>
</fig>
<sec>
<title>Systemic inflammatory response syndrome</title>
<p>Systemic inflammatory response syndrome (SIRS) is a serious condition associated with high mortality, and affected individuals display progressive signs or symptoms of systemic upset reflecting widespread inflammation, often involving multiple organ dysfunction and failure (for example, lungs, kidneys, and brain). SIRS is often a result of major sepsis but also commonly occurs in the context of injury such as trauma. An early study by Lam
<italic>et al.</italic>
found that individuals admitted for blunt traumatic injury had increased plasma nuclear DNA and mtDNA levels
<sup>
<xref rid="ref-7" ref-type="bibr">7</xref>
</sup>
. Subsequently, Hauser
<italic>et al</italic>
. made the seminal observation that it is the freely circulating mtDNA following traumatic injury which possesses the distinct ability to trigger and drive the clinical manifestation of SIRS
<sup>
<xref rid="ref-8" ref-type="bibr">8</xref>
</sup>
. Several studies have confirmed the observation of elevated plasma mtDNA in trauma and SIRS
<sup>
<xref rid="ref-9" ref-type="bibr">9</xref>
<xref rid="ref-15" ref-type="bibr">15</xref>
</sup>
. A number of studies have found correlations with injury severity in trauma
<sup>
<xref rid="ref-7" ref-type="bibr">7</xref>
,
<xref rid="ref-11" ref-type="bibr">11</xref>
</sup>
and higher mtDNA in non-survivors compared with survivors
<sup>
<xref rid="ref-11" ref-type="bibr">11</xref>
,
<xref rid="ref-15" ref-type="bibr">15</xref>
</sup>
. Furthermore, Gu
<italic>et al</italic>
. found that elevated plasma mtDNA was an independent predictor of SIRS in trauma patients
<sup>
<xref rid="ref-12" ref-type="bibr">12</xref>
</sup>
. In sepsis, elevated levels of circulating mtDNA have also been found in multiple studies
<sup>
<xref rid="ref-11" ref-type="bibr">11</xref>
,
<xref rid="ref-16" ref-type="bibr">16</xref>
<xref rid="ref-21" ref-type="bibr">21</xref>
</sup>
. De Caro
<italic>et al</italic>
. found higher mtDNA in the plasma of critically ill paediatric patients who were septic compared with similarly unwell but non-septic patients
<sup>
<xref rid="ref-21" ref-type="bibr">21</xref>
</sup>
.
<italic></italic>
The one negative study in sepsis may be explained by numerous factors, including a relatively well patient cohort, only one “spot” measurement being taken at presentation, and the potentially confounding factor of cellular content/debris
<sup>
<xref rid="ref-22" ref-type="bibr">22</xref>
</sup>
. Studies of patients in the intensive care setting have found that higher mtDNA levels are associated with poorer outcomes
<sup>
<xref rid="ref-23" ref-type="bibr">23</xref>
,
<xref rid="ref-24" ref-type="bibr">24</xref>
</sup>
.</p>
</sec>
<sec>
<title>Acute single-organ injury: liver, heart, and brain</title>
<p>High levels of mtDNA are present in the serum and plasma of patients with acute injury to a variety of single organs. Acetaminophen overdose induces massive hepatocyte necrosis and in severe cases can lead to multi-organ failure and remains one of the commonest indications for liver transplantation. In fulminant liver failure secondary to acetaminophen overdose, mtDNA in the serum was found to be 30 to 40 times higher than normal, and non-survivors had higher levels than survivors
<sup>
<xref rid="ref-25" ref-type="bibr">25</xref>
</sup>
; a separate study of drug-induced acute liver failure found serum mtDNA levels to be 10,000-fold higher
<sup>
<xref rid="ref-26" ref-type="bibr">26</xref>
</sup>
. Serum mtDNA of acetaminophen overdose patients with derangement in the liver enzyme alanine aminotransferase (a marker of hepatocyte damage) is significantly higher than that of overdose patients who had normal liver enzymes
<sup>
<xref rid="ref-27" ref-type="bibr">27</xref>
</sup>
, suggesting that the extent of mtDNA release into the circulation depends on the extent of hepatocyte necrosis. Similarly, extensive cardiomyocyte necrosis is found in acute myocardial infarction, which is also associated with elevated mtDNA in multiple studies
<sup>
<xref rid="ref-28" ref-type="bibr">28</xref>
<xref rid="ref-30" ref-type="bibr">30</xref>
</sup>
and falls after angioplasty or coronary stent insertion to restore blood flow to the damaged myocardium
<sup>
<xref rid="ref-28" ref-type="bibr">28</xref>
,
<xref rid="ref-29" ref-type="bibr">29</xref>
</sup>
. Patients with diabetes mellitus and coronary artery disease have higher mtDNA levels than those with diabetes but without coronary artery disease
<sup>
<xref rid="ref-31" ref-type="bibr">31</xref>
,
<xref rid="ref-32" ref-type="bibr">32</xref>
</sup>
. mtDNA is also higher in acute cerebral ischaemia, caused by a reduction in cerebral blood flow by embolus or local thrombosis, and plasma levels gradually drop over time after the initial tissue injury
<sup>
<xref rid="ref-33" ref-type="bibr">33</xref>
</sup>
. Interestingly, studies by the same group relating to plasma mtDNA in subarachnoid haemorrhage and spontaneous intracerebral haemorrhage found no significant difference compared with healthy controls, although both were small studies
<sup>
<xref rid="ref-34" ref-type="bibr">34</xref>
,
<xref rid="ref-35" ref-type="bibr">35</xref>
</sup>
. Higher mtDNA is found in the cerebrospinal fluid of patients with subarachnoid haemorrhage
<sup>
<xref rid="ref-34" ref-type="bibr">34</xref>
</sup>
and traumatic brain injury
<sup>
<xref rid="ref-36" ref-type="bibr">36</xref>
</sup>
and is associated with worse clinical outcomes. Overall, in these conditions, significant mtDNA release following massive tissue or cellular injury is evident and likely contributes to the uncontrolled inflammatory response
<sup>
<xref rid="ref-25" ref-type="bibr">25</xref>
</sup>
.</p>
</sec>
<sec>
<title>Chronic inflammatory and immune-mediated diseases</title>
<p>The role for mtDNA in immune-mediated inflammatory diseases, unlike conditions relating to injury, is now also emerging. In rheumatoid arthritis, a chronic relapsing autoimmune condition affecting the joints, mtDNA was present in the plasma and synovial fluid of most patients but undetectable in healthy controls
<sup>
<xref rid="ref-37" ref-type="bibr">37</xref>
</sup>
. Similarly, higher plasma mtDNA is found in granulomatosis with polyangiitis, an autoimmune disease whose features include necrotising granulomatous inflammation and vasculitis
<sup>
<xref rid="ref-38" ref-type="bibr">38</xref>
</sup>
. Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disease with hallmarks including excessive type I interferon (IFN) and antibodies against nucleic acids. Caielli
<italic>et al</italic>
. explored the potential pathogenic importance of oxidised mtDNA in SLE
<sup>
<xref rid="ref-39" ref-type="bibr">39</xref>
</sup>
. They showed that there is a defect in mitochondrial clearance that leads to abnormal extrusion of oxidised mtDNA, which triggers a subsequent interferogenic response. Elevated anti-mtDNA antibodies were found in a separate study of SLE, particularly in lupus nephritis, where levels correlated with the lupus nephritis activity index better than anti-double-stranded DNA (anti-dsDNA) antibody levels did
<sup>
<xref rid="ref-40" ref-type="bibr">40</xref>
</sup>
. In a further study of SLE, neutrophil extracellular traps (NETs) released from the inflammatory subset of low-density granulocyte were highly enriched in mtDNA compared with NETs from healthy control neutrophils
<sup>
<xref rid="ref-41" ref-type="bibr">41</xref>
</sup>
. NETs are networks of extracellular fibres that are primarily composed of DNA and that are strikingly expelled following a form of neutrophil cell death (NETosis) with an aim to control pathogens; however, this study demonstrates that mtDNA-enriched NETs are pro-inflammatory in nature. Similar findings are reported in chronic granulomatous disease in this study. Higher levels of mtDNA have been found in the chronic inflammatory states of HIV (although not in all studies), end-stage renal failure, and diabetes mellitus (
<xref ref-type="table" rid="T1">Table 1</xref>
). In obese individuals with steatohepatitis, mitochondria enclosed in microparticles can also be detected in plasma
<sup>
<xref rid="ref-42" ref-type="bibr">42</xref>
</sup>
. These findings suggest that mtDNA, otherwise a “self-signal”, may be an active component in the aberrant immune or inflammatory response in chronic diseases and in autoimmunity.</p>
</sec>
</sec>
<sec>
<title>mtDNA contributes to inflammatory response</title>
<p>mtDNA was first directly implicated as a key factor in the development of inflammatory pathology over a decade ago when intra-articular injection of oxidised mtDNA, but not nuclear DNA, triggered inflammatory arthritis in mice
<sup>
<xref rid="ref-43" ref-type="bibr">43</xref>
</sup>
. There are now numerous studies using
<italic>in vivo</italic>
injection of mtDNA to provoke local or systemic inflammation or both
<sup>
<xref rid="ref-9" ref-type="bibr">9</xref>
,
<xref rid="ref-44" ref-type="bibr">44</xref>
<xref rid="ref-46" ref-type="bibr">46</xref>
</sup>
. Moreover, there are now several
<italic>in vivo</italic>
studies to show that genetic deletion or pharmacologic interference of these pathways reduces the inflammatory effect of mtDNA (as will be discussed in the next section). Hence, it is clear that mtDNA release is not an epiphenomenon but directly contributes to the genesis of inflammation (
<xref ref-type="fig" rid="f1">Figure 1</xref>
). Current evidence shows that mtDNA-mediated inflammation is predominantly driven by the Toll-like receptor 9 (TLR9), inflammasome, and, more recently, stimulator of interferon genes (STING) pathways.</p>
<sec>
<title>Toll-like receptor 9</title>
<p>TLR9 is located in the endoplasmic reticulum (ER) of various immune cells and translocates to the endosome upon sensing of hypomethylated DNA with CpG motifs, such as bacterial DNA
<sup>
<xref rid="ref-47" ref-type="bibr">47</xref>
,
<xref rid="ref-48" ref-type="bibr">48</xref>
</sup>
. Given its high frequency of unmethylated CpG dinucleotide repeats, it is postulated that mtDNA mediates inflammation dependent on the TLR9 pathway and potentially exerts a similar effect as on bacterial CpG. TLR9 recognises a variety of types of oligodeoxynucleotides (ODNs); for example, class A ODNs preferentially activate plasmacytoid dendritic cells whilst class B CpG ODNs activate B cells
<sup>
<xref rid="ref-49" ref-type="bibr">49</xref>
</sup>
. Some of our understanding of how mtDNA may interact with TLR9 is extrapolated from work with class A ODNs, although they do not necessarily have the same effect. After activation of TLR9 by CpG DNA, inflammatory cytokine induction and Th1 immune responses occur
<sup>
<xref rid="ref-50" ref-type="bibr">50</xref>
</sup>
and TLR9 is necessary in CpG DNA-driven responses
<sup>
<xref rid="ref-51" ref-type="bibr">51</xref>
</sup>
. TLR9 ligands can preferentially activate downstream pathways, including pro-inflammatory nuclear factor kappa B (NFκB), nucleotide-bindingdomain and leucine-rich repeat (NLR) pyrin domain containing 3 (NLRP3) inflammasomes, and interferon regulatory factor (IRF)-dependent type 1 IFN, which can upregulate IL-1 receptor antagonist
<sup>
<xref rid="ref-52" ref-type="bibr">52</xref>
,
<xref rid="ref-53" ref-type="bibr">53</xref>
</sup>
.</p>
<p>Most tissue injury models show better outcomes when the
<italic>tlr9</italic>
gene is deleted. Wei
<italic>et al</italic>
. recently observed that
<italic>tlr9
<sup>−/−</sup>
</italic>
mice have improved survival outcome in a necrotic lung model of cationic nanocarrier-induced necrosis and mtDNA release
<italic>in vivo</italic>
<sup>
<xref rid="ref-54" ref-type="bibr">54</xref>
</sup>
. Furthermore, the pulmonary inflammation seen after injection of mtDNA was significantly reduced in
<italic>tlr9
<sup>−/−</sup>
</italic>
and
<italic>MyD88
<sup>−/−</sup>
</italic>
mice, underlining the importance of the TLR9–MyD88 pathway
<sup>
<xref rid="ref-54" ref-type="bibr">54</xref>
</sup>
. Intravenous injection of mitochondrial debris with substantial amounts of mtDNA into mice induced a systemic inflammatory response in wild-type mice that was significantly attenuated in
<italic>tlr9
<sup>−/−</sup>
</italic>
mice
<sup>
<xref rid="ref-45" ref-type="bibr">45</xref>
</sup>
.
<italic>Tlr9
<sup>−/−</sup>
</italic>
mice also have better survival compared with wild-type counterparts in severe renal ischaemia reperfusion injury with associated decreased circulating mtDNA
<sup>
<xref rid="ref-55" ref-type="bibr">55</xref>
</sup>
. A similar protective effect is seen in
<italic>tlr9
<sup>−/−</sup>
</italic>
mice with acute acetaminophen overdose with observed lower serum mtDNA and an absence of lung inflammation in contrast to the findings of wild-type mice
<sup>
<xref rid="ref-26" ref-type="bibr">26</xref>
</sup>
. Nevertheless, the reduction in mtDNA in
<italic>tlr9
<sup>−/−</sup>
</italic>
mice is intriguing and could be explained by the reduced inflammation with lower resultant cellular necrosis. Alternatively, it is possible that TLR9 is somehow involved in mtDNA release into the extracellular circulation. In a recent study using a murine model of non-alcoholic steatohepatitis (NASH), mtDNA from NASH hepatocytes resulted in greater activation of TLR9 than did mtDNA from control livers
<sup>
<xref rid="ref-42" ref-type="bibr">42</xref>
</sup>
. This suggests that mtDNA that is selectively modified during pathologic disease processes can augment the ensuing inflammatory response. Similarly, the level of TLR9 expression (due to various factors) appears to be important. In those with high mtDNA levels, higher TLR9 expression is associated with increased mortality in the intensive care unit (ICU), as discussed earlier
<sup>
<xref rid="ref-56" ref-type="bibr">56</xref>
</sup>
.</p>
<p>Neutrophils have received the most attention in studies on mtDNA–TLR9 signalling in several different inflammatory settings. Zhang
<italic>et al</italic>
. found that mtDNA activates neutrophil p38 mitogen-activated protein kinase (MAPK) through TLR9 with release of matrix metalloproteinase 8 (MMP8) and MMP9
<sup>
<xref rid="ref-8" ref-type="bibr">8</xref>
,
<xref rid="ref-9" ref-type="bibr">9</xref>
</sup>
, a finding confirmed in a study in which phosphorylated p38 and MMP9 increased after mtDNA treatment of neutrophils
<sup>
<xref rid="ref-57" ref-type="bibr">57</xref>
</sup>
. A separate study reported similar findings where pre-treatment with TLR9 inhibitor ODN2088 inhibited the activation of p38 MAPK and release of MMP8
<sup>
<xref rid="ref-54" ref-type="bibr">54</xref>
</sup>
. Gu
<italic>et al</italic>
. also found that intratracheal administration of mtDNA provokes lung inflammation through TLR9–p38 MAPK
<sup>
<xref rid="ref-58" ref-type="bibr">58</xref>
</sup>
. Hip fracture in rats resulted in mtDNA release into the circulation as well as higher TLR9 and NFκB p65 activation and subsequent lung injury
<sup>
<xref rid="ref-46" ref-type="bibr">46</xref>
</sup>
. The role of other MAPKs such as extracellular signal-regulated kinases (ERKs) and c-Jun N-terminal kinases (JNKs) remains unclear and, to our knowledge, unexamined in this context. These data suggest a pathway where mtDNA activates neutrophils through TLR9 binding and activation of the MAPK pathway with subsequent MMP8 and MMP9 release (
<xref ref-type="fig" rid="f1">Figure 1</xref>
).</p>
<p>When mtDNA is considered vis-à-vis the site and location of TLR9 receptor, mtDNA must be either displaced from whole mitochondria and moved into the cytosol or, when extracellular, internalised by some mechanism(s) to act on endosomal TLR9. The endosomal location of TLR9 is most likely a mechanism to avoid unwanted activation
<sup>
<xref rid="ref-59" ref-type="bibr">59</xref>
</sup>
. It is unclear how extracellular mtDNA is internalised, but possibilities include endocytosis, transmembrane diffusion, phagocytosis, and receptor-mediated endocytosis
<sup>
<xref rid="ref-60" ref-type="bibr">60</xref>
</sup>
. Transmembrane diffusion is unlikely because of the highly (negatively) charged nature of DNA, which makes it difficult to pass through the cellular membrane. A recent study found that monocyte-derived macrophages can take up whole mitochondria released from necroptosis, suggesting that phagocytosis could be a relevant mechanism
<sup>
<xref rid="ref-61" ref-type="bibr">61</xref>
</sup>
. The macrophage has a clear role in resolving inflammation by clearing up cellular debris and apoptotic bodies by phagocytosis. When mitochondria are not cleared during non-apoptotic cell death, the macrophage may phagocytose cellular corpses with mtDNA still abundantly present. Typically, apoptotic corpses can suppress the transcription of pro-inflammatory cytokine genes, promote the secretion of anti-inflammatory cytokines by phagocytes, and cause antigen-presenting cells to present dead cell antigen in a manner that promotes immunological tolerance (reviewed by Zitvogel
<italic>et al.</italic>
<sup>
<xref rid="ref-62" ref-type="bibr">62</xref>
</sup>
)
<italic>.</italic>
It will be of interest to consider the fate of mtDNA when macrophages or dendritic cells phagocytose cellular corpses with mtDNA. Does this clear the mtDNA or does it regulate subsequent functions (for example, immune responsiveness) in these cell types? This has yet to be studied in detail. It is also possible that binding to additional cofactors facilitates the internalisation into immune cells, and, in this instance, high-mobility group box 1 (HMGB1) and receptor for advanced glycation end products (RAGE) have been implicated
<sup>
<xref rid="ref-63" ref-type="bibr">63</xref>
</sup>
. In this study, HMGB1–CpG (class A) complexes resulted in TLR9/RAGE association and recruitment of MyD88 in B cells
<sup>
<xref rid="ref-63" ref-type="bibr">63</xref>
</sup>
. Here, RAGE was visualised as associating with the DNA and was internalised with some sequestered in endosome-like structures. However, this possible mechanism requires further investigation. It has also been proposed that activation of autoreactive B cells by CpG DNA occurs after B-cell receptor engagement, leading to the delivery of CpG DNA to endosomal TLR9
<sup>
<xref rid="ref-64" ref-type="bibr">64</xref>
</sup>
.</p>
<p>Although nucleic acid-sensing TLRs on immune cells are found mainly within cells, cell surface expression has also been described. Via flow cytometry, TLR9 has been detected on the surface of resting B lymphocytes
<sup>
<xref rid="ref-65" ref-type="bibr">65</xref>
,
<xref rid="ref-66" ref-type="bibr">66</xref>
</sup>
and peripheral blood mononuclear cells
<sup>
<xref rid="ref-67" ref-type="bibr">67</xref>
,
<xref rid="ref-68" ref-type="bibr">68</xref>
</sup>
. One functional
<italic>ex vivo</italic>
study found primary human and mouse TLR9 surface expression in neutrophils, which are upregulated by a variety of stimuli, including TLR9 agonists
<sup>
<xref rid="ref-69" ref-type="bibr">69</xref>
</sup>
. However, it remains unclear whether TLR9 is able to signal from the cell surface. In other cell types, TLR9 is also expressed on the cell surface. For example, TLR9 is expressed on both the apical and the basolateral membranes of intestinal epithelial cells, although NFκB is activated only via basolateral stimulation of CpG ligands
<sup>
<xref rid="ref-70" ref-type="bibr">70</xref>
,
<xref rid="ref-71" ref-type="bibr">71</xref>
</sup>
. This is relevant at the gut mucosal interface, as this limits the extent of TLR9 activation at the apical surface, which is in contact with a luminal milieu rich with bacterial DNA. Hence, compromised intestinal barrier integrity and translocation of bacterial CpG from the lumen during gut pathology will lead to basolateral stimulation in this context. Whether mtDNA has a different propensity compared with bacterial CpG to trigger TLR9 depending on epithelial site has not been studied.</p>
</sec>
<sec>
<title>The inflammasome</title>
<p>The inflammasomes are targets of mtDNA leading to cleavage and activation of caspase-1 and downstream maturation of interleukin-1β (IL-1β) and IL-18
<sup>
<xref rid="ref-72" ref-type="bibr">72</xref>
</sup>
. Here, it is the cytosolic release of mtDNA that exerts the dominant effect on inflammasome activation. Of the several inflammasomes described, the NLRP3 inflammasome is the best characterised in this regard. Nakahira
<italic>et al</italic>
. showed that depletion of mtDNA reduced IL-1β secretion in macrophages following treatment with known inflammasome triggers lipopolysaccharide (LPS) and ATP
<sup>
<xref rid="ref-73" ref-type="bibr">73</xref>
</sup>
. Of interest, mitochondria-derived reactive oxygen species (mtROS) is a further key mediator in this process. Pharmacologic induction of mtROS correlates with higher secretion of active IL-1β in an NLRP3- and caspase-1-dependent manner, and treatment with mtROS scavengers suppresses this effect
<sup>
<xref rid="ref-74" ref-type="bibr">74</xref>
</sup>
. The requirement for mtROS in NLRP3 activation has been confirmed by other studies
<sup>
<xref rid="ref-73" ref-type="bibr">73</xref>
,
<xref rid="ref-75" ref-type="bibr">75</xref>
<xref rid="ref-77" ref-type="bibr">77</xref>
</sup>
and may be explained by its oxidising effects on mtDNA. Shimada
<italic>et al</italic>
. showed that it is the oxidised form of mtDNA that confers the inflammatogenic potential to mtDNA
<sup>
<xref rid="ref-75" ref-type="bibr">75</xref>
</sup>
. mtROS enhances not only the oxidative process but also the cytosolic translocation of oxidised mtDNA that then binds directly to NLRP3
<sup>
<xref rid="ref-75" ref-type="bibr">75</xref>
</sup>
. Non-oxidised mtDNA is insufficient to activate the NLRP3 inflammasome, although it may stimulate IL-1β production via other inflammasomes such as the absent in melanoma 2 (AIM2)
<sup>
<xref rid="ref-78" ref-type="bibr">78</xref>
</sup>
. Interestingly, genetic deletion of NLRP3 and caspase-1 results in less mtDNA release
<sup>
<xref rid="ref-73" ref-type="bibr">73</xref>
,
<xref rid="ref-77" ref-type="bibr">77</xref>
</sup>
. This suggests a positive-feedback loop, in which activation of the NLRP3 inflammasome by oxidised mtDNA further promotes mtDNA release. The overwhelming or persisting (or both) ROS production by inflammatory cells, for example, is known to damage macromolecules (DNA as well as RNA, lipids, carbohydrates, and proteins) of the surrounding cells. Activated neutrophils produce large amounts of ROS as part of their essential role in host defense
<sup>
<xref rid="ref-79" ref-type="bibr">79</xref>
</sup>
. Hence, this is a likely major contributory factor to mtDNA damage once the inflammatory process is triggered.</p>
<p>Other factors controlling mitochondria-mediated NLRP3 activation are also relevant. For example, defective autophagy increases caspase-1 activation, IL-1β and IL-18 production, and cytosolic mtDNA translocation in LPS- and ATP-primed macrophages
<sup>
<xref rid="ref-76" ref-type="bibr">76</xref>
</sup>
. Pharmacological inhibition of mitophagy/autophagy in human macrophages results in the accumulation of damaged mitochondria, ROS generation and IL-1β secretion
<sup>
<xref rid="ref-74" ref-type="bibr">74</xref>
</sup>
, and increased NLRP3 expression in the presence of LPS
<sup>
<xref rid="ref-80" ref-type="bibr">80</xref>
</sup>
. Hence, defective autophagy leads to inadequate clearance of damaged mitochondria, priming the internal cellular environment for NLRP3 activation. It is noteworthy that, given the diversity of NLRP3 activators, current literature suggests that the precise mechanism of NLRP3 activation is still under debate
<sup>
<xref rid="ref-81" ref-type="bibr">81</xref>
</sup>
. Although the role of the inflammasome is often considered separately from TLR9 here, there is evidence that TLR/NFκB activation is a necessary priming step leading to NLRP3 upregulation and subsequent downstream signalling. NFκB-activating stimulus is required for cells to express pro-IL-1β and NLRP3
<sup>
<xref rid="ref-82" ref-type="bibr">82</xref>
</sup>
. Imeada
<italic>et al</italic>
. showed that stimulation of TLR9 by DNA fragments during early acetaminophen-induced cell death can lead to the transcriptional activation of the IL-1β gene, resulting in the formation of pro-IL-1β
<sup>
<xref rid="ref-83" ref-type="bibr">83</xref>
</sup>
. Using the acetaminophen hepatotoxicity model, they showed that
<italic>NLRP3</italic>
deletion and related inflammasome components
<italic>ASC</italic>
and
<italic>Caspase-1</italic>
were protective against induced liver failure
<sup>
<xref rid="ref-83" ref-type="bibr">83</xref>
</sup>
. A further study, however, did not show any effect of NLRP3 deletion on the outcomes of acetaminophen-induced liver failure
<sup>
<xref rid="ref-84" ref-type="bibr">84</xref>
</sup>
. Hence, in the context of liver necrosis, the role for NLRP3 inflammasome remains controversial.</p>
</sec>
<sec>
<title>STING pathway</title>
<p>The role of mtDNA in innate immunity through the STING pathway has also been a focus of recent studies. STING is a cytosolic protein anchored to the ER
<sup>
<xref rid="ref-85" ref-type="bibr">85</xref>
</sup>
. STING can be activated either by direct association with dsDNA or by cyclic dinucleotides, which can be derived from intracellular bacteria or viruses or produced by a DNA sensor, cyclic GMP–AMP (cGAMP) synthetase (cGAS)
<sup>
<xref rid="ref-86" ref-type="bibr">86</xref>
</sup>
. This, in turn, activates IRF3, which ultimately translocates to the nucleus and transcribes type I IFN genes, and also the NFκB pathway
<sup>
<xref rid="ref-85" ref-type="bibr">85</xref>
</sup>
.</p>
<p>Two independent groups recently discovered that the STING-mediated IFN response can also be activated by mtDNA
<sup>
<xref rid="ref-87" ref-type="bibr">87</xref>
,
<xref rid="ref-88" ref-type="bibr">88</xref>
</sup>
. They first observed that deficiency of apoptotic caspases (3, 7, and 9) resulted in upregulation of type I IFN genes. This response was dependent on Bak/Bax, pro-apoptotic proteins responsible for mitochondrial outer membrane permeabilisation leading to mtDNA release, and the release of cytochrome C, which activates the intrinsic apoptotic pathway. Typically, apoptosis is considered immunologic-silent; for example, it does not trigger an inflammatory response. However, these studies demonstrated that, when caspases (9 and 3/7) responsible for the completion of apoptotic process are inhibited or deleted, cytosolic mtDNA goes on to activate cGAS/STING-mediated type I IFN signalling
<sup>
<xref rid="ref-87" ref-type="bibr">87</xref>
,
<xref rid="ref-88" ref-type="bibr">88</xref>
</sup>
. Hence, these caspases serve as a “brake” on the mtDNA-inflammatory effect during cell death. mtDNA released during cell death has been previously reported to provide a second signal that cooperates with an additional inflammatory signal (for example, LPS) to activate the NLRP3 inflammasome and induce IL-1β production in murine macrophages
<sup>
<xref rid="ref-75" ref-type="bibr">75</xref>
</sup>
. Further evidence of an mtDNA role in STING-mediated IFN responses comes from West
<italic>et al</italic>
.
<sup>
<xref rid="ref-89" ref-type="bibr">89</xref>
</sup>
. Here, partial deficiency of the mtDNA-binding protein mitochondrial transcription factor A (TFAM) was associated with increased concentrations of cytosolic mtDNA and enhanced type I IFN response, which was attenuated by knockdown of components of the STING pathway.</p>
<p>Aberrant mtDNA–STING signalling has also been implicated in human inflammatory diseases, such as SLE. As discussed earlier, Lood
<italic>et al</italic>
. showed that treatment of human neutrophils with SLE-abundant ribonucleoprotein immune complexes induces mtROS, mtDNA oxidation, and translocation of the mitochondria to the plasma membrane
<sup>
<xref rid="ref-41" ref-type="bibr">41</xref>
</sup>
. Oxidised mtDNA is then released extracellularly as a component of NETs. Transfection of NET-derived mtDNA results in expression of IFN-β in human peripheral mononuclear cells. Systemic injection of oxidised mtDNA increases IFN-stimulated gene expression in the spleen of wild-type but not STING-deficient mice. Similar to inflammasomes, uncontrolled mtROS production promoting cytosolic mtDNA release is important in STING activation and potentially in the case of autoimmunity. These studies highlight the importance of the innate cellular functions to handle mtDNA release during the initiation of cell death, which ultimately will decide whether the ensuing fate will be that of a silent or inflammatory outcome.</p>
</sec>
<sec>
<title>Mechanisms for mtDNA release</title>
<p>Two levels of mtDNA release—cytosolic and then extracellular—are critically important steps (
<xref ref-type="fig" rid="f1">Figure 1</xref>
). In the former, the mechanism of release of mtDNA from mitochondria relies on the opening of mitochondrial permeability transition (MPT) pores in the inner mitochondrial membrane
<sup>
<xref rid="ref-90" ref-type="bibr">90</xref>
</sup>
. Inhibition of pore opening with cyclosporine A resulted in lower mtDNA in the cytosol after stimulation with LPS and ATP
<sup>
<xref rid="ref-73" ref-type="bibr">73</xref>
</sup>
. Ding
<italic>et al</italic>
. showed that the induction of ROS using oxidised low-density lipoprotein (ox-LDL) increased mtDNA leakage into the cytosol in a dose-dependent manner, and this effect was ameliorated with blockade of the ox-LDL receptor or a ROS inhibitor
<sup>
<xref rid="ref-91" ref-type="bibr">91</xref>
</sup>
.</p>
<p>In terms of extracellular release, cellular stress and necrosis are primary factors in the non-discriminant liberation of a host of mitochondrial components such as mtDNA, N-formyl peptides, ATP, TFAM, and mitochondrial lipids. These mitochondrial constituents also exert their respective effects, which are wide-ranging, on key inflammatory pathways (extensively reviewed by Nakahira
<italic>et al</italic>
.
<sup>
<xref rid="ref-81" ref-type="bibr">81</xref>
</sup>
). Aside from this non-selective release after uncontrolled cell death, several studies have suggested additional mechanisms such as necroptosis (or programmed necrosis)
<sup>
<xref rid="ref-92" ref-type="bibr">92</xref>
</sup>
. Blood transfusion-induced endothelial necroptosis was recently found to increase extracellular mtDNA as a potential mechanism to explain transfusion-related lung injury
<sup>
<xref rid="ref-93" ref-type="bibr">93</xref>
</sup>
. A recent study suggested that, during necroptosis, mitochondria were released before plasma membrane rupture and then phagocytosed by monocyte-derived macrophages or dendritic cells, triggering an inflammatory response as shown by cytokine production and cell maturation, respectively
<sup>
<xref rid="ref-61" ref-type="bibr">61</xref>
</sup>
. Thus, ingestion of intact mitochondria may represent a distinct uptake mechanism following necroptosis. In a separate study, platelets were also found to be a source for free extracellular mitochondria release and then to act as an endogenous substrate for bactericidal secreted phospholipase A
<sub>2</sub>
IIA (sPLA
<sub>2</sub>
-IIA) leading to mitochondrial membrane hydrolysis, loss of mitochondrial structural integrity, and mtDNA release
<sup>
<xref rid="ref-94" ref-type="bibr">94</xref>
</sup>
. Intriguingly, Xin
<italic>et al</italic>
. found lower levels of mtROS production when metformin was added to activated platelets, and this was associated with decreased extracellular mtDNA release
<sup>
<xref rid="ref-95" ref-type="bibr">95</xref>
</sup>
. The authors found lower complex I activity of the platelet mitochondrial respiratory chain and suggested this as a mechanism for the observed suppressed mitochondrial dysfunction.</p>
<p>Whether there is an active element in mtDNA release is an interesting point of consideration. Active cellular transfer of mitochondria from stromal cells to rescue stricken lung alveoli cells in acute lung injury has been demonstrated
<sup>
<xref rid="ref-96" ref-type="bibr">96</xref>
</sup>
. Extracellular vesicles are important modes of intercellular communication and comprise exosomes (endosomal) and microvesicles (plasma membrane-derived) and are directed by exocytosis. Both chromosomal DNA
<sup>
<xref rid="ref-97" ref-type="bibr">97</xref>
,
<xref rid="ref-98" ref-type="bibr">98</xref>
</sup>
and mtDNA
<sup>
<xref rid="ref-99" ref-type="bibr">99</xref>
,
<xref rid="ref-100" ref-type="bibr">100</xref>
</sup>
have been observed in extracellular vesicles; it has been suggested that the transfer of altered mtDNA between cells may play a role in Alzheimer’s disease and skeletal muscle diseases
<sup>
<xref rid="ref-99" ref-type="bibr">99</xref>
,
<xref rid="ref-100" ref-type="bibr">100</xref>
</sup>
. As described earlier, in patients with NASH, a greater percentage of mitochondria was found inside extracellular microparticles and a higher percentage of microparticles contained mitochondria compared with lean subjects
<sup>
<xref rid="ref-42" ref-type="bibr">42</xref>
</sup>
. Furthermore, subjects with NASH had a higher level of oxidised mtDNA in microparticles. Further clarification is required on the concentration and significance of mtDNA in extracellular vesicles and whether this has different immunostimulatory effects compared with cell-free or surface-bound mtDNA. As previously mentioned, the pro-inflammatory effects of mtDNA are dependent on its oxidisation
<sup>
<xref rid="ref-75" ref-type="bibr">75</xref>
,
<xref rid="ref-101" ref-type="bibr">101</xref>
</sup>
. The highly oxidative extracellular milieu at sites of tissue inflammation in patients with chronic inflammatory disease may overwhelm anti-oxidant systems, further potentiating the inflammatory potential of DAMPs such as mtDNA
<sup>
<xref rid="ref-5" ref-type="bibr">5</xref>
</sup>
.</p>
</sec>
<sec>
<title>mtDNA degradation and clearance</title>
<p>Several well-described clearance mechanisms limit the pro-inflammatory nature of mtDNA. Autophagy as discussed earlier is important
<sup>
<xref rid="ref-102" ref-type="bibr">102</xref>
</sup>
. Defective autophagy has been implicated in several chronic inflammatory human diseases, including Crohn’s disease
<sup>
<xref rid="ref-103" ref-type="bibr">103</xref>
</sup>
. A proportion of circulating DNA in the bloodstream appears to cross the kidney barrier and be excreted in the urine
<sup>
<xref rid="ref-104" ref-type="bibr">104</xref>
</sup>
. Indeed, mtDNA has been detected in the urine at elevated levels in patients with progressive acute kidney injury
<sup>
<xref rid="ref-105" ref-type="bibr">105</xref>
</sup>
. This may be due to the inflammatory state associated with this condition, the increased clearance with a disturbed kidney barrier, or both. Another possible mechanism of mtDNA clearance is phagocytosis by macrophages in a manner similar to the ingestion of the structurally similar bacterial DNA
<sup>
<xref rid="ref-106" ref-type="bibr">106</xref>
</sup>
. As described earlier, the outcome of phagocytosis of intact mitochondria may be pro- rather than anti-inflammatory; these divergent effects may also be dependent on the phenotype of the phagocytosing cells (for example, inflammatory versus pro-resolution macrophages/monocytes, neutrophils, and red blood cells)
<sup>
<xref rid="ref-61" ref-type="bibr">61</xref>
,
<xref rid="ref-93" ref-type="bibr">93</xref>
</sup>
.</p>
<p>In general, non-host DNA in the circulation is digested in part by circulating nucleases, and mtDNA may be affected by a similar mechanism
<sup>
<xref rid="ref-107" ref-type="bibr">107</xref>
</sup>
. Intracellularly, DNases found in the autophagolysosome play a vital role in degrading mtDNA
<sup>
<xref rid="ref-102" ref-type="bibr">102</xref>
,
<xref rid="ref-108" ref-type="bibr">108</xref>
</sup>
. Oka
<italic>et al</italic>
. showed that cardiac-specific deletion of
<italic>DNase II</italic>
resulted in mtDNA accumulation in cardiomyocytes and the development of heart failure
<sup>
<xref rid="ref-102" ref-type="bibr">102</xref>
</sup>
. In human umbilical vein endothelial cells, lysosomal DNases protect cells against inflammation from mtDNA damage induced by ox-LDL
<sup>
<xref rid="ref-91" ref-type="bibr">91</xref>
</sup>
. Here, small interfering RNA (siRNA) knockdown of DNase II amplifies the mtDNA–TLR9-mediated inflammatory response
<sup>
<xref rid="ref-91" ref-type="bibr">91</xref>
</sup>
. It is unclear whether nucleases have a similar action on mtDNA in the extracellular space or are relevant in the physiological setting, especially when mtDNA is present in microvesicles or housed within intact mitochondria, which protect against DNase II. Intriguingly, DNase pre-treatment abolished renal mitochondrial injury that was observed after injection of mitochondrial debris (including mtDNA) in mice
<sup>
<xref rid="ref-45" ref-type="bibr">45</xref>
</sup>
. However, the precise role of DNase and its effect on the immunostimulatory effects of mtDNA is likely to be more complex, as illustrated by a recent study which showed that DNase II was required for TLR9 activation by bacterial genomic DNA
<sup>
<xref rid="ref-109" ref-type="bibr">109</xref>
</sup>
.</p>
</sec>
</sec>
<sec>
<title>Conclusions: translational opportunities for mtDNA-mediated inflammation</title>
<p>mtDNA contributes to inflammation at multiple levels when tissue or cellular homeostasis is perturbed. Damaged mtDNA released into the cytosol has a functional short-range effect on immediate “alarm” systems such as the inflammasome and NFκB. Uncontrolled release of mtDNA into the circulation in conditions with significant tissue injury generates a more systemic effect whilst de-regulation of local mitochondrial homeostatic mechanisms such as autophagy or mtROS detoxification contributes to organ-specific pathology as observed in the heart and liver. Failure of such mechanisms may also give rise to a more wide-ranging consequence (for example, in autoimmune diseases such as SLE).</p>
<p>Our review shows that mtDNA-mediated inflammation is important and relevant to many human inflammatory diseases. However, this remains an underexplored field and more insights will likely emerge in the near future. The current evidence offers a rich realm of translational opportunities to target mtDNA-mediated inflammation. There are many plausible approaches, which include targeting cytosolic mtDNA release (for example, directly at MPT using cyclosporine or by specific mitochondrial anti-oxidant strategies, such as MitoQ10
<sub>10</sub>
to reduce mtROS), augmenting clearance (for example, using autophagy activators or correcting factors leading to impaired autophagy), diverting the cellular response following mitochondrial damage (for example, induction of pro-apoptotic caspases), and reducing the inflammatory potential of mtDNA (for example, DNases to digest NET-bound mtDNA and reducing oxidation of mtDNA).</p>
<p>Given that mtDNA can be measured and used as a biomarker, it offers a unique opportunity to stratify and identify individuals who may benefit from specific therapeutic targeting of downstream inflammation pathways (for example, TLR9, NLRP3, or STING pathways). As discussed earlier, there are numerous studies in sepsis, trauma, and acute single-organ injury that have already demonstrated that individuals with high mtDNA levels and TLR9 expressions have worse prognosis. Therefore, there are clear groups in which stratification is useful. However, a number of challenges exist to its implementation as a biomarker, such as the variation in which mtDNA is measured (for example, serum versus plasma, mtDNA-specific PCR primers) and reported in the literature. Standardisation of these protocols, including the identification of “normal” and “abnormal” ranges, will be important prior to clinical use. Furthermore, many studies have failed to include clinically relevant predictive statistics; further studies reporting such statistics in a variety of inflammatory conditions are required.</p>
<p>In conclusion, multiple lines of data show that innate responses to mtDNA, which is similar to and evolutionarily derived from bacteria, are hard-wired into our biology and drive the development inflammation with pathologic consequences in many diseases.</p>
</sec>
</body>
<back>
<ref-list>
<ref id="ref-1">
<label>1</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>West</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Shadel</surname>
<given-names>GS</given-names>
</name>
<name>
<surname>Ghosh</surname>
<given-names>S</given-names>
</name>
</person-group>
:
<article-title>Mitochondria in innate immune responses.</article-title>
<source>
<italic>Nat Rev Immunol.</italic>
</source>
<year>2011</year>
;
<volume>11</volume>
(
<issue>6</issue>
):
<fpage>389</fpage>
<lpage>402</lpage>
.
<pub-id pub-id-type="doi">10.1038/nri2975</pub-id>
<pmc-comment>4281487</pmc-comment>
<pub-id pub-id-type="pmid">21597473</pub-id>
</mixed-citation>
</ref>
<ref id="ref-2">
<label>2</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nunnari</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Suomalainen</surname>
<given-names>A</given-names>
</name>
</person-group>
:
<article-title>Mitochondria: in sickness and in health.</article-title>
<source>
<italic>Cell.</italic>
</source>
<year>2012</year>
;
<volume>148</volume>
(
<issue>6</issue>
):
<fpage>1145</fpage>
<lpage>59</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cell.2012.02.035</pub-id>
<pub-id pub-id-type="pmid">22424226</pub-id>
</mixed-citation>
</ref>
<ref id="ref-3">
<label>3</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dyall</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>MT</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>PJ</given-names>
</name>
</person-group>
:
<article-title>Ancient invasions: from endosymbionts to organelles.</article-title>
<source>
<italic>Science.</italic>
</source>
<year>2004</year>
;
<volume>304</volume>
(
<issue>5668</issue>
):
<fpage>253</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1094884</pub-id>
<pub-id pub-id-type="pmid">15073369</pub-id>
</mixed-citation>
</ref>
<ref id="ref-4">
<label>4</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Galluzzi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Kepp</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Trojel-Hansen</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Mitochondrial control of cellular life, stress, and death.</article-title>
<source>
<italic>Circ Res.</italic>
</source>
<year>2012</year>
;
<volume>111</volume>
(
<issue>9</issue>
):
<fpage>1198</fpage>
<lpage>207</lpage>
.
<pub-id pub-id-type="doi">10.1161/CIRCRESAHA.112.268946</pub-id>
<pub-id pub-id-type="pmid">23065343</pub-id>
</mixed-citation>
</ref>
<ref id="ref-5">
<label>5</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boyapati</surname>
<given-names>RK</given-names>
</name>
<name>
<surname>Rossi</surname>
<given-names>AG</given-names>
</name>
<name>
<surname>Satsangi</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Gut mucosal DAMPs in IBD: from mechanisms to therapeutic implications.</article-title>
<source>
<italic>Mucosal Immunol.</italic>
</source>
<year>2016</year>
;
<volume>9</volume>
(
<issue>3</issue>
):
<fpage>567</fpage>
<lpage>82</lpage>
.
<pub-id pub-id-type="doi">10.1038/mi.2016.14</pub-id>
<pub-id pub-id-type="pmid">26931062</pub-id>
</mixed-citation>
</ref>
<ref id="ref-6">
<label>6</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>JC</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Somatic mutations in the D-loop and decrease in the copy number of mitochondrial DNA in human hepatocellular carcinoma.</article-title>
<source>
<italic>Mutat Res.</italic>
</source>
<year>2004</year>
;
<volume>547</volume>
(
<issue>1–2</issue>
):
<fpage>71</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.mrfmmm.2003.12.011</pub-id>
<pub-id pub-id-type="pmid">15013701</pub-id>
</mixed-citation>
</ref>
<ref id="ref-7">
<label>7</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lam</surname>
<given-names>NY</given-names>
</name>
<name>
<surname>Rainer</surname>
<given-names>TH</given-names>
</name>
<name>
<surname>Chiu</surname>
<given-names>RW</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Plasma mitochondrial DNA concentrations after trauma.</article-title>
<source>
<italic>Clin Chem.</italic>
</source>
<year>2004</year>
;
<volume>50</volume>
(
<issue>1</issue>
):
<fpage>213</fpage>
<lpage>6</lpage>
.
<pub-id pub-id-type="doi">10.1373/clinchem.2003.025783</pub-id>
<pub-id pub-id-type="pmid">14709653</pub-id>
</mixed-citation>
</ref>
<ref id="ref-8">
<label>8</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Raoof</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Circulating mitochondrial DAMPs cause inflammatory responses to injury.</article-title>
<source>
<italic>Nature.</italic>
</source>
<year>2010</year>
;
<volume>464</volume>
(
<issue>7285</issue>
):
<fpage>104</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature08780</pub-id>
<pmc-comment>2843437</pmc-comment>
<pub-id pub-id-type="pmid">20203610</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/2411956">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-9">
<label>9</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Itagaki</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hauser</surname>
<given-names>CJ</given-names>
</name>
</person-group>
:
<article-title>Mitochondrial DNA is released by shock and activates neutrophils via p38 map kinase.</article-title>
<source>
<italic>Shock.</italic>
</source>
<year>2010</year>
;
<volume>34</volume>
(
<issue>1</issue>
):
<fpage>55</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="doi">10.1097/SHK.0b013e3181cd8c08</pub-id>
<pub-id pub-id-type="pmid">19997055</pub-id>
</mixed-citation>
</ref>
<ref id="ref-10">
<label>10</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Simmons</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Mulekar</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Elevated levels of plasma mitochondrial DNA DAMPs are linked to clinical outcome in severely injured human subjects.</article-title>
<source>
<italic>Ann Surg.</italic>
</source>
<year>2013</year>
;
<volume>258</volume>
(
<issue>4</issue>
):
<fpage>591</fpage>
<lpage>6</lpage>
; discussion 596–8.
<pmc-comment>3935616</pmc-comment>
<pub-id pub-id-type="pmid">23979273</pub-id>
</mixed-citation>
</ref>
<ref id="ref-11">
<label>11</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamanouchi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kudo</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Yamada</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Plasma mitochondrial DNA levels in patients with trauma and severe sepsis: time course and the association with clinical status.</article-title>
<source>
<italic>J Crit Care.</italic>
</source>
<year>2013</year>
;
<volume>28</volume>
(
<issue>6</issue>
):
<fpage>1027</fpage>
<lpage>31</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jcrc.2013.05.006</pub-id>
<pub-id pub-id-type="pmid">23787023</pub-id>
</mixed-citation>
</ref>
<ref id="ref-12">
<label>12</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>The plasma mitochondrial DNA is an independent predictor for post-traumatic systemic inflammatory response syndrome.</article-title>
<source>
<italic>PLoS One.</italic>
</source>
<year>2013</year>
;
<volume>8</volume>
(
<issue>8</issue>
):
<fpage>e72834</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0072834</pub-id>
<pmc-comment>3748121</pmc-comment>
<pub-id pub-id-type="pmid">23977360</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/718084874">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-13">
<label>13</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hauser</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Sursal</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Rodriguez</surname>
<given-names>EK</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Mitochondrial damage associated molecular patterns from femoral reamings activate neutrophils through formyl peptide receptors and P44/42 MAP kinase.</article-title>
<source>
<italic>J Orthop Trauma.</italic>
</source>
<year>2010</year>
;
<volume>24</volume>
(
<issue>9</issue>
):
<fpage>534</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="doi">10.1097/BOT.0b013e3181ec4991</pub-id>
<pmc-comment>2945259</pmc-comment>
<pub-id pub-id-type="pmid">20736789</pub-id>
</mixed-citation>
</ref>
<ref id="ref-14">
<label>14</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Timmermans</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kox</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Vaneker</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Plasma levels of danger-associated molecular patterns are associated with immune suppression in trauma patients.</article-title>
<source>
<italic>Intensive Care Med.</italic>
</source>
<year>2016</year>
;
<volume>42</volume>
(
<issue>4</issue>
):
<fpage>551</fpage>
<lpage>61</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00134-015-4205-3</pub-id>
<pub-id pub-id-type="pmid">26912315</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/726172983">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-15">
<label>15</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prikhodko</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Shabanov</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Zinovkina</surname>
<given-names>LA</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Pure Mitochondrial DNA Does Not Activate Human Neutrophils
<italic>in vitro</italic>
.</article-title>
<source>
<italic>Biochemistry (Mosc).</italic>
</source>
<year>2015</year>
;
<volume>80</volume>
(
<issue>5</issue>
):
<fpage>629</fpage>
<lpage>35</lpage>
.
<pub-id pub-id-type="doi">10.1134/S0006297915050168</pub-id>
<pub-id pub-id-type="pmid">26071783</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/725555535">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-16">
<label>16</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kung</surname>
<given-names>CT</given-names>
</name>
<name>
<surname>Hsiao</surname>
<given-names>SY</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>TC</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Plasma nuclear and mitochondrial DNA levels as predictors of outcome in severe sepsis patients in the emergency room.</article-title>
<source>
<italic>J Transl Med.</italic>
</source>
<year>2012</year>
;
<volume>10</volume>
:
<fpage>130</fpage>
.
<pub-id pub-id-type="doi">10.1186/1479-5876-10-130</pub-id>
<pmc-comment>3441240</pmc-comment>
<pub-id pub-id-type="pmid">22720733</pub-id>
</mixed-citation>
</ref>
<ref id="ref-17">
<label>17</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bhagirath</surname>
<given-names>VC</given-names>
</name>
<name>
<surname>Dwivedi</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Liaw</surname>
<given-names>PC</given-names>
</name>
</person-group>
:
<article-title>Comparison of the Proinflammatory and Procoagulant Properties of Nuclear, Mitochondrial, and Bacterial DNA.</article-title>
<source>
<italic>Shock.</italic>
</source>
<year>2015</year>
;
<volume>44</volume>
(
<issue>3</issue>
):
<fpage>265</fpage>
<lpage>71</lpage>
.
<pub-id pub-id-type="doi">10.1097/SHK.0000000000000397</pub-id>
<pub-id pub-id-type="pmid">25944792</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/725884941">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-18">
<label>18</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Timmermans</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kox</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Scheffer</surname>
<given-names>GJ</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Plasma Nuclear and Mitochondrial DNA Levels, and Markers of Inflammation, Shock, and Organ Damage in Patients with Septic Shock.</article-title>
<source>
<italic>Shock.</italic>
</source>
<year>2016</year>
;
<volume>45</volume>
(
<issue>6</issue>
):
<fpage>607</fpage>
<lpage>12</lpage>
.
<pub-id pub-id-type="doi">10.1097/SHK.0000000000000549</pub-id>
<pub-id pub-id-type="pmid">26717107</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/726047015">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-19">
<label>19</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>WN</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>NW</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>The value of serial plasma nuclear and mitochondrial DNA levels in adult community-acquired bacterial meningitis.</article-title>
<source>
<italic>QJM.</italic>
</source>
<year>2010</year>
;
<volume>103</volume>
(
<issue>3</issue>
):
<fpage>169</fpage>
<lpage>75</lpage>
.
<pub-id pub-id-type="doi">10.1093/qjmed/hcp201</pub-id>
<pub-id pub-id-type="pmid">20129945</pub-id>
</mixed-citation>
</ref>
<ref id="ref-20">
<label>20</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Garrabou</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Morén</surname>
<given-names>C</given-names>
</name>
<name>
<surname>López</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>The effects of sepsis on mitochondria.</article-title>
<source>
<italic>J Infect Dis.</italic>
</source>
<year>2012</year>
;
<volume>205</volume>
(
<issue>3</issue>
):
<fpage>392</fpage>
<lpage>400</lpage>
.
<pub-id pub-id-type="doi">10.1093/infdis/jir764</pub-id>
<pub-id pub-id-type="pmid">22180620</pub-id>
</mixed-citation>
</ref>
<ref id="ref-21">
<label>21</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Di Caro</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Walko</surname>
<given-names> TD</given-names>
<suffix>3rd</suffix>
</name>
<name>
<surname>Bola</surname>
<given-names>RA</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Plasma Mitochondrial DNA--a Novel DAMP in Pediatric Sepsis.</article-title>
<source>
<italic>Shock.</italic>
</source>
<year>2016</year>
;
<volume>45</volume>
(
<issue>5</issue>
):
<fpage>506</fpage>
<lpage>11</lpage>
.
<pub-id pub-id-type="doi">10.1097/SHK.0000000000000539</pub-id>
<pub-id pub-id-type="pmid">26682947</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/726035818">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-22">
<label>22</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>M</given-names>
</name>
</person-group>
:
<article-title>Circulating cell-free mitochondrial DNA as a novel cancer biomarker: opportunities and challenges.</article-title>
<source>
<italic>Mitochondrial DNA.</italic>
</source>
<year>2012</year>
;
<volume>23</volume>
(
<issue>5</issue>
):
<fpage>329</fpage>
<lpage>32</lpage>
.
<pub-id pub-id-type="doi">10.3109/19401736.2012.696625</pub-id>
<pub-id pub-id-type="pmid">22775429</pub-id>
</mixed-citation>
</ref>
<ref id="ref-23">
<label>23</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nakahira</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kyung</surname>
<given-names>SY</given-names>
</name>
<name>
<surname>Rogers</surname>
<given-names>AJ</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: derivation and validation.</article-title>
<source>
<italic>PLoS Med.</italic>
</source>
<year>2013</year>
;
<volume>10</volume>
(
<issue>12</issue>
):
<fpage>e1001577</fpage>
; discussion e1001577.
<pub-id pub-id-type="doi">10.1371/journal.pmed.1001577</pub-id>
<pmc-comment>3876981</pmc-comment>
<pub-id pub-id-type="pmid">24391478</pub-id>
</mixed-citation>
</ref>
<ref id="ref-24">
<label>24</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krychtiuk</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Ruhittel</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hohensinner</surname>
<given-names>PJ</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Mitochondrial DNA and Toll-Like Receptor-9 Are Associated With Mortality in Critically Ill Patients.</article-title>
<source>
<italic>Crit Care Med.</italic>
</source>
<year>2015</year>
;
<volume>43</volume>
(
<issue>12</issue>
):
<fpage>2633</fpage>
<lpage>41</lpage>
.
<pub-id pub-id-type="doi">10.1097/CCM.0000000000001311</pub-id>
<pub-id pub-id-type="pmid">26448617</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/725839686">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-25">
<label>25</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McGill</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Staggs</surname>
<given-names>VS</given-names>
</name>
<name>
<surname>Sharpe</surname>
<given-names>MR</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Serum mitochondrial biomarkers and damage-associated molecular patterns are higher in acetaminophen overdose patients with poor outcome.</article-title>
<source>
<italic>Hepatology.</italic>
</source>
<year>2014</year>
;
<volume>60</volume>
(
<issue>4</issue>
):
<fpage>1336</fpage>
<lpage>45</lpage>
.
<pub-id pub-id-type="doi">10.1002/hep.27265</pub-id>
<pmc-comment>4174728</pmc-comment>
<pub-id pub-id-type="pmid">24923598</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/718448390">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-26">
<label>26</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marques</surname>
<given-names>PE</given-names>
</name>
<name>
<surname>Amaral</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Pires</surname>
<given-names>DA</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Chemokines and mitochondrial products activate neutrophils to amplify organ injury during mouse acute liver failure.</article-title>
<source>
<italic>Hepatology.</italic>
</source>
<year>2012</year>
;
<volume>56</volume>
(
<issue>5</issue>
):
<fpage>1971</fpage>
<lpage>82</lpage>
.
<pub-id pub-id-type="doi">10.1002/hep.25801</pub-id>
<pub-id pub-id-type="pmid">22532075</pub-id>
</mixed-citation>
</ref>
<ref id="ref-27">
<label>27</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McGill</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Sharpe</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>CD</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation.</article-title>
<source>
<italic>J Clin Invest.</italic>
</source>
<year>2012</year>
;
<volume>122</volume>
(
<issue>4</issue>
):
<fpage>1574</fpage>
<lpage>83</lpage>
.
<pub-id pub-id-type="doi">10.1172/JCI59755</pub-id>
<pmc-comment>3314460</pmc-comment>
<pub-id pub-id-type="pmid">22378043</pub-id>
</mixed-citation>
</ref>
<ref id="ref-28">
<label>28</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bliksoen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Mariero</surname>
<given-names>LH</given-names>
</name>
<name>
<surname>Ohm</surname>
<given-names>IK</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Increased circulating mitochondrial DNA after myocardial infarction.</article-title>
<source>
<italic>Int J Cardiol.</italic>
</source>
<year>2012</year>
;
<volume>158</volume>
(
<issue>1</issue>
):
<fpage>132</fpage>
<lpage>4</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.ijcard.2012.04.047</pub-id>
<pub-id pub-id-type="pmid">22578950</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/725539519">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-29">
<label>29</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Q</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Plasma nuclear and mitochondrial DNA levels in acute myocardial infarction patients.</article-title>
<source>
<italic>Coron Artery Dis.</italic>
</source>
<year>2015</year>
;
<volume>26</volume>
(
<issue>4</issue>
):
<fpage>296</fpage>
<lpage>300</lpage>
.
<pub-id pub-id-type="doi">10.1097/MCA.0000000000000231</pub-id>
<pmc-comment>4415965</pmc-comment>
<pub-id pub-id-type="pmid">25714070</pub-id>
</mixed-citation>
</ref>
<ref id="ref-30">
<label>30</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qin</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Release of mitochondrial DNA correlates with peak inflammatory cytokines in patients with acute myocardial infarction.</article-title>
<source>
<italic>Anatol J Cardiol.</italic>
</source>
<year>2016</year>
.
<pub-id pub-id-type="doi">10.14744/AnatolJCardiol.2016.7209</pub-id>
<pub-id pub-id-type="pmid">27721319</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/726856798">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-31">
<label>31</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Circulating Cell Free Mitochondrial DNA is a Biomarker in the Development of Coronary Heart Disease in the Patients with Type 2 Diabetes.</article-title>
<source>
<italic>Clin Lab.</italic>
</source>
<year>2015</year>
;
<volume>61</volume>
(
<issue>7</issue>
):
<fpage>661</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="doi">10.7754/Clin.Lab.2014.141132</pub-id>
<pub-id pub-id-type="pmid">26299063</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/725738930">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-32">
<label>32</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zou</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Circulating cell-free mitochondrial deoxyribonucleic acid is increased in coronary heart disease patients with diabetes mellitus.</article-title>
<source>
<italic>J Diabetes Investig.</italic>
</source>
<year>2016</year>
;
<volume>7</volume>
(
<issue>1</issue>
):
<fpage>109</fpage>
<lpage>14</lpage>
.
<pub-id pub-id-type="doi">10.1111/jdi.12366</pub-id>
<pmc-comment>4718102</pmc-comment>
<pub-id pub-id-type="pmid">26816608</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/726108583">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-33">
<label>33</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsai</surname>
<given-names>NW</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>TK</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>SD</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>The value of serial plasma nuclear and mitochondrial DNA levels in patients with acute ischemic stroke.</article-title>
<source>
<italic>Clin Chim Acta.</italic>
</source>
<year>2011</year>
;
<volume>412</volume>
(
<issue>5–6</issue>
):
<fpage>476</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cca.2010.11.036</pub-id>
<pub-id pub-id-type="pmid">21130757</pub-id>
</mixed-citation>
</ref>
<ref id="ref-34">
<label>34</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>WC</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>The value of serial plasma and cerebrospinal fluid nuclear and mitochondrial deoxyribonucleic acid levels in aneurysmal subarachnoid hemorrhage.</article-title>
<source>
<italic>J Neurosurg.</italic>
</source>
<year>2013</year>
;
<volume>118</volume>
(
<issue>1</issue>
):
<fpage>13</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="doi">10.3171/2012.8.JNS112093</pub-id>
<pub-id pub-id-type="pmid">23020765</pub-id>
</mixed-citation>
</ref>
<ref id="ref-35">
<label>35</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>YJ</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>WC</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>The value of serial plasma nuclear and mitochondrial DNA levels in acute spontaneous intra-cerebral haemorrhage.</article-title>
<source>
<italic>Eur J Neurol.</italic>
</source>
<year>2012</year>
;
<volume>19</volume>
(
<issue>12</issue>
):
<fpage>1532</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1468-1331.2012.03761.x</pub-id>
<pub-id pub-id-type="pmid">22642922</pub-id>
</mixed-citation>
</ref>
<ref id="ref-36">
<label>36</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Walko</surname>
<given-names>TD</given-names>
<suffix>3rd</suffix>
</name>
<name>
<surname>Bola</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>JD</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Cerebrospinal fluid mitochondrial DNA: a novel DAMP in pediatric traumatic brain injury.</article-title>
<source>
<italic>Shock.</italic>
</source>
<year>2014</year>
;
<volume>41</volume>
(
<issue>6</issue>
):
<fpage>499</fpage>
<lpage>503</lpage>
.
<pub-id pub-id-type="doi">10.1097/SHK.0000000000000160</pub-id>
<pmc-comment>4024373</pmc-comment>
<pub-id pub-id-type="pmid">24667615</pub-id>
</mixed-citation>
</ref>
<ref id="ref-37">
<label>37</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hajizadeh</surname>
<given-names>S</given-names>
</name>
<name>
<surname>DeGroot</surname>
<given-names>J</given-names>
</name>
<name>
<surname>TeKoppele</surname>
<given-names>JM</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Extracellular mitochondrial DNA and oxidatively damaged DNA in synovial fluid of patients with rheumatoid arthritis.</article-title>
<source>
<italic>Arthritis Res Ther.</italic>
</source>
<year>2003</year>
;
<volume>5</volume>
(
<issue>5</issue>
):
<fpage>R234</fpage>
<lpage>40</lpage>
.
<pub-id pub-id-type="doi">10.1186/ar787</pub-id>
<pmc-comment>193725</pmc-comment>
<pub-id pub-id-type="pmid">12932286</pub-id>
</mixed-citation>
</ref>
<ref id="ref-38">
<label>38</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Surmiak</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Hubalewska-Mazgaj</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wawrzycka-Adamczyk</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Circulating mitochondrial DNA in serum of patients with granulomatosis with polyangiitis.</article-title>
<source>
<italic>Clin Exp Immunol.</italic>
</source>
<year>2015</year>
;
<volume>181</volume>
(
<issue>1</issue>
):
<fpage>150</fpage>
<lpage>5</lpage>
.
<pub-id pub-id-type="doi">10.1111/cei.12628</pub-id>
<pmc-comment>4469165</pmc-comment>
<pub-id pub-id-type="pmid">25783562</pub-id>
</mixed-citation>
</ref>
<ref id="ref-39">
<label>39</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Caielli</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Athale</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Domic</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus.</article-title>
<source>
<italic>J Exp Med.</italic>
</source>
<year>2016</year>
;
<volume>213</volume>
(
<issue>5</issue>
):
<fpage>697</fpage>
<lpage>713</lpage>
.
<pub-id pub-id-type="doi">10.1084/jem.20151876</pub-id>
<pmc-comment>4854735</pmc-comment>
<pub-id pub-id-type="pmid">27091841</pub-id>
</mixed-citation>
</ref>
<ref id="ref-40">
<label>40</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Neutrophil Extracellular Trap Mitochondrial DNA and Its Autoantibody in Systemic Lupus Erythematosus and a Proof-of-Concept Trial of Metformin.</article-title>
<source>
<italic>Arthritis Rheumatol.</italic>
</source>
<year>2015</year>
;
<volume>67</volume>
(
<issue>12</issue>
):
<fpage>3190</fpage>
<lpage>200</lpage>
.
<pub-id pub-id-type="doi">10.1002/art.39296</pub-id>
<pub-id pub-id-type="pmid">26245802</pub-id>
</mixed-citation>
</ref>
<ref id="ref-41">
<label>41</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lood</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Blanco</surname>
<given-names>LP</given-names>
</name>
<name>
<surname>Purmalek</surname>
<given-names>MM</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease.</article-title>
<source>
<italic>Nat Med.</italic>
</source>
<year>2016</year>
;
<volume>22</volume>
(
<issue>2</issue>
):
<fpage>146</fpage>
<lpage>53</lpage>
.
<pub-id pub-id-type="doi">10.1038/nm.4027</pub-id>
<pmc-comment>4742415</pmc-comment>
<pub-id pub-id-type="pmid">26779811</pub-id>
</mixed-citation>
</ref>
<ref id="ref-42">
<label>42</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Garcia-Martinez</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Santoro</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9.</article-title>
<source>
<italic>J Clin Invest.</italic>
</source>
<year>2016</year>
;
<volume>126</volume>
(
<issue>3</issue>
):
<fpage>859</fpage>
<lpage>64</lpage>
.
<pub-id pub-id-type="doi">10.1172/JCI83885</pub-id>
<pmc-comment>4767345</pmc-comment>
<pub-id pub-id-type="pmid">26808498</pub-id>
</mixed-citation>
</ref>
<ref id="ref-43">
<label>43</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Collins</surname>
<given-names>LV</given-names>
</name>
<name>
<surname>Hajizadeh</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Holme</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Endogenously oxidized mitochondrial DNA induces
<italic>in vivo</italic>
and
<italic>in vitro</italic>
inflammatory responses.</article-title>
<source>
<italic>J Leukoc Biol.</italic>
</source>
<year>2004</year>
;
<volume>75</volume>
(
<issue>6</issue>
):
<fpage>995</fpage>
<lpage>1000</lpage>
.
<pub-id pub-id-type="doi">10.1189/jlb.0703328</pub-id>
<pub-id pub-id-type="pmid">14982943</pub-id>
</mixed-citation>
</ref>
<ref id="ref-44">
<label>44</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Wood</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Cimen</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Mitochondrial Damage-Associated Molecular Patterns (MTDs) Are Released during Hepatic Ischemia Reperfusion and Induce Inflammatory Responses.</article-title>
<source>
<italic>PLoS One.</italic>
</source>
<year>2015</year>
;
<volume>10</volume>
(
<issue>10</issue>
):
<fpage>e0140105</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0140105</pub-id>
<pmc-comment>4599831</pmc-comment>
<pub-id pub-id-type="pmid">26451593</pub-id>
</mixed-citation>
</ref>
<ref id="ref-45">
<label>45</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsuji</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Tsuji</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ohashi</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Role of Mitochondrial DNA in Septic AKI
<italic>via</italic>
Toll-Like Receptor 9.</article-title>
<source>
<italic>J Am Soc Nephrol.</italic>
</source>
<year>2016</year>
;
<volume>27</volume>
(
<issue>7</issue>
):
<fpage>2009</fpage>
<lpage>20</lpage>
.
<pub-id pub-id-type="doi">10.1681/ASN.2015040376</pub-id>
<pmc-comment>4926971</pmc-comment>
<pub-id pub-id-type="pmid">26574043</pub-id>
</mixed-citation>
</ref>
<ref id="ref-46">
<label>46</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gan</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Significance of Serum mtDNA Concentration in Lung Injury Induced by Hip Fracture.</article-title>
<source>
<italic>Shock.</italic>
</source>
<year>2015</year>
;
<volume>44</volume>
(
<issue>1</issue>
):
<fpage>52</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="doi">10.1097/SHK.0000000000000366</pub-id>
<pub-id pub-id-type="pmid">25705859</pub-id>
</mixed-citation>
</ref>
<ref id="ref-47">
<label>47</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Latz</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Schoenemeyer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Visintin</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>TLR9 signals after translocating from the ER to CpG DNA in the lysosome.</article-title>
<source>
<italic>Nat Immunol.</italic>
</source>
<year>2004</year>
;
<volume>5</volume>
(
<issue>2</issue>
):
<fpage>190</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="doi">10.1038/ni1028</pub-id>
<pub-id pub-id-type="pmid">14716310</pub-id>
</mixed-citation>
</ref>
<ref id="ref-48">
<label>48</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leifer</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Kennedy</surname>
<given-names>MN</given-names>
</name>
<name>
<surname>Mazzoni</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>TLR9 is localized in the endoplasmic reticulum prior to stimulation.</article-title>
<source>
<italic>J Immunol.</italic>
</source>
<year>2004</year>
;
<volume>173</volume>
(
<issue>2</issue>
):
<fpage>1179</fpage>
<lpage>83</lpage>
.
<pub-id pub-id-type="doi">10.4049/jimmunol.173.2.1179</pub-id>
<pmc-comment>2757936</pmc-comment>
<pub-id pub-id-type="pmid">15240708</pub-id>
</mixed-citation>
</ref>
<ref id="ref-49">
<label>49</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moseman</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Dawson</surname>
<given-names>AJ</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce the generation of CD4
<sup>+</sup>
CD25
<sup>+</sup>
regulatory T cells.</article-title>
<source>
<italic>J Immunol.</italic>
</source>
<year>2004</year>
;
<volume>173</volume>
(
<issue>7</issue>
):
<fpage>4433</fpage>
<lpage>42</lpage>
.
<pub-id pub-id-type="doi">10.4049/jimmunol.173.7.4433</pub-id>
<pub-id pub-id-type="pmid">15383574</pub-id>
</mixed-citation>
</ref>
<ref id="ref-50">
<label>50</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hemmi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Takeuchi</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Kawai</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>A Toll-like receptor recognizes bacterial DNA.</article-title>
<source>
<italic>Nature.</italic>
</source>
<year>2000</year>
;
<volume>408</volume>
(
<issue>6813</issue>
):
<fpage>740</fpage>
<lpage>5</lpage>
.
<pub-id pub-id-type="doi">10.1038/35047123</pub-id>
<pub-id pub-id-type="pmid">11130078</pub-id>
</mixed-citation>
</ref>
<ref id="ref-51">
<label>51</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bauer</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kirschning</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Häcker</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition.</article-title>
<source>
<italic>Proc Natl Acad Sci U S A.</italic>
</source>
<year>2001</year>
;
<volume>98</volume>
(
<issue>16</issue>
):
<fpage>9237</fpage>
<lpage>42</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.161293498</pub-id>
<pmc-comment>55404</pmc-comment>
<pub-id pub-id-type="pmid">11470918</pub-id>
</mixed-citation>
</ref>
<ref id="ref-52">
<label>52</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sasai</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Linehan</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Iwasaki</surname>
<given-names>A</given-names>
</name>
</person-group>
:
<article-title>Bifurcation of Toll-like receptor 9 signaling by adaptor protein 3.</article-title>
<source>
<italic>Science.</italic>
</source>
<year>2010</year>
;
<volume>329</volume>
(
<issue>5998</issue>
):
<fpage>1530</fpage>
<lpage>4</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1187029</pub-id>
<pmc-comment>3063333</pmc-comment>
<pub-id pub-id-type="pmid">20847273</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/5297956">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-53">
<label>53</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Petrasek</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dolganiuc</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Csak</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Type I interferons protect from Toll-like receptor 9-associated liver injury and regulate IL-1 receptor antagonist in mice.</article-title>
<source>
<italic>Gastroenterology.</italic>
</source>
<year>2011</year>
;
<volume>140</volume>
(
<issue>2</issue>
):
<fpage>697</fpage>
<lpage>708.e4</lpage>
.
<pub-id pub-id-type="doi">10.1053/j.gastro.2010.08.020</pub-id>
<pmc-comment>3031737</pmc-comment>
<pub-id pub-id-type="pmid">20727895</pub-id>
</mixed-citation>
</ref>
<ref id="ref-54">
<label>54</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wei</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Shao</surname>
<given-names>B</given-names>
</name>
<name>
<surname>He</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Cationic nanocarriers induce cell necrosis through impairment of Na
<sup>+</sup>
/K
<sup>+</sup>
-ATPase and cause subsequent inflammatory response.</article-title>
<source>
<italic>Cell Res.</italic>
</source>
<year>2015</year>
;
<volume>25</volume>
(
<issue>2</issue>
):
<fpage>237</fpage>
<lpage>53</lpage>
.
<pub-id pub-id-type="doi">10.1038/cr.2015.9</pub-id>
<pmc-comment>4650577</pmc-comment>
<pub-id pub-id-type="pmid">25613571</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/725325048">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-55">
<label>55</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bakker</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Scantlebery</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Butter</surname>
<given-names>LM</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>TLR9 Mediates Remote Liver Injury following Severe Renal Ischemia Reperfusion.</article-title>
<source>
<italic>PLoS One.</italic>
</source>
<year>2015</year>
;
<volume>10</volume>
(
<issue>9</issue>
):
<fpage>e0137511</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0137511</pub-id>
<pmc-comment>4567139</pmc-comment>
<pub-id pub-id-type="pmid">26361210</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/725779962">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-56">
<label>56</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arnalich</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Codoceo</surname>
<given-names>R</given-names>
</name>
<name>
<surname>López-Collazo</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Circulating cell-free mitochondrial DNA: a better early prognostic marker in patients with out-of-hospital cardiac arrest.</article-title>
<source>
<italic>Resuscitation.</italic>
</source>
<year>2012</year>
;
<volume>83</volume>
(
<issue>7</issue>
):
<fpage>e162</fpage>
<lpage>3</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.resuscitation.2012.03.032</pub-id>
<pub-id pub-id-type="pmid">22490673</pub-id>
</mixed-citation>
</ref>
<ref id="ref-57">
<label>57</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sudakov</surname>
<given-names>NP</given-names>
</name>
<name>
<surname>Popkova</surname>
<given-names>TP</given-names>
</name>
<name>
<surname>Katyshev</surname>
<given-names>AI</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Level of Blood Cell-Free Circulating Mitochondrial DNA as a Novel Biomarker of Acute Myocardial Ischemia.</article-title>
<source>
<italic>Biochemistry (Mosc).</italic>
</source>
<year>2015</year>
;
<volume>80</volume>
(
<issue>10</issue>
):
<fpage>1387</fpage>
<lpage>92</lpage>
.
<pub-id pub-id-type="doi">10.1134/S000629791510020X</pub-id>
<pub-id pub-id-type="pmid">26567583</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/725939648">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-58">
<label>58</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Intratracheal administration of mitochondrial DNA directly provokes lung inflammation through the TLR9-p38 MAPK pathway.</article-title>
<source>
<italic>Free Radic Biol Med.</italic>
</source>
<year>2015</year>
;
<volume>83</volume>
:
<fpage>149</fpage>
<lpage>58</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2015.02.034</pub-id>
<pub-id pub-id-type="pmid">25772007</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/725391408">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-59">
<label>59</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barton</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Kagan</surname>
<given-names>JC</given-names>
</name>
</person-group>
:
<article-title>A cell biological view of Toll-like receptor function: regulation through compartmentalization.</article-title>
<source>
<italic>Nat Rev Immunol.</italic>
</source>
<year>2009</year>
;
<volume>9</volume>
(
<issue>8</issue>
):
<fpage>535</fpage>
<lpage>42</lpage>
.
<pub-id pub-id-type="doi">10.1038/nri2587</pub-id>
<pmc-comment>3934928</pmc-comment>
<pub-id pub-id-type="pmid">19556980</pub-id>
</mixed-citation>
</ref>
<ref id="ref-60">
<label>60</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ziello</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Jovin</surname>
<given-names>IS</given-names>
</name>
</person-group>
:
<article-title>Cellular endocytosis and gene delivery.</article-title>
<source>
<italic>Mol Med.</italic>
</source>
<year>2010</year>
;
<volume>16</volume>
(
<issue>5–6</issue>
):
<fpage>222</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="doi">10.2119/molmed.2009.00101</pub-id>
<pmc-comment>2864810</pmc-comment>
<pub-id pub-id-type="pmid">20454523</pub-id>
</mixed-citation>
</ref>
<ref id="ref-61">
<label>61</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maeda</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Fadeel</surname>
<given-names>B</given-names>
</name>
</person-group>
:
<article-title>Mitochondria released by cells undergoing TNF-
<italic>α</italic>
-induced necroptosis act as danger signals.</article-title>
<source>
<italic>Cell Death Dis.</italic>
</source>
<year>2014</year>
;
<volume>5</volume>
:
<fpage>e1312</fpage>
.
<pub-id pub-id-type="doi">10.1038/cddis.2014.277</pub-id>
<pmc-comment>4123071</pmc-comment>
<pub-id pub-id-type="pmid">24991764</pub-id>
</mixed-citation>
</ref>
<ref id="ref-62">
<label>62</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zitvogel</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Kepp</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Kroemer</surname>
<given-names>G</given-names>
</name>
</person-group>
:
<article-title>Decoding cell death signals in inflammation and immunity.</article-title>
<source>
<italic>Cell.</italic>
</source>
<year>2010</year>
;
<volume>140</volume>
(
<issue>6</issue>
):
<fpage>798</fpage>
<lpage>804</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cell.2010.02.015</pub-id>
<pub-id pub-id-type="pmid">20303871</pub-id>
</mixed-citation>
</ref>
<ref id="ref-63">
<label>63</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tian</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Avalos</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Mao</surname>
<given-names>SY</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE.</article-title>
<source>
<italic>Nat Immunol.</italic>
</source>
<year>2007</year>
;
<volume>8</volume>
(
<issue>5</issue>
):
<fpage>487</fpage>
<lpage>96</lpage>
.
<pub-id pub-id-type="doi">10.1038/ni1457</pub-id>
<pub-id pub-id-type="pmid">17417641</pub-id>
</mixed-citation>
</ref>
<ref id="ref-64">
<label>64</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Viglianti</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Lau</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Hanley</surname>
<given-names>TM</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Activation of autoreactive B cells by CpG dsDNA.</article-title>
<source>
<italic>Immunity.</italic>
</source>
<year>2003</year>
;
<volume>19</volume>
(
<issue>6</issue>
):
<fpage>837</fpage>
<lpage>47</lpage>
.
<pub-id pub-id-type="doi">10.1016/S1074-7613(03)00323-6</pub-id>
<pub-id pub-id-type="pmid">14670301</pub-id>
</mixed-citation>
</ref>
<ref id="ref-65">
<label>65</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dasari</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Nicholson</surname>
<given-names>IC</given-names>
</name>
<name>
<surname>Hodge</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Expression of toll-like receptors on B lymphocytes.</article-title>
<source>
<italic>Cell Immunol.</italic>
</source>
<year>2005</year>
;
<volume>236</volume>
(
<issue>1–2</issue>
):
<fpage>140</fpage>
<lpage>5</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cellimm.2005.08.020</pub-id>
<pub-id pub-id-type="pmid">16188245</pub-id>
</mixed-citation>
</ref>
<ref id="ref-66">
<label>66</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baiyee</surname>
<given-names>EE</given-names>
</name>
<name>
<surname>Flohe</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lendemans</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Expression and function of Toll-like receptor 9 in severely injured patients prone to sepsis.</article-title>
<source>
<italic>Clin Exp Immunol.</italic>
</source>
<year>2006</year>
;
<volume>145</volume>
(
<issue>3</issue>
):
<fpage>456</fpage>
<lpage>62</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-2249.2006.03160.x</pub-id>
<pmc-comment>1809713</pmc-comment>
<pub-id pub-id-type="pmid">16907913</pub-id>
</mixed-citation>
</ref>
<ref id="ref-67">
<label>67</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eaton-Bassiri</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Dillon</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Cunningham</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Toll-like receptor 9 can be expressed at the cell surface of distinct populations of tonsils and human peripheral blood mononuclear cells.</article-title>
<source>
<italic>Infect Immun.</italic>
</source>
<year>2004</year>
;
<volume>72</volume>
(
<issue>12</issue>
):
<fpage>7202</fpage>
<lpage>11</lpage>
.
<pub-id pub-id-type="doi">10.1128/IAI.72.12.7202-7211.2004</pub-id>
<pmc-comment>529168</pmc-comment>
<pub-id pub-id-type="pmid">15557645</pub-id>
</mixed-citation>
</ref>
<ref id="ref-68">
<label>68</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saikh</surname>
<given-names>KU</given-names>
</name>
<name>
<surname>Kissner</surname>
<given-names>TL</given-names>
</name>
<name>
<surname>Sultana</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Human monocytes infected with
<italic>Yersinia pestis</italic>
express cell surface TLR9 and differentiate into dendritic cells.</article-title>
<source>
<italic>J Immunol.</italic>
</source>
<year>2004</year>
;
<volume>173</volume>
(
<issue>12</issue>
):
<fpage>7426</fpage>
<lpage>34</lpage>
.
<pub-id pub-id-type="doi">10.4049/jimmunol.173.12.7426</pub-id>
<pub-id pub-id-type="pmid">15585868</pub-id>
</mixed-citation>
</ref>
<ref id="ref-69">
<label>69</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lindau</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Mussard</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wagner</surname>
<given-names>BJ</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Primary blood neutrophils express a functional cell surface Toll-like receptor 9.</article-title>
<source>
<italic>Eur J Immunol.</italic>
</source>
<year>2013</year>
;
<volume>43</volume>
(
<issue>8</issue>
):
<fpage>2101</fpage>
<lpage>13</lpage>
.
<pub-id pub-id-type="doi">10.1002/eji.201142143</pub-id>
<pub-id pub-id-type="pmid">23686399</pub-id>
</mixed-citation>
</ref>
<ref id="ref-70">
<label>70</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mo</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Toll-like receptor signaling in intestinal epithelial cells contributes to colonic homoeostasis.</article-title>
<source>
<italic>Curr Opin Gastroenterol.</italic>
</source>
<year>2007</year>
;
<volume>23</volume>
(
<issue>1</issue>
):
<fpage>27</fpage>
<lpage>31</lpage>
.
<pub-id pub-id-type="doi">10.1097/MOG.0b013e3280118272</pub-id>
<pub-id pub-id-type="pmid">17133081</pub-id>
</mixed-citation>
</ref>
<ref id="ref-71">
<label>71</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ewaschuk</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Backer</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Churchill</surname>
<given-names>TA</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Surface expression of Toll-like receptor 9 is upregulated on intestinal epithelial cells in response to pathogenic bacterial DNA.</article-title>
<source>
<italic>Infect Immun.</italic>
</source>
<year>2007</year>
;
<volume>75</volume>
(
<issue>5</issue>
):
<fpage>2572</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="doi">10.1128/IAI.01662-06</pub-id>
<pmc-comment>1865769</pmc-comment>
<pub-id pub-id-type="pmid">17325049</pub-id>
</mixed-citation>
</ref>
<ref id="ref-72">
<label>72</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gurung</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lukens</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Kanneganti</surname>
<given-names>TD</given-names>
</name>
</person-group>
:
<article-title>Mitochondria: diversity in the regulation of the NLRP3 inflammasome.</article-title>
<source>
<italic>Trends Mol Med.</italic>
</source>
<year>2015</year>
;
<volume>21</volume>
(
<issue>3</issue>
):
<fpage>193</fpage>
<lpage>201</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.molmed.2014.11.008</pub-id>
<pmc-comment>4352396</pmc-comment>
<pub-id pub-id-type="pmid">25500014</pub-id>
</mixed-citation>
</ref>
<ref id="ref-73">
<label>73</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nakahira</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Haspel</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Rathinam</surname>
<given-names>VA</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome.</article-title>
<source>
<italic>Nat Immunol.</italic>
</source>
<year>2011</year>
;
<volume>12</volume>
(
<issue>3</issue>
):
<fpage>222</fpage>
<lpage>30</lpage>
.
<pub-id pub-id-type="doi">10.1038/ni.1980</pub-id>
<pmc-comment>3079381</pmc-comment>
<pub-id pub-id-type="pmid">21151103</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/12101966">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-74">
<label>74</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Yazdi</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Menu</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>A role for mitochondria in NLRP3 inflammasome activation.</article-title>
<source>
<italic>Nature.</italic>
</source>
<year>2011</year>
;
<volume>469</volume>
(
<issue>7329</issue>
):
<fpage>221</fpage>
<lpage>5</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature09663</pub-id>
<pub-id pub-id-type="pmid">21124315</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/7510956">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-75">
<label>75</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shimada</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Crother</surname>
<given-names>TR</given-names>
</name>
<name>
<surname>Karlin</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis.</article-title>
<source>
<italic>Immunity.</italic>
</source>
<year>2012</year>
;
<volume>36</volume>
(
<issue>3</issue>
):
<fpage>401</fpage>
<lpage>14</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.immuni.2012.01.009</pub-id>
<pmc-comment>3312986</pmc-comment>
<pub-id pub-id-type="pmid">22342844</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/717961826">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-76">
<label>76</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Gene deletion of
<italic>Gabarap</italic>
enhances Nlrp3 inflammasome-dependent inflammatory responses.</article-title>
<source>
<italic>J Immunol.</italic>
</source>
<year>2013</year>
;
<volume>190</volume>
(
<issue>7</issue>
):
<fpage>3517</fpage>
<lpage>24</lpage>
.
<pub-id pub-id-type="doi">10.4049/jimmunol.1202628</pub-id>
<pub-id pub-id-type="pmid">23427251</pub-id>
</mixed-citation>
</ref>
<ref id="ref-77">
<label>77</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Won</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Rotenone-induced Impairment of Mitochondrial Electron Transport Chain Confers a Selective Priming Signal for NLRP3 Inflammasome Activation.</article-title>
<source>
<italic>J Biol Chem.</italic>
</source>
<year>2015</year>
;
<volume>290</volume>
(
<issue>45</issue>
):
<fpage>27425</fpage>
<lpage>37</lpage>
.
<pub-id pub-id-type="doi">10.1074/jbc.M115.667063</pub-id>
<pmc-comment>4646374</pmc-comment>
<pub-id pub-id-type="pmid">26416893</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/725818159">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-78">
<label>78</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dombrowski</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Peric</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Koglin</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Honey bee (
<italic>Apis mellifera</italic>
) venom induces AIM2 inflammasome activation in human keratinocytes.</article-title>
<source>
<italic>Allergy.</italic>
</source>
<year>2012</year>
;
<volume>67</volume>
(
<issue>11</issue>
):
<fpage>1400</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="doi">10.1111/all.12022</pub-id>
<pub-id pub-id-type="pmid">22973906</pub-id>
</mixed-citation>
</ref>
<ref id="ref-79">
<label>79</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Holmström</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Finkel</surname>
<given-names>T</given-names>
</name>
</person-group>
:
<article-title>Cellular mechanisms and physiological consequences of redox-dependent signalling.</article-title>
<source>
<italic>Nat Rev Mol Cell Biol.</italic>
</source>
<year>2014</year>
;
<volume>15</volume>
(
<issue>6</issue>
):
<fpage>411</fpage>
<lpage>21</lpage>
.
<pub-id pub-id-type="doi">10.1038/nrm3801</pub-id>
<pub-id pub-id-type="pmid">24854789</pub-id>
</mixed-citation>
</ref>
<ref id="ref-80">
<label>80</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ding</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>LOX-1, mtDNA damage, and NLRP3 inflammasome activation in macrophages: implications in atherogenesis.</article-title>
<source>
<italic>Cardiovasc Res.</italic>
</source>
<year>2014</year>
;
<volume>103</volume>
(
<issue>4</issue>
):
<fpage>619</fpage>
<lpage>28</lpage>
.
<pub-id pub-id-type="doi">10.1093/cvr/cvu114</pub-id>
<pmc-comment>4200051</pmc-comment>
<pub-id pub-id-type="pmid">24776598</pub-id>
</mixed-citation>
</ref>
<ref id="ref-81">
<label>81</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nakahira</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hisata</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>AM</given-names>
</name>
</person-group>
:
<article-title>The Roles of Mitochondrial Damage-Associated Molecular Patterns in Diseases.</article-title>
<source>
<italic>Antioxid Redox Signal.</italic>
</source>
<year>2015</year>
;
<volume>23</volume>
(
<issue>17</issue>
):
<fpage>1329</fpage>
<lpage>50</lpage>
.
<pub-id pub-id-type="doi">10.1089/ars.2015.6407</pub-id>
<pmc-comment>4685486</pmc-comment>
<pub-id pub-id-type="pmid">26067258</pub-id>
</mixed-citation>
</ref>
<ref id="ref-82">
<label>82</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bauernfeind</surname>
<given-names>FG</given-names>
</name>
<name>
<surname>Horvath</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Stutz</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression.</article-title>
<source>
<italic>J Immunol.</italic>
</source>
<year>2009</year>
;
<volume>183</volume>
(
<issue>2</issue>
):
<fpage>787</fpage>
<lpage>91</lpage>
.
<pub-id pub-id-type="doi">10.4049/jimmunol.0901363</pub-id>
<pmc-comment>2824855</pmc-comment>
<pub-id pub-id-type="pmid">19570822</pub-id>
</mixed-citation>
</ref>
<ref id="ref-83">
<label>83</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Imaeda</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sohail</surname>
<given-names>MA</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome.</article-title>
<source>
<italic>J Clin Invest.</italic>
</source>
<year>2009</year>
;
<volume>119</volume>
(
<issue>2</issue>
):
<fpage>305</fpage>
<lpage>14</lpage>
.
<pub-id pub-id-type="doi">10.1172/JCI35958</pub-id>
<pmc-comment>2631294</pmc-comment>
<pub-id pub-id-type="pmid">19164858</pub-id>
</mixed-citation>
</ref>
<ref id="ref-84">
<label>84</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Williams</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Antoine</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Shaw</surname>
<given-names>PJ</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Role of the Nalp3 inflammasome in acetaminophen-induced sterile inflammation and liver injury.</article-title>
<source>
<italic>Toxicol Appl Pharmacol.</italic>
</source>
<year>2011</year>
;
<volume>252</volume>
(
<issue>3</issue>
):
<fpage>289</fpage>
<lpage>97</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.taap.2011.03.001</pub-id>
<pmc-comment>3086334</pmc-comment>
<pub-id pub-id-type="pmid">21396389</pub-id>
</mixed-citation>
</ref>
<ref id="ref-85">
<label>85</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ishikawa</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Barber</surname>
<given-names>GN</given-names>
</name>
</person-group>
:
<article-title>STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling.</article-title>
<source>
<italic>Nature.</italic>
</source>
<year>2008</year>
;
<volume>455</volume>
(
<issue>7213</issue>
):
<fpage>674</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature07317</pub-id>
<pmc-comment>2804933</pmc-comment>
<pub-id pub-id-type="pmid">18724357</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/1120480">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-86">
<label>86</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barber</surname>
<given-names>GN</given-names>
</name>
</person-group>
:
<article-title>STING-dependent cytosolic DNA sensing pathways.</article-title>
<source>
<italic>Trends Immunol.</italic>
</source>
<year>2014</year>
;
<volume>35</volume>
(
<issue>2</issue>
):
<fpage>88</fpage>
<lpage>93</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.it.2013.10.010</pub-id>
<pub-id pub-id-type="pmid">24309426</pub-id>
</mixed-citation>
</ref>
<ref id="ref-87">
<label>87</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rongvaux</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Jackson</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Harman</surname>
<given-names>CC</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA.</article-title>
<source>
<italic>Cell.</italic>
</source>
<year>2014</year>
;
<volume>159</volume>
(
<issue>7</issue>
):
<fpage>1563</fpage>
<lpage>77</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cell.2014.11.037</pub-id>
<pmc-comment>4272443</pmc-comment>
<pub-id pub-id-type="pmid">25525875</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/725283686">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-88">
<label>88</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>White</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>McArthur</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Metcalf</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production.</article-title>
<source>
<italic>Cell.</italic>
</source>
<year>2014</year>
;
<volume>159</volume>
(
<issue>7</issue>
):
<fpage>1549</fpage>
<lpage>62</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cell.2014.11.036</pub-id>
<pmc-comment>4520319</pmc-comment>
<pub-id pub-id-type="pmid">25525874</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/725283687">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-89">
<label>89</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>West</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Khoury-Hanold</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Staron</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Mitochondrial DNA stress primes the antiviral innate immune response.</article-title>
<source>
<italic>Nature.</italic>
</source>
<year>2015</year>
;
<volume>520</volume>
(
<issue>7548</issue>
):
<fpage>553</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature14156</pub-id>
<pmc-comment>4409480</pmc-comment>
<pub-id pub-id-type="pmid">25642965</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/725335876">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-90">
<label>90</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Patrushev</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kasymov</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Patrusheva</surname>
<given-names>V</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Mitochondrial permeability transition triggers the release of mtDNA fragments.</article-title>
<source>
<italic>Cell Mol Life Sci.</italic>
</source>
<year>2004</year>
;
<volume>61</volume>
(
<issue>24</issue>
):
<fpage>3100</fpage>
<lpage>3</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00018-004-4424-1</pub-id>
<pub-id pub-id-type="pmid">15583871</pub-id>
</mixed-citation>
</ref>
<ref id="ref-91">
<label>91</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ding</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Oxidant stress in mitochondrial DNA damage, autophagy and inflammation in atherosclerosis.</article-title>
<source>
<italic>Sci Rep.</italic>
</source>
<year>2013</year>
;
<volume>3</volume>
:
<fpage>1077</fpage>
.
<pub-id pub-id-type="doi">10.1038/srep01077</pub-id>
<pmc-comment>3546319</pmc-comment>
<pub-id pub-id-type="pmid">23326634</pub-id>
</mixed-citation>
</ref>
<ref id="ref-92">
<label>92</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaczmarek</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Vandenabeele</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Krysko</surname>
<given-names>DV</given-names>
</name>
</person-group>
:
<article-title>Necroptosis: the release of damage-associated molecular patterns and its physiological relevance.</article-title>
<source>
<italic>Immunity.</italic>
</source>
<year>2013</year>
;
<volume>38</volume>
(
<issue>2</issue>
):
<fpage>209</fpage>
<lpage>23</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.immuni.2013.02.003</pub-id>
<pub-id pub-id-type="pmid">23438821</pub-id>
</mixed-citation>
</ref>
<ref id="ref-93">
<label>93</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mangalmurti</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Qing</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Hotz</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Mitochondrial DNA Released Following Necroptosis Accumulates on RBCs.</article-title>
<source>
<italic>Am J Respir Crit Care Med.</italic>
</source>
<year>2016</year>
;
<volume>193</volume>
:
<fpage>A4309</fpage>
<ext-link ext-link-type="uri" xlink:href="http://www.atsjournals.org/doi/pdf/10.1164/ajrccm-conference.2016.193.1_MeetingAbstracts.A4309">Reference Source</ext-link>
</mixed-citation>
</ref>
<ref id="ref-94">
<label>94</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boudreau</surname>
<given-names>LH</given-names>
</name>
<name>
<surname>Duchez</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Cloutier</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A
<sub>2</sub>
to promote inflammation.</article-title>
<source>
<italic>Blood.</italic>
</source>
<year>2014</year>
;
<volume>124</volume>
(
<issue>14</issue>
):
<fpage>2173</fpage>
<lpage>83</lpage>
.
<pub-id pub-id-type="doi">10.1182/blood-2014-05-573543</pub-id>
<pmc-comment>4260364</pmc-comment>
<pub-id pub-id-type="pmid">25082876</pub-id>
</mixed-citation>
</ref>
<ref id="ref-95">
<label>95</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xin</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Ji</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Metformin Uniquely Prevents Thrombosis by Inhibiting Platelet Activation and mtDNA Release.</article-title>
<source>
<italic>Sci Rep.</italic>
</source>
<year>2016</year>
;
<volume>6</volume>
:
<fpage>36222</fpage>
.
<pub-id pub-id-type="doi">10.1038/srep36222</pub-id>
<pmc-comment>5090250</pmc-comment>
<pub-id pub-id-type="pmid">27805009</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/726914671">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-96">
<label>96</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Islam</surname>
<given-names>MN</given-names>
</name>
<name>
<surname>Das</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Emin</surname>
<given-names>MT</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury.</article-title>
<source>
<italic>Nat Med.</italic>
</source>
<year>2012</year>
;
<volume>18</volume>
(
<issue>5</issue>
):
<fpage>759</fpage>
<lpage>65</lpage>
.
<pub-id pub-id-type="doi">10.1038/nm.2736</pub-id>
<pmc-comment>3727429</pmc-comment>
<pub-id pub-id-type="pmid">22504485</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/715348110">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-97">
<label>97</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Waldenström</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gennebäck</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Hellman</surname>
<given-names>U</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells.</article-title>
<source>
<italic>PLoS One.</italic>
</source>
<year>2012</year>
;
<volume>7</volume>
(
<issue>4</issue>
):
<fpage>e34653</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0034653</pub-id>
<pmc-comment>3323564</pmc-comment>
<pub-id pub-id-type="pmid">22506041</pub-id>
</mixed-citation>
</ref>
<ref id="ref-98">
<label>98</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Balaj</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Lessard</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Dai</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences.</article-title>
<source>
<italic>Nat Commun.</italic>
</source>
<year>2011</year>
;
<volume>2</volume>
:
<fpage>180</fpage>
.
<pub-id pub-id-type="doi">10.1038/ncomms1180</pub-id>
<pmc-comment>3040683</pmc-comment>
<pub-id pub-id-type="pmid">21285958</pub-id>
</mixed-citation>
</ref>
<ref id="ref-99">
<label>99</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guescini</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Guidolin</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Vallorani</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>C2C12 myoblasts release micro-vesicles containing mtDNA and proteins involved in signal transduction.</article-title>
<source>
<italic>Exp Cell Res.</italic>
</source>
<year>2010</year>
;
<volume>316</volume>
(
<issue>12</issue>
):
<fpage>1977</fpage>
<lpage>84</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.yexcr.2010.04.006</pub-id>
<pub-id pub-id-type="pmid">20399774</pub-id>
</mixed-citation>
</ref>
<ref id="ref-100">
<label>100</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guescini</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Genedani</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Stocchi</surname>
<given-names>V</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Astrocytes and Glioblastoma cells release exosomes carrying mtDNA.</article-title>
<source>
<italic>J Neural Transm (Vienna).</italic>
</source>
<year>2010</year>
;
<volume>117</volume>
(
<issue>1</issue>
):
<fpage>1</fpage>
<lpage>4</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00702-009-0288-8</pub-id>
<pub-id pub-id-type="pmid">19680595</pub-id>
</mixed-citation>
</ref>
<ref id="ref-101">
<label>101</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pazmandi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Agod</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>BV</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Oxidative modification enhances the immunostimulatory effects of extracellular mitochondrial DNA on plasmacytoid dendritic cells.</article-title>
<source>
<italic>Free Radic Biol Med.</italic>
</source>
<year>2014</year>
;
<volume>77</volume>
:
<fpage>281</fpage>
<lpage>90</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2014.09.028</pub-id>
<pub-id pub-id-type="pmid">25301097</pub-id>
</mixed-citation>
</ref>
<ref id="ref-102">
<label>102</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oka</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hikoso</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yamaguchi</surname>
<given-names>O</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure.</article-title>
<source>
<italic>Nature.</italic>
</source>
<year>2012</year>
;
<volume>485</volume>
(
<issue>7397</issue>
):
<fpage>251</fpage>
<lpage>5</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature10992</pub-id>
<pmc-comment>3378041</pmc-comment>
<pub-id pub-id-type="pmid">22535248</pub-id>
</mixed-citation>
</ref>
<ref id="ref-103">
<label>103</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boyapati</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Satsangi</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>G</given-names>
</name>
</person-group>
:
<article-title>Pathogenesis of Crohn's disease.</article-title>
<source>
<italic>F1000Prime Rep.</italic>
</source>
<year>2015</year>
;
<volume>7</volume>
:
<fpage>44</fpage>
.
<pub-id pub-id-type="doi">10.12703/P7-44</pub-id>
<pmc-comment>4447044</pmc-comment>
<pub-id pub-id-type="pmid">26097717</pub-id>
</mixed-citation>
</ref>
<ref id="ref-104">
<label>104</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Botezatu</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Serdyuk</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Potapova</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Genetic analysis of DNA excreted in urine: a new approach for detecting specific genomic DNA sequences from cells dying in an organism.</article-title>
<source>
<italic>Clin Chem.</italic>
</source>
<year>2000</year>
;
<volume>46</volume>
(
<issue>8 Pt</issue>
):
<fpage>1078</fpage>
<lpage>84</lpage>
.
<pub-id pub-id-type="pmid">10926886</pub-id>
</mixed-citation>
</ref>
<ref id="ref-105">
<label>105</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Whitaker</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Stallons</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Kneff</surname>
<given-names>JE</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Urinary mitochondrial DNA is a biomarker of mitochondrial disruption and renal dysfunction in acute kidney injury.</article-title>
<source>
<italic>Kidney Int.</italic>
</source>
<year>2015</year>
;
<volume>88</volume>
(
<issue>6</issue>
):
<fpage>1336</fpage>
<lpage>44</lpage>
.
<pub-id pub-id-type="doi">10.1038/ki.2015.240</pub-id>
<pmc-comment>4675682</pmc-comment>
<pub-id pub-id-type="pmid">26287315</pub-id>
</mixed-citation>
</ref>
<ref id="ref-106">
<label>106</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stacey</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Sweet</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Hume</surname>
<given-names>DA</given-names>
</name>
</person-group>
:
<article-title>Macrophages ingest and are activated by bacterial DNA.</article-title>
<source>
<italic>J Immunol.</italic>
</source>
<year>1996</year>
;
<volume>157</volume>
(
<issue>5</issue>
):
<fpage>2116</fpage>
<lpage>22</lpage>
.
<pub-id pub-id-type="pmid">8757335</pub-id>
</mixed-citation>
</ref>
<ref id="ref-107">
<label>107</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lo</surname>
<given-names>YM</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>TN</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Rapid clearance of fetal DNA from maternal plasma.</article-title>
<source>
<italic>Am J Hum Genet.</italic>
</source>
<year>1999</year>
;
<volume>64</volume>
(
<issue>1</issue>
):
<fpage>218</fpage>
<lpage>24</lpage>
.
<pub-id pub-id-type="doi">10.1086/302205</pub-id>
<pmc-comment>1377720</pmc-comment>
<pub-id pub-id-type="pmid">9915961</pub-id>
</mixed-citation>
</ref>
<ref id="ref-108">
<label>108</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Okabe</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kawane</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Akira</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation.</article-title>
<source>
<italic>J Exp Med.</italic>
</source>
<year>2005</year>
;
<volume>202</volume>
(
<issue>10</issue>
):
<fpage>1333</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="doi">10.1084/jem.20051654</pub-id>
<pmc-comment>2212973</pmc-comment>
<pub-id pub-id-type="pmid">16301743</pub-id>
</mixed-citation>
</ref>
<ref id="ref-109">
<label>109</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chan</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Onji</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fukui</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>DNase II-dependent DNA digestion is required for DNA sensing by TLR9.</article-title>
<source>
<italic>Nat Commun.</italic>
</source>
<year>2015</year>
;
<volume>6</volume>
:
<fpage>5853</fpage>
.
<pub-id pub-id-type="doi">10.1038/ncomms6853</pub-id>
<pub-id pub-id-type="pmid">25600358</pub-id>
</mixed-citation>
</ref>
<ref id="ref-110">
<label>110</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dhondup</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ueland</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Dahl</surname>
<given-names>CP</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Low Circulating Levels of Mitochondrial and High Levels of Nuclear DNA Predict Mortality in Chronic Heart Failure.</article-title>
<source>
<italic>J Card Fail.</italic>
</source>
<year>2016</year>
;
<volume>22</volume>
(
<issue>10</issue>
):
<fpage>823</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cardfail.2016.06.013</pub-id>
<pub-id pub-id-type="pmid">27349571</pub-id>
</mixed-citation>
</ref>
<ref id="ref-111">
<label>111</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kohler</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Radpour</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Barekati</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Levels of plasma circulating cell free nuclear and mitochondrial DNA as potential biomarkers for breast tumors.</article-title>
<source>
<italic>Mol Cancer.</italic>
</source>
<year>2009</year>
;
<volume>8</volume>
:
<fpage>105</fpage>
.
<pub-id pub-id-type="doi">10.1186/1476-4598-8-105</pub-id>
<pmc-comment>2780981</pmc-comment>
<pub-id pub-id-type="pmid">19922604</pub-id>
</mixed-citation>
</ref>
<ref id="ref-112">
<label>112</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zachariah</surname>
<given-names>RR</given-names>
</name>
<name>
<surname>Schmid</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Buerki</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Levels of circulating cell-free nuclear and mitochondrial DNA in benign and malignant ovarian tumors.</article-title>
<source>
<italic>Obstet Gynecol.</italic>
</source>
<year>2008</year>
;
<volume>112</volume>
(
<issue>4</issue>
):
<fpage>843</fpage>
<lpage>50</lpage>
.
<pub-id pub-id-type="doi">10.1097/AOG.0b013e3181867bc0</pub-id>
<pub-id pub-id-type="pmid">18827127</pub-id>
</mixed-citation>
</ref>
<ref id="ref-113">
<label>113</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ellinger</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Albers</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Müller</surname>
<given-names>SC</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Circulating mitochondrial DNA in the serum of patients with testicular germ cell cancer as a novel noninvasive diagnostic biomarker.</article-title>
<source>
<italic>BJU Int.</italic>
</source>
<year>2009</year>
;
<volume>104</volume>
(
<issue>1</issue>
):
<fpage>48</fpage>
<lpage>52</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1464-410X.2008.08289.x</pub-id>
<pub-id pub-id-type="pmid">19154496</pub-id>
</mixed-citation>
</ref>
<ref id="ref-114">
<label>114</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ellinger</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Müller</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Müller</surname>
<given-names>SC</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Circulating mitochondrial DNA in serum: a universal diagnostic biomarker for patients with urological malignancies.</article-title>
<source>
<italic>Urol Oncol.</italic>
</source>
<year>2012</year>
;
<volume>30</volume>
(
<issue>4</issue>
):
<fpage>509</fpage>
<lpage>15</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.urolonc.2010.03.004</pub-id>
<pub-id pub-id-type="pmid">20870429</pub-id>
</mixed-citation>
</ref>
<ref id="ref-115">
<label>115</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ellinger</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Müller</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Wernert</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Mitochondrial DNA in serum of patients with prostate cancer: a predictor of biochemical recurrence after prostatectomy.</article-title>
<source>
<italic>BJU Int.</italic>
</source>
<year>2008</year>
;
<volume>102</volume>
(
<issue>5</issue>
):
<fpage>628</fpage>
<lpage>32</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1464-410X.2008.07613.x</pub-id>
<pub-id pub-id-type="pmid">18410441</pub-id>
</mixed-citation>
</ref>
<ref id="ref-116">
<label>116</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wan</surname>
<given-names>YF</given-names>
</name>
<name>
<surname>Zou</surname>
<given-names>QH</given-names>
</name>
</person-group>
:
<article-title>Cell-free circulating mitochondrial DNA in the serum: a potential non-invasive biomarker for Ewing's sarcoma.</article-title>
<source>
<italic>Arch Med Res.</italic>
</source>
<year>2012</year>
;
<volume>43</volume>
(
<issue>5</issue>
):
<fpage>389</fpage>
<lpage>94</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.arcmed.2012.06.007</pub-id>
<pub-id pub-id-type="pmid">22728238</pub-id>
</mixed-citation>
</ref>
<ref id="ref-117">
<label>117</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hou</surname>
<given-names>YL</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>YF</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Clinical significance of serum mitochondrial DNA in lung cancer.</article-title>
<source>
<italic>Clin Biochem.</italic>
</source>
<year>2013</year>
;
<volume>46</volume>
(
<issue>15</issue>
):
<fpage>1474</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.clinbiochem.2013.04.009</pub-id>
<pub-id pub-id-type="pmid">23611926</pub-id>
</mixed-citation>
</ref>
<ref id="ref-118">
<label>118</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mehra</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Penning</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Maas</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Circulating mitochondrial nucleic acids have prognostic value for survival in patients with advanced prostate cancer.</article-title>
<source>
<italic>Clin Cancer Res.</italic>
</source>
<year>2007</year>
;
<volume>13</volume>
(
<issue>2 Pt 1</issue>
):
<fpage>421</fpage>
<lpage>6</lpage>
.
<pub-id pub-id-type="doi">10.1158/1078-0432.CCR-06-1087</pub-id>
<pub-id pub-id-type="pmid">17255261</pub-id>
</mixed-citation>
</ref>
<ref id="ref-119">
<label>119</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>CY</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>YM</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>CH</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Circulating free mitochondrial DNA concentration and its association with erlotinib treatment in patients with adenocarcinoma of the lung.</article-title>
<source>
<italic>Oncol Lett.</italic>
</source>
<year>2014</year>
;
<volume>7</volume>
(
<issue>6</issue>
):
<fpage>2180</fpage>
<lpage>4</lpage>
.
<pub-id pub-id-type="doi">10.3892/ol.2014.2006</pub-id>
<pmc-comment>4049713</pmc-comment>
<pub-id pub-id-type="pmid">24932312</pub-id>
</mixed-citation>
</ref>
<ref id="ref-120">
<label>120</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Budnik</surname>
<given-names>LT</given-names>
</name>
<name>
<surname>Kloth</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Baur</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Circulating mitochondrial DNA as biomarker linking environmental chemical exposure to early preclinical lesions elevation of mtDNA in human serum after exposure to carcinogenic halo-alkane-based pesticides.</article-title>
<source>
<italic>PLoS One.</italic>
</source>
<year>2013</year>
;
<volume>8</volume>
(
<issue>5</issue>
):
<fpage>e64413</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0064413</pub-id>
<pmc-comment>3669318</pmc-comment>
<pub-id pub-id-type="pmid">23741329</pub-id>
</mixed-citation>
</ref>
<ref id="ref-121">
<label>121</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Busch</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Diagnostic and prognostic potential of circulating cell-free genomic and mitochondrial DNA fragments in clear cell renal cell carcinoma patients.</article-title>
<source>
<italic>Clin Chim Acta.</italic>
</source>
<year>2016</year>
;
<volume>452</volume>
:
<fpage>109</fpage>
<lpage>19</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cca.2015.11.009</pub-id>
<pub-id pub-id-type="pmid">26569345</pub-id>
</mixed-citation>
</ref>
<ref id="ref-122">
<label>122</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cossarizza</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pinti</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nasi</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Increased plasma levels of extracellular mitochondrial DNA during HIV infection: a new role for mitochondrial damage-associated molecular patterns during inflammation.</article-title>
<source>
<italic>Mitochondrion.</italic>
</source>
<year>2011</year>
;
<volume>11</volume>
(
<issue>5</issue>
):
<fpage>750</fpage>
<lpage>5</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.mito.2011.06.005</pub-id>
<pub-id pub-id-type="pmid">21722755</pub-id>
</mixed-citation>
</ref>
<ref id="ref-123">
<label>123</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dai</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Plasma Mitochondrial DNA Levels as a Biomarker of Lipodystrophy Among HIV-infected Patients Treated with Highly Active Antiretroviral Therapy (HAART).</article-title>
<source>
<italic>Curr Mol Med.</italic>
</source>
<year>2015</year>
;
<volume>15</volume>
(
<issue>10</issue>
):
<fpage>975</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="doi">10.2174/1566524016666151123114401</pub-id>
<pub-id pub-id-type="pmid">26592244</pub-id>
</mixed-citation>
</ref>
<ref id="ref-124">
<label>124</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lauring</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>TH</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>JN</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Lack of evidence for mtDNA as a biomarker of innate immune activation in HIV infection.</article-title>
<source>
<italic>PLoS One.</italic>
</source>
<year>2012</year>
;
<volume>7</volume>
(
<issue>11</issue>
):
<fpage>e50486</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0050486</pub-id>
<pmc-comment>3510194</pmc-comment>
<pub-id pub-id-type="pmid">23209754</pub-id>
</mixed-citation>
</ref>
<ref id="ref-125">
<label>125</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pinti</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Cevenini</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Nasi</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Circulating mitochondrial DNA increases with age and is a familiar trait: Implications for "inflamm-aging".</article-title>
<source>
<italic>Eur J Immunol.</italic>
</source>
<year>2014</year>
;
<volume>44</volume>
(
<issue>5</issue>
):
<fpage>1552</fpage>
<lpage>62</lpage>
.
<pub-id pub-id-type="doi">10.1002/eji.201343921</pub-id>
<pub-id pub-id-type="pmid">24470107</pub-id>
</mixed-citation>
</ref>
<ref id="ref-126">
<label>126</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Verschoor</surname>
<given-names>CP</given-names>
</name>
<name>
<surname>Loukov</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Naidoo</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Circulating TNF and mitochondrial DNA are major determinants of neutrophil phenotype in the advanced-age, frail elderly.</article-title>
<source>
<italic>Mol Immunol.</italic>
</source>
<year>2015</year>
;
<volume>65</volume>
(
<issue>1</issue>
):
<fpage>148</fpage>
<lpage>56</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.molimm.2015.01.015</pub-id>
<pub-id pub-id-type="pmid">25660689</pub-id>
</mixed-citation>
</ref>
<ref id="ref-127">
<label>127</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jylhävä</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Nevalainen</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Marttila</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Characterization of the role of distinct plasma cell-free DNA species in age-associated inflammation and frailty.</article-title>
<source>
<italic>Aging Cell.</italic>
</source>
<year>2013</year>
;
<volume>12</volume>
(
<issue>3</issue>
):
<fpage>388</fpage>
<lpage>97</lpage>
.
<pub-id pub-id-type="doi">10.1111/acel.12058</pub-id>
<pub-id pub-id-type="pmid">23438186</pub-id>
</mixed-citation>
</ref>
<ref id="ref-128">
<label>128</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shockett</surname>
<given-names>PE</given-names>
</name>
<name>
<surname>Khanal</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Sitaula</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Plasma cell-free mitochondrial DNA declines in response to prolonged moderate aerobic exercise.</article-title>
<source>
<italic>Physiol Rep.</italic>
</source>
<year>2016</year>
;
<volume>4</volume>
(
<issue>1</issue>
): pii: e12672.
<pub-id pub-id-type="doi">10.14814/phy2.12672</pub-id>
<pmc-comment>4760406</pmc-comment>
<pub-id pub-id-type="pmid">26755735</pub-id>
</mixed-citation>
</ref>
<ref id="ref-129">
<label>129</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nasi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Cristani</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pinti</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Decreased Circulating mtDNA Levels in Professional Male Volleyball Players.</article-title>
<source>
<italic>Int J Sports Physiol Perform.</italic>
</source>
<year>2016</year>
;
<volume>11</volume>
(
<issue>1</issue>
):
<fpage>116</fpage>
<lpage>21</lpage>
.
<pub-id pub-id-type="doi">10.1123/ijspp.2014-0461</pub-id>
<pub-id pub-id-type="pmid">26068407</pub-id>
</mixed-citation>
</ref>
<ref id="ref-130">
<label>130</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chou</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>HY</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>YL</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Plasma nuclear DNA and mitochondrial DNA as prognostic markers in corrosive injury patients.</article-title>
<source>
<italic>Dig Surg.</italic>
</source>
<year>2008</year>
;
<volume>25</volume>
(
<issue>4</issue>
):
<fpage>300</fpage>
<lpage>4</lpage>
.
<pub-id pub-id-type="doi">10.1159/000152846</pub-id>
<pub-id pub-id-type="pmid">18769068</pub-id>
</mixed-citation>
</ref>
<ref id="ref-131">
<label>131</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sabatino</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Botto</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Borghini</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Development of a new multiplex quantitative real-time PCR assay for the detection of the mtDNA
<sup>4977</sup>
deletion in coronary artery disease patients: a link with telomere shortening.</article-title>
<source>
<italic>Environ Mol Mutagen.</italic>
</source>
<year>2013</year>
;
<volume>54</volume>
(
<issue>5</issue>
):
<fpage>299</fpage>
<lpage>307</lpage>
.
<pub-id pub-id-type="doi">10.1002/em.21783</pub-id>
<pub-id pub-id-type="pmid">23703697</pub-id>
</mixed-citation>
</ref>
<ref id="ref-132">
<label>132</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Angelidou</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Alysandratos</surname>
<given-names>KD</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Mitochondrial DNA and anti-mitochondrial antibodies in serum of autistic children.</article-title>
<source>
<italic>J Neuroinflammation.</italic>
</source>
<year>2010</year>
;
<volume>7</volume>
:
<fpage>80</fpage>
.
<pub-id pub-id-type="doi">10.1186/1742-2094-7-80</pub-id>
<pmc-comment>3001695</pmc-comment>
<pub-id pub-id-type="pmid">21083929</pub-id>
</mixed-citation>
</ref>
<ref id="ref-133">
<label>133</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cao</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Circulatory mitochondrial DNA is a pro-inflammatory agent in maintenance hemodialysis patients.</article-title>
<source>
<italic>PLoS One.</italic>
</source>
<year>2014</year>
;
<volume>9</volume>
(
<issue>12</issue>
):
<fpage>e113179</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0113179</pub-id>
<pmc-comment>4259325</pmc-comment>
<pub-id pub-id-type="pmid">25485699</pub-id>
</mixed-citation>
</ref>
<ref id="ref-134">
<label>134</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wen</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Associations of mitochondrial haplogroups and mitochondrial DNA copy numbers with end-stage renal disease in a Han population.</article-title>
<source>
<italic>Mitochondrial DNA A DNA Mapp Seq Anal.</italic>
</source>
<year>2016</year>
:
<fpage>1</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="doi">10.1080/24701394.2016.1177038</pub-id>
<pub-id pub-id-type="pmid">27159351</pub-id>
</mixed-citation>
</ref>
<ref id="ref-135">
<label>135</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stertz</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Fries</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Rosa</surname>
<given-names>AR</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Damage-associated molecular patterns and immune activation in bipolar disorder.</article-title>
<source>
<italic>Acta Psychiatr Scand.</italic>
</source>
<year>2015</year>
;
<volume>132</volume>
(
<issue>3</issue>
):
<fpage>211</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="doi">10.1111/acps.12417</pub-id>
<pub-id pub-id-type="pmid">25891376</pub-id>
</mixed-citation>
</ref>
<ref id="ref-136">
<label>136</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Borghini</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mercuri</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Turchi</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Increased circulating cell-free DNA levels and mtDNA fragments in interventional cardiologists occupationally exposed to low levels of ionizing radiation.</article-title>
<source>
<italic>Environ Mol Mutagen.</italic>
</source>
<year>2015</year>
;
<volume>56</volume>
(
<issue>3</issue>
):
<fpage>293</fpage>
<lpage>300</lpage>
.
<pub-id pub-id-type="doi">10.1002/em.21917</pub-id>
<pub-id pub-id-type="pmid">25327629</pub-id>
</mixed-citation>
</ref>
<ref id="ref-137">
<label>137</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dantham</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Srivastava</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Gulati</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Plasma circulating cell-free mitochondrial DNA in the assessment of Friedreich’s ataxia.</article-title>
<source>
<italic>J Neurol Sci.</italic>
</source>
<year>2016</year>
;
<volume>365</volume>
:
<fpage>82</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jns.2016.04.016</pub-id>
<pub-id pub-id-type="pmid">27206881</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/726370971">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
<ref id="ref-138">
<label>138</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yasui</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Matsuyama</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Kuroishi</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
:
<article-title>Mitochondrial damage-associated molecular patterns as potential proinflammatory mediators in post-platelet transfusion adverse effects.</article-title>
<source>
<italic>Transfusion.</italic>
</source>
<year>2016</year>
;
<volume>56</volume>
(
<issue>5</issue>
):
<fpage>1201</fpage>
<lpage>12</lpage>
.
<pub-id pub-id-type="doi">10.1111/trf.13535</pub-id>
<pub-id pub-id-type="pmid">26920340</pub-id>
</mixed-citation>
<note>
<p>
<ext-link ext-link-type="uri" xlink:href="https://f1000.com/prime/726177867">F1000 Recommendation</ext-link>
</p>
</note>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F23 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 002F23 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:5321122
   |texte=   Advances in the understanding of mitochondrial DNA as a pathogenic factor in inflammatory diseases
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:28299196" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024