Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0023019 ( Pmc/Corpus ); précédent : 0023018; suivant : 0023020 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparison of low molecular weight glutenin subunits identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR in common wheat</title>
<author>
<name sortKey="Liu, Li" sort="Liu, Li" uniqKey="Liu L" first="Li" last="Liu">Li Liu</name>
<affiliation>
<nlm:aff id="I1">Institute of Crop Science, National Wheat Improvement Center/The National Key Facility for Crop Genetic Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ikeda, Tatsuya M" sort="Ikeda, Tatsuya M" uniqKey="Ikeda T" first="Tatsuya M" last="Ikeda">Tatsuya M. Ikeda</name>
<affiliation>
<nlm:aff id="I2">National Agriculture and Food Research Organization, 6-12-1 Nishifukatsu, Fukuyama, Hiroshima, 721-8514, Japan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Branlard, Gerard" sort="Branlard, Gerard" uniqKey="Branlard G" first="Gerard" last="Branlard">Gerard Branlard</name>
<affiliation>
<nlm:aff id="I3">INRA Station d'Amelioration des Plantes, Domaine de Crouelle, 63039 Clermont- Ferrand, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pe A, Roberto J" sort="Pe A, Roberto J" uniqKey="Pe A R" first="Roberto J" last="Pe A">Roberto J. Pe A</name>
<affiliation>
<nlm:aff id="I4">CIMMYT Mexico, Apdo, Postal, 6-641, 06600, Mexico, DF, Mexico</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rogers, William J" sort="Rogers, William J" uniqKey="Rogers W" first="William J" last="Rogers">William J. Rogers</name>
<affiliation>
<nlm:aff id="I5">CIISAS, CICPBA-BIOLAB AZUL, Facultad de Agronomía, Universidad Nacional del Centro de la Provincia de Buenos Aires, Av. República Italia 780, C.C. 47, (7300), Azul, Provincia de Buenos Aires, Argentina. CONICET INBA -CEBB-MdP</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lerner, Silvia E" sort="Lerner, Silvia E" uniqKey="Lerner S" first="Silvia E" last="Lerner">Silvia E. Lerner</name>
<affiliation>
<nlm:aff id="I6">CRESCAA, Facultad de Agronomía, Universidad Nacional del Centro de la Provincia de Buenos Aires, Av. República Italia 780, C.C. 47, (7300), Azul, Provincia de Buenos Aires, Argentina</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kolman, Maria A" sort="Kolman, Maria A" uniqKey="Kolman M" first="María A" last="Kolman">María A. Kolman</name>
<affiliation>
<nlm:aff id="I5">CIISAS, CICPBA-BIOLAB AZUL, Facultad de Agronomía, Universidad Nacional del Centro de la Provincia de Buenos Aires, Av. República Italia 780, C.C. 47, (7300), Azul, Provincia de Buenos Aires, Argentina. CONICET INBA -CEBB-MdP</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xia, Xianchun" sort="Xia, Xianchun" uniqKey="Xia X" first="Xianchun" last="Xia">Xianchun Xia</name>
<affiliation>
<nlm:aff id="I1">Institute of Crop Science, National Wheat Improvement Center/The National Key Facility for Crop Genetic Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Linhai" sort="Wang, Linhai" uniqKey="Wang L" first="Linhai" last="Wang">Linhai Wang</name>
<affiliation>
<nlm:aff id="I1">Institute of Crop Science, National Wheat Improvement Center/The National Key Facility for Crop Genetic Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ma, Wujun" sort="Ma, Wujun" uniqKey="Ma W" first="Wujun" last="Ma">Wujun Ma</name>
<affiliation>
<nlm:aff id="I7">Western Australia Department of Agriculture and Food, State Agriculture Biotechnology Center, Murdoch University, Murdoch, WA 6150, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Appels, Rudi" sort="Appels, Rudi" uniqKey="Appels R" first="Rudi" last="Appels">Rudi Appels</name>
<affiliation>
<nlm:aff id="I7">Western Australia Department of Agriculture and Food, State Agriculture Biotechnology Center, Murdoch University, Murdoch, WA 6150, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yoshida, Hisashi" sort="Yoshida, Hisashi" uniqKey="Yoshida H" first="Hisashi" last="Yoshida">Hisashi Yoshida</name>
<affiliation>
<nlm:aff id="I8">National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki, 305-8517, Japan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Aili" sort="Wang, Aili" uniqKey="Wang A" first="Aili" last="Wang">Aili Wang</name>
<affiliation>
<nlm:aff id="I9">Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, 105 Xisanhuan Beilu, Beijing 100037, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yan, Yueming" sort="Yan, Yueming" uniqKey="Yan Y" first="Yueming" last="Yan">Yueming Yan</name>
<affiliation>
<nlm:aff id="I9">Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, 105 Xisanhuan Beilu, Beijing 100037, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="He, Zhonghu" sort="He, Zhonghu" uniqKey="He Z" first="Zhonghu" last="He">Zhonghu He</name>
<affiliation>
<nlm:aff id="I1">Institute of Crop Science, National Wheat Improvement Center/The National Key Facility for Crop Genetic Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I10">International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing 100081, China</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">20573275</idno>
<idno type="pmc">3017774</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3017774</idno>
<idno type="RBID">PMC:3017774</idno>
<idno type="doi">10.1186/1471-2229-10-124</idno>
<date when="2010">2010</date>
<idno type="wicri:Area/Pmc/Corpus">002301</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002301</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Comparison of low molecular weight glutenin subunits identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR in common wheat</title>
<author>
<name sortKey="Liu, Li" sort="Liu, Li" uniqKey="Liu L" first="Li" last="Liu">Li Liu</name>
<affiliation>
<nlm:aff id="I1">Institute of Crop Science, National Wheat Improvement Center/The National Key Facility for Crop Genetic Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ikeda, Tatsuya M" sort="Ikeda, Tatsuya M" uniqKey="Ikeda T" first="Tatsuya M" last="Ikeda">Tatsuya M. Ikeda</name>
<affiliation>
<nlm:aff id="I2">National Agriculture and Food Research Organization, 6-12-1 Nishifukatsu, Fukuyama, Hiroshima, 721-8514, Japan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Branlard, Gerard" sort="Branlard, Gerard" uniqKey="Branlard G" first="Gerard" last="Branlard">Gerard Branlard</name>
<affiliation>
<nlm:aff id="I3">INRA Station d'Amelioration des Plantes, Domaine de Crouelle, 63039 Clermont- Ferrand, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pe A, Roberto J" sort="Pe A, Roberto J" uniqKey="Pe A R" first="Roberto J" last="Pe A">Roberto J. Pe A</name>
<affiliation>
<nlm:aff id="I4">CIMMYT Mexico, Apdo, Postal, 6-641, 06600, Mexico, DF, Mexico</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rogers, William J" sort="Rogers, William J" uniqKey="Rogers W" first="William J" last="Rogers">William J. Rogers</name>
<affiliation>
<nlm:aff id="I5">CIISAS, CICPBA-BIOLAB AZUL, Facultad de Agronomía, Universidad Nacional del Centro de la Provincia de Buenos Aires, Av. República Italia 780, C.C. 47, (7300), Azul, Provincia de Buenos Aires, Argentina. CONICET INBA -CEBB-MdP</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lerner, Silvia E" sort="Lerner, Silvia E" uniqKey="Lerner S" first="Silvia E" last="Lerner">Silvia E. Lerner</name>
<affiliation>
<nlm:aff id="I6">CRESCAA, Facultad de Agronomía, Universidad Nacional del Centro de la Provincia de Buenos Aires, Av. República Italia 780, C.C. 47, (7300), Azul, Provincia de Buenos Aires, Argentina</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kolman, Maria A" sort="Kolman, Maria A" uniqKey="Kolman M" first="María A" last="Kolman">María A. Kolman</name>
<affiliation>
<nlm:aff id="I5">CIISAS, CICPBA-BIOLAB AZUL, Facultad de Agronomía, Universidad Nacional del Centro de la Provincia de Buenos Aires, Av. República Italia 780, C.C. 47, (7300), Azul, Provincia de Buenos Aires, Argentina. CONICET INBA -CEBB-MdP</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xia, Xianchun" sort="Xia, Xianchun" uniqKey="Xia X" first="Xianchun" last="Xia">Xianchun Xia</name>
<affiliation>
<nlm:aff id="I1">Institute of Crop Science, National Wheat Improvement Center/The National Key Facility for Crop Genetic Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Linhai" sort="Wang, Linhai" uniqKey="Wang L" first="Linhai" last="Wang">Linhai Wang</name>
<affiliation>
<nlm:aff id="I1">Institute of Crop Science, National Wheat Improvement Center/The National Key Facility for Crop Genetic Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ma, Wujun" sort="Ma, Wujun" uniqKey="Ma W" first="Wujun" last="Ma">Wujun Ma</name>
<affiliation>
<nlm:aff id="I7">Western Australia Department of Agriculture and Food, State Agriculture Biotechnology Center, Murdoch University, Murdoch, WA 6150, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Appels, Rudi" sort="Appels, Rudi" uniqKey="Appels R" first="Rudi" last="Appels">Rudi Appels</name>
<affiliation>
<nlm:aff id="I7">Western Australia Department of Agriculture and Food, State Agriculture Biotechnology Center, Murdoch University, Murdoch, WA 6150, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yoshida, Hisashi" sort="Yoshida, Hisashi" uniqKey="Yoshida H" first="Hisashi" last="Yoshida">Hisashi Yoshida</name>
<affiliation>
<nlm:aff id="I8">National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki, 305-8517, Japan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Aili" sort="Wang, Aili" uniqKey="Wang A" first="Aili" last="Wang">Aili Wang</name>
<affiliation>
<nlm:aff id="I9">Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, 105 Xisanhuan Beilu, Beijing 100037, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yan, Yueming" sort="Yan, Yueming" uniqKey="Yan Y" first="Yueming" last="Yan">Yueming Yan</name>
<affiliation>
<nlm:aff id="I9">Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, 105 Xisanhuan Beilu, Beijing 100037, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="He, Zhonghu" sort="He, Zhonghu" uniqKey="He Z" first="Zhonghu" last="He">Zhonghu He</name>
<affiliation>
<nlm:aff id="I1">Institute of Crop Science, National Wheat Improvement Center/The National Key Facility for Crop Genetic Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I10">International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing 100081, China</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC Plant Biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>Low-molecular-weight glutenin subunits (LMW-GS) play a crucial role in determining end-use quality of common wheat by influencing the viscoelastic properties of dough. Four different methods - sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional gel electrophoresis (2-DE, IEF × SDS-PAGE), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and polymerase chain reaction (PCR), were used to characterize the LMW-GS composition in 103 cultivars from 12 countries.</p>
</sec>
<sec>
<title>Results</title>
<p>At the
<italic>Glu-A3 </italic>
locus, all seven alleles could be reliably identified by 2-DE and PCR. However, the alleles
<italic>Glu-A3e </italic>
and
<italic>Glu-A3d </italic>
could not be routinely distinguished from
<italic>Glu-A3f </italic>
and
<italic>Glu-A3g</italic>
, respectively, based on SDS-PAGE, and the allele
<italic>Glu-A3a </italic>
could not be differentiated from
<italic>Glu-A3c </italic>
by MALDI-TOF-MS. At the
<italic>Glu-B3 </italic>
locus, alleles
<italic>Glu-B3a</italic>
,
<italic>Glu-B3b</italic>
,
<italic>Glu-B3c</italic>
,
<italic>Glu-B3g</italic>
,
<italic>Glu-B3h </italic>
and
<italic>Glu-B3j </italic>
could be clearly identified by all four methods, whereas
<italic>Glu-B3ab</italic>
,
<italic>Glu-B3ac</italic>
,
<italic>Glu-B3ad </italic>
could only be identified by the 2-DE method. At the
<italic>Glu-D3 </italic>
locus, allelic identification was problematic for the electrophoresis based methods and PCR. MALDI-TOF-MS has the potential to reliably identify the
<italic>Glu-D3 </italic>
alleles.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>PCR is the simplest, most accurate, lowest cost, and therefore recommended method for identification of
<italic>Glu-A3 </italic>
and
<italic>Glu-B3 </italic>
alleles in breeding programs. A combination of methods was required to identify certain alleles, and would be especially useful when characterizing new alleles. A standard set of 30 cultivars for use in future studies was chosen to represent all LMW-GS allelic variants in the collection. Among them, Chinese Spring, Opata 85, Seri 82 and Pavon 76 were recommended as a core set for use in SDS-PAGE gels.
<italic>Glu-D3c </italic>
and
<italic>Glu-D3e </italic>
are the same allele. Two new alleles, namely,
<italic>Glu-D3m </italic>
in cultivar Darius, and
<italic>Glu-D3n </italic>
in Fengmai 27, were identified by 2-DE. Utilization of the suggested standard cultivar set, seed of which is available from the CIMMYT and INRA Clermont-Ferrand germplasm collections, should also promote information sharing in the identification of individual LMW-GS and thus provide useful information for quality improvement in common wheat.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Payne, Pi" uniqKey="Payne P">PI Payne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gianibelli, Mc" uniqKey="Gianibelli M">MC Gianibelli</name>
</author>
<author>
<name sortKey="Larroque, Or" uniqKey="Larroque O">OR Larroque</name>
</author>
<author>
<name sortKey="Macrichie, F" uniqKey="Macrichie F">F MacRichie</name>
</author>
<author>
<name sortKey="Wrigley, Cw" uniqKey="Wrigley C">CW Wrigley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shewry, Pr" uniqKey="Shewry P">PR Shewry</name>
</author>
<author>
<name sortKey="Halford, Ng" uniqKey="Halford N">NG Halford</name>
</author>
<author>
<name sortKey="Lafiandra, D" uniqKey="Lafiandra D">D Lafiandra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shewry, Pr" uniqKey="Shewry P">PR Shewry</name>
</author>
<author>
<name sortKey="Tatham, As" uniqKey="Tatham A">AS Tatham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bietz, Ja" uniqKey="Bietz J">JA Bietz</name>
</author>
<author>
<name sortKey="Wall, Js" uniqKey="Wall J">JS Wall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cornish, Gb" uniqKey="Cornish G">GB Cornish</name>
</author>
<author>
<name sortKey="Bekes, F" uniqKey="Bekes F">F Békés</name>
</author>
<author>
<name sortKey="Allen, Hm" uniqKey="Allen H">HM Allen</name>
</author>
<author>
<name sortKey="Martin, Jm" uniqKey="Martin J">JM Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gupta, Rb" uniqKey="Gupta R">RB Gupta</name>
</author>
<author>
<name sortKey="Paul, Jg" uniqKey="Paul J">JG Paul</name>
</author>
<author>
<name sortKey="Cornish, Gb" uniqKey="Cornish G">GB Cornish</name>
</author>
<author>
<name sortKey="Palmer, Ga" uniqKey="Palmer G">GA Palmer</name>
</author>
<author>
<name sortKey="Bekes, F" uniqKey="Bekes F">F Bekes</name>
</author>
<author>
<name sortKey="Rathjen, Aj" uniqKey="Rathjen A">AJ Rathjen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, Zh" uniqKey="He Z">ZH He</name>
</author>
<author>
<name sortKey="Liu, L" uniqKey="Liu L">L Liu</name>
</author>
<author>
<name sortKey="Xia, Xc" uniqKey="Xia X">XC Xia</name>
</author>
<author>
<name sortKey="Liu, Jj" uniqKey="Liu J">JJ Liu</name>
</author>
<author>
<name sortKey="Pe A, Rj" uniqKey="Pe A R">RJ Peña</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bekes, F" uniqKey="Bekes F">F Békés</name>
</author>
<author>
<name sortKey="Morell, M" uniqKey="Morell M">M Morell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singh, Nk" uniqKey="Singh N">NK Singh</name>
</author>
<author>
<name sortKey="Shepherd, Fw" uniqKey="Shepherd F">FW Shepherd</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pogna, Ne" uniqKey="Pogna N">NE Pogna</name>
</author>
<author>
<name sortKey="Autran, Jc" uniqKey="Autran J">JC Autran</name>
</author>
<author>
<name sortKey="Mellini, F" uniqKey="Mellini F">F Mellini</name>
</author>
<author>
<name sortKey="Lafiandra, D" uniqKey="Lafiandra D">D Lafiandra</name>
</author>
<author>
<name sortKey="Feillet, P" uniqKey="Feillet P">P Feillet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anderson, Od" uniqKey="Anderson O">OD Anderson</name>
</author>
<author>
<name sortKey="Gu, Yq" uniqKey="Gu Y">YQ Gu</name>
</author>
<author>
<name sortKey="Kong, Xy" uniqKey="Kong X">XY Kong</name>
</author>
<author>
<name sortKey="Lazo, Gr" uniqKey="Lazo G">GR Lazo</name>
</author>
<author>
<name sortKey="Wu, Jj" uniqKey="Wu J">JJ Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gupta, Rb" uniqKey="Gupta R">RB Gupta</name>
</author>
<author>
<name sortKey="Shepherd, Kw" uniqKey="Shepherd K">KW Shepherd</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yan, Y" uniqKey="Yan Y">Y Yan</name>
</author>
<author>
<name sortKey="Hsam, Sl" uniqKey="Hsam S">SL Hsam</name>
</author>
<author>
<name sortKey="Yu, Jz" uniqKey="Yu J">JZ Yu</name>
</author>
<author>
<name sortKey="Jiang, Y" uniqKey="Jiang Y">Y Jiang</name>
</author>
<author>
<name sortKey="Ohtsuka, I" uniqKey="Ohtsuka I">I Ohtsuka</name>
</author>
<author>
<name sortKey="Zeller, Fj" uniqKey="Zeller F">FJ Zeller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lerner, Se" uniqKey="Lerner S">SE Lerner</name>
</author>
<author>
<name sortKey="Kolman, Ma" uniqKey="Kolman M">MA Kolman</name>
</author>
<author>
<name sortKey="Rogers, Wj" uniqKey="Rogers W">WJ Rogers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jackson, Ea" uniqKey="Jackson E">EA Jackson</name>
</author>
<author>
<name sortKey="Morel, Mh" uniqKey="Morel M">MH Morel</name>
</author>
<author>
<name sortKey="Sontag Strohm, T" uniqKey="Sontag Strohm T">T Sontag-Strohm</name>
</author>
<author>
<name sortKey="Branlard, G" uniqKey="Branlard G">G Branlard</name>
</author>
<author>
<name sortKey="Metakovsky, Ev" uniqKey="Metakovsky E">EV Metakovsky</name>
</author>
<author>
<name sortKey="Redaelli, R" uniqKey="Redaelli R">R Redaelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eagles, Ha" uniqKey="Eagles H">HA Eagles</name>
</author>
<author>
<name sortKey="Hollamby, Gj" uniqKey="Hollamby G">GJ Hollamby</name>
</author>
<author>
<name sortKey="Gororo, Nn" uniqKey="Gororo N">NN Gororo</name>
</author>
<author>
<name sortKey="Eastwood, Rf" uniqKey="Eastwood R">RF Eastwood</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ikeda, Tm" uniqKey="Ikeda T">TM Ikeda</name>
</author>
<author>
<name sortKey="Araki, E" uniqKey="Araki E">E Araki</name>
</author>
<author>
<name sortKey="Fujita, Y" uniqKey="Fujita Y">Y Fujita</name>
</author>
<author>
<name sortKey="Yano, H" uniqKey="Yano H">H Yano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Appelbee, Mj" uniqKey="Appelbee M">MJ Appelbee</name>
</author>
<author>
<name sortKey="Mekuria, Gt" uniqKey="Mekuria G">GT Mekuria</name>
</author>
<author>
<name sortKey="Nagasandra, V" uniqKey="Nagasandra V">V Nagasandra</name>
</author>
<author>
<name sortKey="Bonneau, Jp" uniqKey="Bonneau J">JP Bonneau</name>
</author>
<author>
<name sortKey="Eagles, Ha" uniqKey="Eagles H">HA Eagles</name>
</author>
<author>
<name sortKey="Eastwood, Rf" uniqKey="Eastwood R">RF Eastwood</name>
</author>
<author>
<name sortKey="Mather, De" uniqKey="Mather D">DE Mather</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="D Ovidio, R" uniqKey="D Ovidio R">R D'Ovidio</name>
</author>
<author>
<name sortKey="Masci, S" uniqKey="Masci S">S Masci</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anderson, Ng" uniqKey="Anderson N">NG Anderson</name>
</author>
<author>
<name sortKey="Tollaksen, Sl" uniqKey="Tollaksen S">SL Tollaksen</name>
</author>
<author>
<name sortKey="Pascoe, Fh" uniqKey="Pascoe F">FH Pascoe</name>
</author>
<author>
<name sortKey="Anderson, L" uniqKey="Anderson L">L Anderson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dworschak, Rg" uniqKey="Dworschak R">RG Dworschak</name>
</author>
<author>
<name sortKey="Ens, W" uniqKey="Ens W">W Ens</name>
</author>
<author>
<name sortKey="Standing, Kg" uniqKey="Standing K">KG Standing</name>
</author>
<author>
<name sortKey="Preston, Kr" uniqKey="Preston K">KR Preston</name>
</author>
<author>
<name sortKey="Marchylo, Ba" uniqKey="Marchylo B">BA Marchylo</name>
</author>
<author>
<name sortKey="Nightingale, Mj" uniqKey="Nightingale M">MJ Nightingale</name>
</author>
<author>
<name sortKey="Stevenson, Sg" uniqKey="Stevenson S">SG Stevenson</name>
</author>
<author>
<name sortKey="Hatcher, Dw" uniqKey="Hatcher D">DW Hatcher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ghirardo, A" uniqKey="Ghirardo A">A Ghirardo</name>
</author>
<author>
<name sortKey="S Rensen, Ha" uniqKey="S Rensen H">HA Sørensen</name>
</author>
<author>
<name sortKey="Petersen, M" uniqKey="Petersen M">M Petersen</name>
</author>
<author>
<name sortKey="Jacobsen, S" uniqKey="Jacobsen S">S Jacobsen</name>
</author>
<author>
<name sortKey="S Ndergaard, I" uniqKey="S Ndergaard I">I Søndergaard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muccilli, V" uniqKey="Muccilli V">V Muccilli</name>
</author>
<author>
<name sortKey="Cunsolo, V" uniqKey="Cunsolo V">V Cunsolo</name>
</author>
<author>
<name sortKey="Saletti, R" uniqKey="Saletti R">R Saletti</name>
</author>
<author>
<name sortKey="Foti, S" uniqKey="Foti S">S Foti</name>
</author>
<author>
<name sortKey="Masci, S" uniqKey="Masci S">S Masci</name>
</author>
<author>
<name sortKey="Lafiandra, D" uniqKey="Lafiandra D">D Lafiandra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, L" uniqKey="Liu L">L Liu</name>
</author>
<author>
<name sortKey="Wang, Al" uniqKey="Wang A">AL Wang</name>
</author>
<author>
<name sortKey="Appels, R" uniqKey="Appels R">R Appels</name>
</author>
<author>
<name sortKey="Ma, Jh" uniqKey="Ma J">JH Ma</name>
</author>
<author>
<name sortKey="Xia, Xc" uniqKey="Xia X">XC Xia</name>
</author>
<author>
<name sortKey="Lan, P" uniqKey="Lan P">P Lan</name>
</author>
<author>
<name sortKey="He, Zh" uniqKey="He Z">ZH He</name>
</author>
<author>
<name sortKey="Bekes, F" uniqKey="Bekes F">F Bekes</name>
</author>
<author>
<name sortKey="Yan, Ym" uniqKey="Yan Y">YM Yan</name>
</author>
<author>
<name sortKey="Ma, Wj" uniqKey="Ma W">WJ Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, W" uniqKey="Zhang W">W Zhang</name>
</author>
<author>
<name sortKey="Gianibelli, Mc" uniqKey="Gianibelli M">MC Gianibelli</name>
</author>
<author>
<name sortKey="Rampling, Lr" uniqKey="Rampling L">LR Rampling</name>
</author>
<author>
<name sortKey="Gale, Kr" uniqKey="Gale K">KR Gale</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Lh" uniqKey="Wang L">LH Wang</name>
</author>
<author>
<name sortKey="Li, Gy" uniqKey="Li G">GY Li</name>
</author>
<author>
<name sortKey="Pe A, Rj" uniqKey="Pe A R">RJ Peña</name>
</author>
<author>
<name sortKey="Xia, Xc" uniqKey="Xia X">XC Xia</name>
</author>
<author>
<name sortKey="He, Zh" uniqKey="He Z">ZH He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Lh" uniqKey="Wang L">LH Wang</name>
</author>
<author>
<name sortKey="Zhao, Xl" uniqKey="Zhao X">XL Zhao</name>
</author>
<author>
<name sortKey="He, Zh" uniqKey="He Z">ZH He</name>
</author>
<author>
<name sortKey="Ma, W" uniqKey="Ma W">W Ma</name>
</author>
<author>
<name sortKey="Appels, R" uniqKey="Appels R">R Appels</name>
</author>
<author>
<name sortKey="Pe A, Rj" uniqKey="Pe A R">RJ Peña</name>
</author>
<author>
<name sortKey="Xia, Xc" uniqKey="Xia X">XC Xia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beckwith, Ac" uniqKey="Beckwith A">AC Beckwith</name>
</author>
<author>
<name sortKey="Nielsen, Hc" uniqKey="Nielsen H">HC Nielsen</name>
</author>
<author>
<name sortKey="Wall, Js" uniqKey="Wall J">JS Wall</name>
</author>
<author>
<name sortKey="Huebner, Fr" uniqKey="Huebner F">FR Huebner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elton, Gah" uniqKey="Elton G">GAH Elton</name>
</author>
<author>
<name sortKey="Ewart, Jad" uniqKey="Ewart J">JAD Ewart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jackson, Ea" uniqKey="Jackson E">EA Jackson</name>
</author>
<author>
<name sortKey="Holt, Lm" uniqKey="Holt L">LM Holt</name>
</author>
<author>
<name sortKey="Payne, Pi" uniqKey="Payne P">PI Payne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ikeda, Tm" uniqKey="Ikeda T">TM Ikeda</name>
</author>
<author>
<name sortKey="Nagamine, T" uniqKey="Nagamine T">T Nagamine</name>
</author>
<author>
<name sortKey="Fukuoka, H" uniqKey="Fukuoka H">H Fukuoka</name>
</author>
<author>
<name sortKey="Yano, H" uniqKey="Yano H">H Yano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Juhasz, A" uniqKey="Juhasz A">A Juhász</name>
</author>
<author>
<name sortKey="Gianibelli, Mc" uniqKey="Gianibelli M">MC Gianibelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Branlard, G" uniqKey="Branlard G">G Branlard</name>
</author>
<author>
<name sortKey="Dardevet, M" uniqKey="Dardevet M">M Dardevet</name>
</author>
<author>
<name sortKey="Amiour, N" uniqKey="Amiour N">N Amiour</name>
</author>
<author>
<name sortKey="Igrejas, G" uniqKey="Igrejas G">G Igrejas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ikeda, Tm" uniqKey="Ikeda T">TM Ikeda</name>
</author>
<author>
<name sortKey="Branlard, G" uniqKey="Branlard G">G Branlard</name>
</author>
<author>
<name sortKey="Pe A, Rj" uniqKey="Pe A R">RJ Peña</name>
</author>
<author>
<name sortKey="Takata, K" uniqKey="Takata K">K Takata</name>
</author>
<author>
<name sortKey="Liu, L" uniqKey="Liu L">L Liu</name>
</author>
<author>
<name sortKey="He, Zh" uniqKey="He Z">ZH He</name>
</author>
<author>
<name sortKey="Lerner, Se" uniqKey="Lerner S">SE Lerner</name>
</author>
<author>
<name sortKey="Kolman, Ma" uniqKey="Kolman M">MA Kolman</name>
</author>
<author>
<name sortKey="Yoshida, H" uniqKey="Yoshida H">H Yoshida</name>
</author>
<author>
<name sortKey="Rogers, Wj" uniqKey="Rogers W">WJ Rogers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lew, Ejl" uniqKey="Lew E">EJL Lew</name>
</author>
<author>
<name sortKey="Kuzmicky, Dd" uniqKey="Kuzmicky D">DD Kuzmicky</name>
</author>
<author>
<name sortKey="Kasarda, Dd" uniqKey="Kasarda D">DD Kasarda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tao, Hp" uniqKey="Tao H">HP Tao</name>
</author>
<author>
<name sortKey="Kasarda, Dd" uniqKey="Kasarda D">DD Kasarda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Masci, S" uniqKey="Masci S">S Masci</name>
</author>
<author>
<name sortKey="Rovelli, L" uniqKey="Rovelli L">L Rovelli</name>
</author>
<author>
<name sortKey="Kasarda, Dd" uniqKey="Kasarda D">DD Kasarda</name>
</author>
<author>
<name sortKey="Vensel, Wh" uniqKey="Vensel W">WH Vensel</name>
</author>
<author>
<name sortKey="Lafiandra, D" uniqKey="Lafiandra D">D Lafiandra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Masci, S" uniqKey="Masci S">S Masci</name>
</author>
<author>
<name sortKey="Lafiandra, D" uniqKey="Lafiandra D">D Lafiandra</name>
</author>
<author>
<name sortKey="Porceddu, E" uniqKey="Porceddu E">E Porceddu</name>
</author>
<author>
<name sortKey="Lew, Ejl" uniqKey="Lew E">EJL Lew</name>
</author>
<author>
<name sortKey="Tao, Hp" uniqKey="Tao H">HP Tao</name>
</author>
<author>
<name sortKey="Kasarda, Dd" uniqKey="Kasarda D">DD Kasarda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nieto Taladriz, Mt" uniqKey="Nieto Taladriz M">MT Nieto-Taladriz</name>
</author>
<author>
<name sortKey="Rodriguez Quijano, M" uniqKey="Rodriguez Quijano M">M Rodriguez-Quijano</name>
</author>
<author>
<name sortKey="Carrillo, Jm" uniqKey="Carrillo J">JM Carrillo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wrigley, Cw" uniqKey="Wrigley C">CW Wrigley</name>
</author>
<author>
<name sortKey="Bekes, F" uniqKey="Bekes F">F Bekes</name>
</author>
<author>
<name sortKey="Bushuk, W" uniqKey="Bushuk W">W Bushuk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cornish, Gb" uniqKey="Cornish G">GB Cornish</name>
</author>
<author>
<name sortKey="Burridge, Pm" uniqKey="Burridge P">PM Burridge</name>
</author>
<author>
<name sortKey="Palmer, Ga" uniqKey="Palmer G">GA Palmer</name>
</author>
<author>
<name sortKey="Wrigley, Cw" uniqKey="Wrigley C">CW Wrigley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Branlard, G" uniqKey="Branlard G">G Branlard</name>
</author>
<author>
<name sortKey="Dardevet, R" uniqKey="Dardevet R">R Dardevet</name>
</author>
<author>
<name sortKey="Saccomano, F" uniqKey="Saccomano F">F Saccomano</name>
</author>
<author>
<name sortKey="Lagoutte, F" uniqKey="Lagoutte F">F Lagoutte</name>
</author>
<author>
<name sortKey="Gourdon, J" uniqKey="Gourdon J">J Gourdon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luo, C" uniqKey="Luo C">C Luo</name>
</author>
<author>
<name sortKey="Griffin, Wb" uniqKey="Griffin W">WB Griffin</name>
</author>
<author>
<name sortKey="Branlard, G" uniqKey="Branlard G">G Branlard</name>
</author>
<author>
<name sortKey="Mcneil, Dl" uniqKey="Mcneil D">DL McNeil</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vawser, Mj" uniqKey="Vawser M">MJ Vawser</name>
</author>
<author>
<name sortKey="Cornish, Gb" uniqKey="Cornish G">GB Cornish</name>
</author>
<author>
<name sortKey="Shepherd, Kw" uniqKey="Shepherd K">KW Shepherd</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singh, Nk" uniqKey="Singh N">NK Singh</name>
</author>
<author>
<name sortKey="Shepherd, Kw" uniqKey="Shepherd K">KW Shepherd</name>
</author>
<author>
<name sortKey="Cornish, Gb" uniqKey="Cornish G">GB Cornish</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, L" uniqKey="Liu L">L Liu</name>
</author>
<author>
<name sortKey="He, Zh" uniqKey="He Z">ZH He</name>
</author>
<author>
<name sortKey="Yan, J" uniqKey="Yan J">J Yan</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Xia, Xc" uniqKey="Xia X">XC Xia</name>
</author>
<author>
<name sortKey="Pe A, Rj" uniqKey="Pe A R">RJ Peña</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marchylo, Ba" uniqKey="Marchylo B">BA Marchylo</name>
</author>
<author>
<name sortKey="Handel, Ka" uniqKey="Handel K">KA Handel</name>
</author>
<author>
<name sortKey="Mellish, Vj" uniqKey="Mellish V">VJ Mellish</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, Xl" uniqKey="Zhao X">XL Zhao</name>
</author>
<author>
<name sortKey="Ma, W" uniqKey="Ma W">W Ma</name>
</author>
<author>
<name sortKey="Gale, Kr" uniqKey="Gale K">KR Gale</name>
</author>
<author>
<name sortKey="Lei, Zs" uniqKey="Lei Z">ZS Lei</name>
</author>
<author>
<name sortKey="He, Zh" uniqKey="He Z">ZH He</name>
</author>
<author>
<name sortKey="Sun, Qx" uniqKey="Sun Q">QX Sun</name>
</author>
<author>
<name sortKey="Xia, Xc" uniqKey="Xia X">XC Xia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, Xl" uniqKey="Zhao X">XL Zhao</name>
</author>
<author>
<name sortKey="Xia, Xc" uniqKey="Xia X">XC Xia</name>
</author>
<author>
<name sortKey="He, Zh" uniqKey="He Z">ZH He</name>
</author>
<author>
<name sortKey="Gale, Kr" uniqKey="Gale K">KR Gale</name>
</author>
<author>
<name sortKey="Lei, Zs" uniqKey="Lei Z">ZS Lei</name>
</author>
<author>
<name sortKey="Appels, R" uniqKey="Appels R">R Appels</name>
</author>
<author>
<name sortKey="Ma, Wj" uniqKey="Ma W">WJ Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, Xl" uniqKey="Zhao X">XL Zhao</name>
</author>
<author>
<name sortKey="Xia, Xc" uniqKey="Xia X">XC Xia</name>
</author>
<author>
<name sortKey="He, Zh" uniqKey="He Z">ZH He</name>
</author>
<author>
<name sortKey="Lei, Zs" uniqKey="Lei Z">ZS Lei</name>
</author>
<author>
<name sortKey="Appels, R" uniqKey="Appels R">R Appels</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y Yang</name>
</author>
<author>
<name sortKey="Sun, Qx" uniqKey="Sun Q">QX Sun</name>
</author>
<author>
<name sortKey="Ma, W" uniqKey="Ma W">W Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yahata, E" uniqKey="Yahata E">E Yahata</name>
</author>
<author>
<name sortKey="Maruyama Funatsuki, W" uniqKey="Maruyama Funatsuki W">W Maruyama-Funatsuki</name>
</author>
<author>
<name sortKey="Nishio, Z" uniqKey="Nishio Z">Z Nishio</name>
</author>
<author>
<name sortKey="Tabiki, T" uniqKey="Tabiki T">T Tabiki</name>
</author>
<author>
<name sortKey="Takata, K" uniqKey="Takata K">K Takata</name>
</author>
<author>
<name sortKey="Yamamoto, Y" uniqKey="Yamamoto Y">Y Yamamoto</name>
</author>
<author>
<name sortKey="Tanida, M" uniqKey="Tanida M">M Tanida</name>
</author>
<author>
<name sortKey="Saruyama, H" uniqKey="Saruyama H">H Saruyama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Branlard, G" uniqKey="Branlard G">G Branlard</name>
</author>
<author>
<name sortKey="Bancel, E" uniqKey="Bancel E">E Bancel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Melas, V" uniqKey="Melas V">V Melas</name>
</author>
<author>
<name sortKey="Morel, Mh" uniqKey="Morel M">MH Morel</name>
</author>
<author>
<name sortKey="Autran, Jc" uniqKey="Autran J">JC Autran</name>
</author>
<author>
<name sortKey="Feillet, P" uniqKey="Feillet P">P Feillet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dumur, J" uniqKey="Dumur J">J Dumur</name>
</author>
<author>
<name sortKey="Jahier, J" uniqKey="Jahier J">J Jahier</name>
</author>
<author>
<name sortKey="Bancel, E" uniqKey="Bancel E">E Bancel</name>
</author>
<author>
<name sortKey="Lauriere, M" uniqKey="Lauriere M">M Laurière</name>
</author>
<author>
<name sortKey="Bernard, M" uniqKey="Bernard M">M Bernard</name>
</author>
<author>
<name sortKey="Branlard, G" uniqKey="Branlard G">G Branlard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gorg, A" uniqKey="Gorg A">A Görg</name>
</author>
<author>
<name sortKey="Obermaier, C" uniqKey="Obermaier C">C Obermaier</name>
</author>
<author>
<name sortKey="Boguth, G" uniqKey="Boguth G">G Boguth</name>
</author>
<author>
<name sortKey="Harder, A" uniqKey="Harder A">A Harder</name>
</author>
<author>
<name sortKey="Scheibe, B" uniqKey="Scheibe B">B Scheibe</name>
</author>
<author>
<name sortKey="Wildgruber, R" uniqKey="Wildgruber R">R Wildgruber</name>
</author>
<author>
<name sortKey="Weiss, W" uniqKey="Weiss W">W Weiss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neuhoff, V" uniqKey="Neuhoff V">V Neuhoff</name>
</author>
<author>
<name sortKey="Arold, N" uniqKey="Arold N">N Arold</name>
</author>
<author>
<name sortKey="Taube, D" uniqKey="Taube D">D Taube</name>
</author>
<author>
<name sortKey="Ehrhardt, W" uniqKey="Ehrhardt W">W Ehrhardt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kussmann, M" uniqKey="Kussmann M">M Kussmann</name>
</author>
<author>
<name sortKey="Nordhoff, E" uniqKey="Nordhoff E">E Nordhoff</name>
</author>
<author>
<name sortKey="Rahbek Nielsen, H" uniqKey="Rahbek Nielsen H">H Rahbek-Nielsen</name>
</author>
<author>
<name sortKey="Haebel, S" uniqKey="Haebel S">S Haebel</name>
</author>
<author>
<name sortKey="Rossel Larsen, M" uniqKey="Rossel Larsen M">M Rossel-Larsen</name>
</author>
<author>
<name sortKey="Jakobsen, L" uniqKey="Jakobsen L">L Jakobsen</name>
</author>
<author>
<name sortKey="Gobom, J" uniqKey="Gobom J">J Gobom</name>
</author>
<author>
<name sortKey="Mirgorodskaya, E" uniqKey="Mirgorodskaya E">E Mirgorodskaya</name>
</author>
<author>
<name sortKey="Kroll Kristensen, A" uniqKey="Kroll Kristensen A">A Kroll-Kristensen</name>
</author>
<author>
<name sortKey="Palm, L" uniqKey="Palm L">L Palm</name>
</author>
<author>
<name sortKey="Roepstorff, P" uniqKey="Roepstorff P">P Roepstorff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gale, Kr" uniqKey="Gale K">KR Gale</name>
</author>
<author>
<name sortKey="Ma, W" uniqKey="Ma W">W Ma</name>
</author>
<author>
<name sortKey="Zhang, W" uniqKey="Zhang W">W Zhang</name>
</author>
<author>
<name sortKey="Rampling, L" uniqKey="Rampling L">L Rampling</name>
</author>
<author>
<name sortKey="Hill, As" uniqKey="Hill A">AS Hill</name>
</author>
<author>
<name sortKey="Appels, R" uniqKey="Appels R">R Appels</name>
</author>
<author>
<name sortKey="Morris, P" uniqKey="Morris P">P Morris</name>
</author>
<author>
<name sortKey="Morell, M" uniqKey="Morell M">M Morell</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">BMC Plant Biol</journal-id>
<journal-title-group>
<journal-title>BMC Plant Biology</journal-title>
</journal-title-group>
<issn pub-type="epub">1471-2229</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">20573275</article-id>
<article-id pub-id-type="pmc">3017774</article-id>
<article-id pub-id-type="publisher-id">1471-2229-10-124</article-id>
<article-id pub-id-type="doi">10.1186/1471-2229-10-124</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Comparison of low molecular weight glutenin subunits identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR in common wheat</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" id="A1">
<name>
<surname>Liu</surname>
<given-names>Li</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>liuli1997@yahoo.com.cn</email>
</contrib>
<contrib contrib-type="author" id="A2">
<name>
<surname>Ikeda</surname>
<given-names>Tatsuya M</given-names>
</name>
<xref ref-type="aff" rid="I2">2</xref>
<email>tmikeda@affrc.go.jp</email>
</contrib>
<contrib contrib-type="author" id="A3">
<name>
<surname>Branlard</surname>
<given-names>Gerard</given-names>
</name>
<xref ref-type="aff" rid="I3">3</xref>
<email>branlard@clermont.inra.fr</email>
</contrib>
<contrib contrib-type="author" id="A4">
<name>
<surname>Peña</surname>
<given-names>Roberto J</given-names>
</name>
<xref ref-type="aff" rid="I4">4</xref>
<email>j.pena@cgiar.org</email>
</contrib>
<contrib contrib-type="author" id="A5">
<name>
<surname>Rogers</surname>
<given-names>William J</given-names>
</name>
<xref ref-type="aff" rid="I5">5</xref>
<email>rogers@faa.unicen.edu.ar</email>
</contrib>
<contrib contrib-type="author" id="A6">
<name>
<surname>Lerner</surname>
<given-names>Silvia E</given-names>
</name>
<xref ref-type="aff" rid="I6">6</xref>
<email>slerner@faa.unicen.edu.ar</email>
</contrib>
<contrib contrib-type="author" id="A7">
<name>
<surname>Kolman</surname>
<given-names>María A</given-names>
</name>
<xref ref-type="aff" rid="I5">5</xref>
<email>angeleskolman@gmail.com</email>
</contrib>
<contrib contrib-type="author" id="A8">
<name>
<surname>Xia</surname>
<given-names>Xianchun</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>xiaxianchun@caas.net.cn</email>
</contrib>
<contrib contrib-type="author" id="A9">
<name>
<surname>Wang</surname>
<given-names>Linhai</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>linhai827@163.com</email>
</contrib>
<contrib contrib-type="author" id="A10">
<name>
<surname>Ma</surname>
<given-names>Wujun</given-names>
</name>
<xref ref-type="aff" rid="I7">7</xref>
<email>w.ma@murdoch.edu.au</email>
</contrib>
<contrib contrib-type="author" id="A11">
<name>
<surname>Appels</surname>
<given-names>Rudi</given-names>
</name>
<xref ref-type="aff" rid="I7">7</xref>
<email>rapp1495@bigpond.net.au</email>
</contrib>
<contrib contrib-type="author" id="A12">
<name>
<surname>Yoshida</surname>
<given-names>Hisashi</given-names>
</name>
<xref ref-type="aff" rid="I8">8</xref>
<email>yoshi8h@jcom.home.ne.jp</email>
</contrib>
<contrib contrib-type="author" id="A13">
<name>
<surname>Wang</surname>
<given-names>Aili</given-names>
</name>
<xref ref-type="aff" rid="I9">9</xref>
<email>ailiwang9836@163.com</email>
</contrib>
<contrib contrib-type="author" id="A14">
<name>
<surname>Yan</surname>
<given-names>Yueming</given-names>
</name>
<xref ref-type="aff" rid="I9">9</xref>
<email>yanym@hotmail.com</email>
</contrib>
<contrib contrib-type="author" corresp="yes" id="A15">
<name>
<surname>He</surname>
<given-names>Zhonghu</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<xref ref-type="aff" rid="I10">10</xref>
<email>zhhecaas@gmail.com</email>
</contrib>
</contrib-group>
<aff id="I1">
<label>1</label>
Institute of Crop Science, National Wheat Improvement Center/The National Key Facility for Crop Genetic Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China</aff>
<aff id="I2">
<label>2</label>
National Agriculture and Food Research Organization, 6-12-1 Nishifukatsu, Fukuyama, Hiroshima, 721-8514, Japan</aff>
<aff id="I3">
<label>3</label>
INRA Station d'Amelioration des Plantes, Domaine de Crouelle, 63039 Clermont- Ferrand, France</aff>
<aff id="I4">
<label>4</label>
CIMMYT Mexico, Apdo, Postal, 6-641, 06600, Mexico, DF, Mexico</aff>
<aff id="I5">
<label>5</label>
CIISAS, CICPBA-BIOLAB AZUL, Facultad de Agronomía, Universidad Nacional del Centro de la Provincia de Buenos Aires, Av. República Italia 780, C.C. 47, (7300), Azul, Provincia de Buenos Aires, Argentina. CONICET INBA -CEBB-MdP</aff>
<aff id="I6">
<label>6</label>
CRESCAA, Facultad de Agronomía, Universidad Nacional del Centro de la Provincia de Buenos Aires, Av. República Italia 780, C.C. 47, (7300), Azul, Provincia de Buenos Aires, Argentina</aff>
<aff id="I7">
<label>7</label>
Western Australia Department of Agriculture and Food, State Agriculture Biotechnology Center, Murdoch University, Murdoch, WA 6150, Australia</aff>
<aff id="I8">
<label>8</label>
National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki, 305-8517, Japan</aff>
<aff id="I9">
<label>9</label>
Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, 105 Xisanhuan Beilu, Beijing 100037, China</aff>
<aff id="I10">
<label>10</label>
International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing 100081, China</aff>
<pub-date pub-type="collection">
<year>2010</year>
</pub-date>
<pub-date pub-type="epub">
<day>24</day>
<month>6</month>
<year>2010</year>
</pub-date>
<volume>10</volume>
<fpage>124</fpage>
<lpage>124</lpage>
<history>
<date date-type="received">
<day>12</day>
<month>12</month>
<year>2009</year>
</date>
<date date-type="accepted">
<day>24</day>
<month>6</month>
<year>2010</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright ©2010 Liu et al; licensee BioMed Central Ltd.</copyright-statement>
<copyright-year>2010</copyright-year>
<copyright-holder>Liu et al; licensee BioMed Central Ltd.</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/2.0">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/2.0">http://creativecommons.org/licenses/by/2.0</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<self-uri xlink:href="http://www.biomedcentral.com/1471-2229/10/124"></self-uri>
<abstract>
<sec>
<title>Background</title>
<p>Low-molecular-weight glutenin subunits (LMW-GS) play a crucial role in determining end-use quality of common wheat by influencing the viscoelastic properties of dough. Four different methods - sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional gel electrophoresis (2-DE, IEF × SDS-PAGE), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and polymerase chain reaction (PCR), were used to characterize the LMW-GS composition in 103 cultivars from 12 countries.</p>
</sec>
<sec>
<title>Results</title>
<p>At the
<italic>Glu-A3 </italic>
locus, all seven alleles could be reliably identified by 2-DE and PCR. However, the alleles
<italic>Glu-A3e </italic>
and
<italic>Glu-A3d </italic>
could not be routinely distinguished from
<italic>Glu-A3f </italic>
and
<italic>Glu-A3g</italic>
, respectively, based on SDS-PAGE, and the allele
<italic>Glu-A3a </italic>
could not be differentiated from
<italic>Glu-A3c </italic>
by MALDI-TOF-MS. At the
<italic>Glu-B3 </italic>
locus, alleles
<italic>Glu-B3a</italic>
,
<italic>Glu-B3b</italic>
,
<italic>Glu-B3c</italic>
,
<italic>Glu-B3g</italic>
,
<italic>Glu-B3h </italic>
and
<italic>Glu-B3j </italic>
could be clearly identified by all four methods, whereas
<italic>Glu-B3ab</italic>
,
<italic>Glu-B3ac</italic>
,
<italic>Glu-B3ad </italic>
could only be identified by the 2-DE method. At the
<italic>Glu-D3 </italic>
locus, allelic identification was problematic for the electrophoresis based methods and PCR. MALDI-TOF-MS has the potential to reliably identify the
<italic>Glu-D3 </italic>
alleles.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>PCR is the simplest, most accurate, lowest cost, and therefore recommended method for identification of
<italic>Glu-A3 </italic>
and
<italic>Glu-B3 </italic>
alleles in breeding programs. A combination of methods was required to identify certain alleles, and would be especially useful when characterizing new alleles. A standard set of 30 cultivars for use in future studies was chosen to represent all LMW-GS allelic variants in the collection. Among them, Chinese Spring, Opata 85, Seri 82 and Pavon 76 were recommended as a core set for use in SDS-PAGE gels.
<italic>Glu-D3c </italic>
and
<italic>Glu-D3e </italic>
are the same allele. Two new alleles, namely,
<italic>Glu-D3m </italic>
in cultivar Darius, and
<italic>Glu-D3n </italic>
in Fengmai 27, were identified by 2-DE. Utilization of the suggested standard cultivar set, seed of which is available from the CIMMYT and INRA Clermont-Ferrand germplasm collections, should also promote information sharing in the identification of individual LMW-GS and thus provide useful information for quality improvement in common wheat.</p>
</sec>
</abstract>
</article-meta>
</front>
<body>
<sec>
<title>Background</title>
<p>Glutenin proteins are the major factors responsible for the unique viscoelastic characteristics of wheat dough. They determine rheological properties and bread-making performance [
<xref ref-type="bibr" rid="B1">1</xref>
-
<xref ref-type="bibr" rid="B3">3</xref>
]. The polymeric glutenin proteins, with molecular weights ranging from less than 300 to more than 1,000 kDa, are composed of two groups of subunits. These subunits include the LMW-GS, which are similar in size and structure to the
<italic>γ</italic>
- gliadins (30-40 kDa), and the high-molecular-weight glutenin subunits (HMW-GS) which range in molecular mass from ~65 to 90 kDa [
<xref ref-type="bibr" rid="B4">4</xref>
]. The LMW-GS represent about one-third of the total seed protein and ~60% of total glutenins [
<xref ref-type="bibr" rid="B5">5</xref>
], and are essential in determining dough properties, such as dough extensibility [
<xref ref-type="bibr" rid="B6">6</xref>
] and gluten strength [
<xref ref-type="bibr" rid="B2">2</xref>
]. Hence characterization of allelic variation among cultivars and investigation of their relationships with end-use quality has been a key area of research on quality improvement during the last 15 years, and is the basis for the success of using specific LMW-GS alleles in breeding programs [
<xref ref-type="bibr" rid="B7">7</xref>
-
<xref ref-type="bibr" rid="B9">9</xref>
].</p>
<p>The genes coding for LMW-GS are located on the short arms of homoeologous group 1 chromosomes at the
<italic>Glu-A3</italic>
,
<italic>Glu-B3 </italic>
and
<italic>Glu-D3 </italic>
loci, and are tightly linked to the
<italic>Gli-1 </italic>
loci [
<xref ref-type="bibr" rid="B10">10</xref>
-
<xref ref-type="bibr" rid="B12">12</xref>
]. The
<italic>Glu-A3 </italic>
locus on chromosome 1A encodes relatively few LMW-GS, with alleles
<italic>Glu-A3e </italic>
in hexaploid or common wheat and
<italic>Glu-A3h </italic>
in tetraploid wheat being null alleles that do not express any
<italic>Glu-A3 </italic>
product [
<xref ref-type="bibr" rid="B13">13</xref>
,
<xref ref-type="bibr" rid="B14">14</xref>
]. In contrast, there is extensive variation for LMW-GS encoded by chromosome 1B in common wheat. The
<italic>Glu-D3 </italic>
locus has less variability with five alleles reported originally by Gupta and Shepherd [
<xref ref-type="bibr" rid="B13">13</xref>
], four alleles by Lerner et al. [
<xref ref-type="bibr" rid="B15">15</xref>
] and only three alleles observed by Jackson et al. [
<xref ref-type="bibr" rid="B16">16</xref>
] and Eagles et al. [
<xref ref-type="bibr" rid="B17">17</xref>
]. Nonetheless, recent studies using protein and PCR analyses have identified 11
<italic>Glu-D3 </italic>
alleles [
<xref ref-type="bibr" rid="B18">18</xref>
,
<xref ref-type="bibr" rid="B19">19</xref>
], suggesting that a reexamination should be carried out to clarify the genetic variability at this locus.</p>
<p>Despite the abundance of the LMW-GS, they have received much less attention than the HMW-GS, probably due to their complexity, heterogeneity and co-migration with gliadins in SDS-PAGE [
<xref ref-type="bibr" rid="B19">19</xref>
,
<xref ref-type="bibr" rid="B20">20</xref>
]. In the SDS-PAGE system, utilizing gliadins as indicators provided an indirect way to define LMW-GS alleles [
<xref ref-type="bibr" rid="B16">16</xref>
]. The 2-DE analytical process that could generate much more information than SDS-PAGE [
<xref ref-type="bibr" rid="B21">21</xref>
] was not generally recommended for use in breeding programs, due to its time-consuming procedure, high costs and skill requirements. MALDI-TOF-MS is currently the most efficient method to analyze proteins and requires only 4-5 minutes per sample. It is a high throughput technology for analyzing wheat gluten proteins [
<xref ref-type="bibr" rid="B22">22</xref>
-
<xref ref-type="bibr" rid="B25">25</xref>
], but being relatively new and expensive, few wheat breeding programs can afford to acquire such equipment. Recently, a simple, rapid and sensitive PCR approach, has proven to be a very useful tool for identifying LMW-GS composition in common wheat [
<xref ref-type="bibr" rid="B19">19</xref>
,
<xref ref-type="bibr" rid="B26">26</xref>
-
<xref ref-type="bibr" rid="B28">28</xref>
].</p>
<p>LMW-GS were first identified by gel filtration and starch gel electrophoresis of extracts of wheat flour [
<xref ref-type="bibr" rid="B29">29</xref>
,
<xref ref-type="bibr" rid="B30">30</xref>
]. They were classically subdivided into B, C, and D groups (no relationship to the A, B and D genomes of wheat), according to their electrophoretic mobilities in SDS-PAGE and their isoelectric points (pI) [
<xref ref-type="bibr" rid="B31">31</xref>
]. Based on the locations of cysteine residues involved in the formation of intermolecular disulfide bridges, Ikeda et al. [
<xref ref-type="bibr" rid="B32">32</xref>
] classified LMW gene sequences into six types, each containing several different groups based upon differences in their N- and C-terminal acid-amino compositions. Altogether, 12 groups were differentiated, but an additional five groups were reported by Juhász and Gianibelli [
<xref ref-type="bibr" rid="B33">33</xref>
].</p>
<p>The allelic nomenclature system for the LMW-GS was defined through the chromosomal location of the DNA coding regions by Gupta and Shepherd [
<xref ref-type="bibr" rid="B13">13</xref>
] and was reviewed by Jackson et al. [
<xref ref-type="bibr" rid="B16">16</xref>
]. Branlard et al. [
<xref ref-type="bibr" rid="B34">34</xref>
] proposed a schematic presentation of SDS-PAGE relative subunit mobilities to characterize the different alleles encoded at
<italic>Glu-A3</italic>
,
<italic>Glu-B3 </italic>
and
<italic>Glu-D3 </italic>
loci. Ikeda et al. [
<xref ref-type="bibr" rid="B35">35</xref>
] recently compared
<italic>Glu-3 </italic>
allele identifications from five laboratories, confirming inconsistencies between laboratories in identifying
<italic>Glu-3 </italic>
alleles due to differences between the separation and identification methods. The study also indicated new
<italic>Glu-3 </italic>
alleles in a number of the cultivars analyzed.</p>
<p>The N-terminal sequences of LMW-GS were used to divide the protein subunits into two main groups [
<xref ref-type="bibr" rid="B32">32</xref>
,
<xref ref-type="bibr" rid="B36">36</xref>
]. The first group corresponded to typical LMW-GS, i.e., LMW-i (or i-type, first amino acid isoleucine) and LMW-m (or m-type, methionine) types, and the second group, named gliadin-like sequences [
<xref ref-type="bibr" rid="B37">37</xref>
] as these subunits have N-terminal sequences similar to
<italic>α</italic>
-,
<italic>γ</italic>
- and
<italic>ω</italic>
- gliadins. Most gliadins are monomeric, but some have an extra cys that allows them to be incorporated into glutenin polymers. Payne [
<xref ref-type="bibr" rid="B1">1</xref>
] termed the prominent bands observed by SDS-PAGE of reduced glutenin protein as A (HMW-GS), B (many of the LMW-GS) and C (the smaller LMW-GS). Later, other researchers also observed larger gliadin-like subunits, between the A and B bands, and they named them as D- subunits [
<xref ref-type="bibr" rid="B31">31</xref>
]. Most of the B- subunits were shown to possess i-, m- or s (serine) -type N-terminal sequences [
<xref ref-type="bibr" rid="B38">38</xref>
]. C- subunits including
<italic>α</italic>
-, and
<italic>γ</italic>
- gliadins-like subunits as well as subunits with classic LMW-GS sequences occur in large numbers, although their relative amounts are lower than those of B- subunits. Similarly, D- subunits have N-terminal sequences that correspond to
<italic>ω</italic>
- gliadins, another type of gliadin-like sequence [
<xref ref-type="bibr" rid="B2">2</xref>
,
<xref ref-type="bibr" rid="B39">39</xref>
,
<xref ref-type="bibr" rid="B40">40</xref>
].</p>
<p>The use of two distinct nomenclature systems, one based upon the relative mobilities in SDS-PAGE and the other upon N-terminal sequences, make it extremely difficult to compare work from different laboratories. The main ambiguities from these different classification systems can be summarized as follows: 1) at the
<italic>Glu-A3 </italic>
locus, both
<italic>Glu-A3a </italic>
and
<italic>Glu-A3c </italic>
were reported for the same cultivar, and similarly,
<italic>Glu-A3a</italic>
,
<italic>Glu-A3b</italic>
,
<italic>Glu-A3c</italic>
,
<italic>Glu-A3d </italic>
were reported to be identical to
<italic>Glu-A3e</italic>
; 2) at the
<italic>Glu-B3 </italic>
locus, results differed for
<italic>Glu-B3b </italic>
and
<italic>Glu-B3g</italic>
, and for
<italic>Glu-B3f </italic>
and
<italic>Glu-B3g </italic>
in the same cultivars; and 3) at the
<italic>Glu-D3 </italic>
locus, there was ambiguity between
<italic>Glu-D3a </italic>
and
<italic>Glu-D3c</italic>
, and between
<italic>Glu-D3a </italic>
and
<italic>Glu-D3b </italic>
in the same cultivars [
<xref ref-type="bibr" rid="B41">41</xref>
]. As a consequence of these problems, reports of correlations between certain allelic forms of LMW-GS and quality parameters in common wheat have often been contradictory [
<xref ref-type="bibr" rid="B7">7</xref>
,
<xref ref-type="bibr" rid="B42">42</xref>
-
<xref ref-type="bibr" rid="B45">45</xref>
]. It is, therefore, essential to establish a simple and uniform classification through a set of standard cultivars for each LMW-GS allele.</p>
<p>In 2005, a cooperative program was developed among the following five laboratories to establish such a set of standard cultivars for identifying LMW-GS alleles: Chinese Academy of Agricultural Sciences (CAAS, China), International Maize and Wheat Improvement Center (CIMMYT, Mexico), National Institute for Agricultural Research (INRA, France), National Agriculture and Food Research Organization (NARO, Japan), and National University of the Center of the Province of Buenos Aires (Universidad Nacional, Argentina). A set of 103 cultivars used in various previously studies [
<xref ref-type="bibr" rid="B35">35</xref>
] in 12 countries was assembled and distributed to all laboratories, including Murdoch University as an additional laboratory, for the identification of LMW-GS alleles. Their preliminary
<italic>Glu-3 </italic>
allelic assignments were summarized in a previous paper [
<xref ref-type="bibr" rid="B35">35</xref>
]. The objectives of the current paper are 1) to compare the LMW-GS compositions obtained by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR in order to clearly identify the protein compositions of cultivars in the collection; and 2) to establish a set of standard cultivars for the identification of LMW-GS alleles, enabling information regarding the effects of individual LMW-GS on gluten properties to be readily and continuously shared between laboratories and applied in breeding programs.</p>
</sec>
<sec>
<title>Results and discussion</title>
<sec>
<title>Analysis of LMW-GS by SDS-PAGE</title>
<p>The LMW-GS compositions identified in participating laboratories by SDS-PAGE were combined and listed in Table
<xref ref-type="table" rid="T1">1</xref>
(details available upon request); discrepancies among different laboratories were discussed by Ikeda et al. [
<xref ref-type="bibr" rid="B35">35</xref>
]. At the
<italic>Glu-A3 </italic>
locus, alleles
<italic>Glu-A3a</italic>
,
<italic>Glu-A3b</italic>
,
<italic>Glu-A3c </italic>
and
<italic>Glu-A3f </italic>
could be readily identified using SDS-PAGE (Figure
<xref ref-type="fig" rid="F1">1</xref>
). Alleles
<italic>Glu-A3d </italic>
and
<italic>Glu-A3g </italic>
could be differentiated with the aid of the gliadin SDS-PAGE gel; by the presence or absence of the
<italic>Gli-A1o </italic>
allele, which we believe is linked to
<italic>Glu-A3d</italic>
, but not to
<italic>Glu-A3g </italic>
(Figure
<xref ref-type="fig" rid="F2">2</xref>
). It was difficult to distinguish
<italic>Glu-A3f </italic>
from
<italic>Glu-A3e </italic>
(null allele). In previous studies [
<xref ref-type="bibr" rid="B7">7</xref>
,
<xref ref-type="bibr" rid="B46">46</xref>
,
<xref ref-type="bibr" rid="B47">47</xref>
] both alleles tended to be detected as
<italic>Glu-A3e</italic>
.</p>
<table-wrap id="T1" position="float">
<label>Table 1</label>
<caption>
<p>Compositions of LMW-GS alleles in 103 wheat cultivars identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and allele-specific markers</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">Cultivar</th>
<th align="left">Origin</th>
<th align="left">
<italic>Glu-A3</italic>
</th>
<th align="left">
<italic>Glu-B3</italic>
</th>
<th align="left">
<italic>Glu-D3</italic>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">Aca 303</td>
<td align="left">Argentina</td>
<td align="left">f/f/f/f*</td>
<td align="left">h/h/h/h</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Aca 601</td>
<td align="left">Argentina</td>
<td align="left">f/f/f/f</td>
<td align="left">b/b/b/b</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Aca 801</td>
<td align="left">Argentina</td>
<td align="left">c/c/a or c/c</td>
<td align="left">g/ac/g/g</td>
<td align="left">b/b/b/-</td>
</tr>
<tr>
<td align="left">Buck Brasil</td>
<td align="left">Argentina</td>
<td align="left">f/f/f/f</td>
<td align="left">g/ac/g/g</td>
<td align="left">d/d/?/-</td>
</tr>
<tr>
<td align="left">Buck Mejorpán</td>
<td align="left">Argentina</td>
<td align="left">f/f/f/f</td>
<td align="left">b/b/b/b</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Buck Pingo</td>
<td align="left">Argentina</td>
<td align="left">f/f/f/f</td>
<td align="left">i/ad/d or i/i</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Klein Capricornio</td>
<td align="left">Argentina</td>
<td align="left">c/c/a or c/c</td>
<td align="left">h/h/h/h</td>
<td align="left">b/b/b/-</td>
</tr>
<tr>
<td align="left">Klein Chaja</td>
<td align="left">Argentina</td>
<td align="left">c/c/a or c/c</td>
<td align="left">h/h/h/h</td>
<td align="left">b/b/b/-</td>
</tr>
<tr>
<td align="left">Klein Flecha</td>
<td align="left">Argentina</td>
<td align="left">c/c/a or c/c</td>
<td align="left">h/h/h/h</td>
<td align="left">b/b/b/-</td>
</tr>
<tr>
<td align="left">Klein Jabal 1</td>
<td align="left">Argentina</td>
<td align="left">d/d/d/g</td>
<td align="left">g/g/g/g</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Klein Martillo</td>
<td align="left">Argentina</td>
<td align="left">e/e/e/e</td>
<td align="left">j/j/j/j</td>
<td align="left">b/b/b/-</td>
</tr>
<tr>
<td align="left">Klein Proteo</td>
<td align="left">Argentina</td>
<td align="left">g/g/e/g</td>
<td align="left">g/ac/g/g</td>
<td align="left">b/b/b/-</td>
</tr>
<tr>
<td align="left">Nidera Baguette 10</td>
<td align="left">Argentina</td>
<td align="left">d/d/d/d</td>
<td align="left">g/g/g/g</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Nidera Baguette 20</td>
<td align="left">Argentina</td>
<td align="left">f/f/f/f</td>
<td align="left">g/g/g/g</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">ProINTA Amanecer</td>
<td align="left">Argentina</td>
<td align="left">f/f/f/f</td>
<td align="left">j/j/j/j</td>
<td align="left">a/a/b/-</td>
</tr>
<tr>
<td align="left">ProINTA Colibr 1</td>
<td align="left">Argentina</td>
<td align="left">d/d/d/d</td>
<td align="left">b/b/b/b</td>
<td align="left">a/a/a/-</td>
</tr>
<tr>
<td align="left">ProINTA Isla Verde</td>
<td align="left">Argentina</td>
<td align="left">b/b/b/b</td>
<td align="left">b/b/b/b</td>
<td align="left">b/b/b/-</td>
</tr>
<tr>
<td align="left">ProINTA Redomon</td>
<td align="left">Argentina</td>
<td align="left">c/c/a or c/c</td>
<td align="left">h/h/h/h</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Thomas Nevado</td>
<td align="left">Argentina</td>
<td align="left">c/c/a or c/c</td>
<td align="left">j/j/j/j</td>
<td align="left">b/b/b/-</td>
</tr>
<tr>
<td align="left">Angas</td>
<td align="left">Australia</td>
<td align="left">c/c/a or c/c</td>
<td align="left">g/g/g/g</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Avocet</td>
<td align="left">Australia</td>
<td align="left">c/c/a or c/c</td>
<td align="left">b/b/b/b</td>
<td align="left">b/b/b/-</td>
</tr>
<tr>
<td align="left">Carnamah</td>
<td align="left">Australia</td>
<td align="left">c/c/a or c/c</td>
<td align="left">i/ad/d or i/i</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Gabo</td>
<td align="left">Australia</td>
<td align="left">b/b/b/b</td>
<td align="left">b/b/b/b</td>
<td align="left">b/b/b/-</td>
</tr>
<tr>
<td align="left">Grebe</td>
<td align="left">Australia</td>
<td align="left">c/c/a or c/c</td>
<td align="left">j/j/j/j</td>
<td align="left">b/b/b/-</td>
</tr>
<tr>
<td align="left">Halberd</td>
<td align="left">Australia</td>
<td align="left">e/e/e/e</td>
<td align="left">c/c/c/c</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Insignia</td>
<td align="left">Australia</td>
<td align="left">f/f/f/f</td>
<td align="left">c/c/c/c</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Millewa</td>
<td align="left">Australia</td>
<td align="left">c/c/a or c/c</td>
<td align="left">g/g/g/g</td>
<td align="left">b/b/b/-</td>
</tr>
<tr>
<td align="left">Spear</td>
<td align="left">Australia</td>
<td align="left">e/e/e/e</td>
<td align="left">h/h/h/h</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Stiletto</td>
<td align="left">Australia</td>
<td align="left">c/c/a or c/c</td>
<td align="left">h/h/h/h</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Tasman</td>
<td align="left">Australia</td>
<td align="left">b/b/b/b</td>
<td align="left">i/ad/d or i/i</td>
<td align="left">a/a/a/-</td>
</tr>
<tr>
<td align="left">Trident</td>
<td align="left">Australia</td>
<td align="left">e/e/e/e</td>
<td align="left">h/h/h/h</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Westonia</td>
<td align="left">Australia</td>
<td align="left">c/c/a or c/c</td>
<td align="left">h/h/h/h</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Wilgoyne</td>
<td align="left">Australia</td>
<td align="left">d/d/d/d</td>
<td align="left">h/h/h/h</td>
<td align="left">b/b/b/-</td>
</tr>
<tr>
<td align="left">AC Vista</td>
<td align="left">Canada</td>
<td align="left">e/e/e/e</td>
<td align="left">i/ad/d or i/i</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Bluesky</td>
<td align="left">Canada</td>
<td align="left">g/g/e/g</td>
<td align="left">g/g/g/g</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Glenlea</td>
<td align="left">Canada</td>
<td align="left">g/g/e/g</td>
<td align="left">g/g/g/g</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Katepwa</td>
<td align="left">Canada</td>
<td align="left">e/e/e/e</td>
<td align="left">h/h/h/h</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Marquis</td>
<td align="left">Canada</td>
<td align="left">e/e/e/e</td>
<td align="left">b/b/b/b</td>
<td align="left">a/a/a/-</td>
</tr>
<tr>
<td align="left">Neepawa</td>
<td align="left">Canada</td>
<td align="left">e/e/e/e</td>
<td align="left">h/h/h/h</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Pioneer</td>
<td align="left">Canada</td>
<td align="left">e/e/e/e</td>
<td align="left">i/ad/d or i/i</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">99G46</td>
<td align="left">China</td>
<td align="left">f/f/f/f</td>
<td align="left">j/j/j/j</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">CA9641</td>
<td align="left">China</td>
<td align="left">d/d/d/d</td>
<td align="left">h/h/h/h</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">CA9722</td>
<td align="left">China</td>
<td align="left">c/c/a or c/c</td>
<td align="left">h/h/h/h</td>
<td align="left">c/l/c/-</td>
</tr>
<tr>
<td align="left">Chinese Spring</td>
<td align="left">China</td>
<td align="left">a/a/a or c/a</td>
<td align="left">a/a/a/a</td>
<td align="left">a/a/a/-</td>
</tr>
<tr>
<td align="left">Demai 3</td>
<td align="left">China</td>
<td align="left">c/c/a or c/c</td>
<td align="left">i/d or i/d or i/i</td>
<td align="left">b/b/b/-</td>
</tr>
<tr>
<td align="left">Fengmai 27</td>
<td align="left">China</td>
<td align="left">c/c/a or c/c</td>
<td align="left">f/f/f/f</td>
<td align="left">a/n/a/-</td>
</tr>
<tr>
<td align="left">Guanfeng 2</td>
<td align="left">China</td>
<td align="left">c/c/a or c/c</td>
<td align="left">b/b/b/b</td>
<td align="left">a/a/a/-</td>
</tr>
<tr>
<td align="left">Huaimai 16</td>
<td align="left">China</td>
<td align="left">f/f/f/f</td>
<td align="left">h/h/h/h</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Jing 411</td>
<td align="left">China</td>
<td align="left">c/c/a or c/c</td>
<td align="left">h/h/h/h</td>
<td align="left">c/l/c/-</td>
</tr>
<tr>
<td align="left">Lumai 23</td>
<td align="left">China</td>
<td align="left">c/c/a or c/c</td>
<td align="left">d/d or i/d or i/d</td>
<td align="left">c/l/c/-</td>
</tr>
<tr>
<td align="left">Neixiang 188</td>
<td align="left">China</td>
<td align="left">a/a/a or c/a</td>
<td align="left">j/j/j/j</td>
<td align="left">a/a/a/-</td>
</tr>
<tr>
<td align="left">Shan 229</td>
<td align="left">China</td>
<td align="left">c/c/a or c/c</td>
<td align="left">j/j/j/j</td>
<td align="left">b/b/b/-</td>
</tr>
<tr>
<td align="left">Wanmai 33</td>
<td align="left">China</td>
<td align="left">d/d/d/d</td>
<td align="left">g/g/g/g</td>
<td align="left">a/a/b/-</td>
</tr>
<tr>
<td align="left">Yan 239</td>
<td align="left">China</td>
<td align="left">c/c/a or c/c</td>
<td align="left">j/j/j/j</td>
<td align="left">b/b/b/-</td>
</tr>
<tr>
<td align="left">Yangmai 158</td>
<td align="left">China</td>
<td align="left">c/c/a or c/c</td>
<td align="left">g/g/g/g</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Yumai 54</td>
<td align="left">China</td>
<td align="left">c/c/a or c/c</td>
<td align="left">d/d or i/d or i/d</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Yumai 63</td>
<td align="left">China</td>
<td align="left">c/c/a or c/c</td>
<td align="left">d/d or i/d or i/d</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Yumai 69</td>
<td align="left">China</td>
<td align="left">c/c/a or c/c</td>
<td align="left">d/d or i/d or i/d</td>
<td align="left">a/a/b/-</td>
</tr>
<tr>
<td align="left">Zhongyou 9507</td>
<td align="left">China</td>
<td align="left">d/d/d/d</td>
<td align="left">b/b/b/b</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Zhongyou 9701</td>
<td align="left">China</td>
<td align="left">d/d/d/d</td>
<td align="left">d/d or i/d or i/d</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Zhongyu 415</td>
<td align="left">China</td>
<td align="left">c/c/a or c/c</td>
<td align="left">d/d or i/d/d</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Ruso</td>
<td align="left">Finland</td>
<td align="left">c/c/a or c/c</td>
<td align="left">i/ad/d or i/i</td>
<td align="left">a/a/a/-</td>
</tr>
<tr>
<td align="left">Brimstone</td>
<td align="left">France</td>
<td align="left">c/c/a or c/c</td>
<td align="left">g/g/g/g</td>
<td align="left">d/d/?/-</td>
</tr>
<tr>
<td align="left">Cappelle-Desprez</td>
<td align="left">France</td>
<td align="left">d/d/d/d</td>
<td align="left">g/g/g/g</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Chopin</td>
<td align="left">France</td>
<td align="left">c/c/a or c/c</td>
<td align="left">h/h/h/h</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Clément</td>
<td align="left">France</td>
<td align="left">f/f/f/f</td>
<td align="left">j/j/j/j</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Courtot</td>
<td align="left">France</td>
<td align="left">c/c/a or c/c</td>
<td align="left">b/b/b/b</td>
<td align="left">c/l/c/-</td>
</tr>
<tr>
<td align="left">Darius</td>
<td align="left">France</td>
<td align="left">d/d/d/d</td>
<td align="left">g/g/g/g</td>
<td align="left">b/m/m/-</td>
</tr>
<tr>
<td align="left">Etoile de Choisy</td>
<td align="left">France</td>
<td align="left">d/d/d/d</td>
<td align="left">i/d or i/d or i/i</td>
<td align="left">c/l/c/-</td>
</tr>
<tr>
<td align="left">Festin</td>
<td align="left">France</td>
<td align="left">f/f/f/f</td>
<td align="left">b/b/b/b</td>
<td align="left">c/l/c/-</td>
</tr>
<tr>
<td align="left">Magali Blondeau</td>
<td align="left">France</td>
<td align="left">e/e/e/e</td>
<td align="left">g/g/g/f</td>
<td align="left">b/b/b/-</td>
</tr>
<tr>
<td align="left">Magdalena</td>
<td align="left">France</td>
<td align="left">d/d/d/d</td>
<td align="left">b/b/b/b</td>
<td align="left">a/a/a/-</td>
</tr>
<tr>
<td align="left">Petrel</td>
<td align="left">France</td>
<td align="left">d/d/d/d</td>
<td align="left">h/h/h/h</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Renan</td>
<td align="left">France</td>
<td align="left">f/f/f/f</td>
<td align="left">b/b/b/b</td>
<td align="left">b/b/b/-</td>
</tr>
<tr>
<td align="left">Soissons</td>
<td align="left">France</td>
<td align="left">c/c/a or c/c</td>
<td align="left">b/b/b/b</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Thesee</td>
<td align="left">France</td>
<td align="left">c/c/a or c/c</td>
<td align="left">g/ac/g/g</td>
<td align="left">c/l/c/-</td>
</tr>
<tr>
<td align="left">Apollo</td>
<td align="left">Germany</td>
<td align="left">d/d/d/d</td>
<td align="left">j/j/j/j</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Manital</td>
<td align="left">Italy</td>
<td align="left">c/c/a or c/c</td>
<td align="left">b/b/b/b</td>
<td align="left">a/a/a/-</td>
</tr>
<tr>
<td align="left">Salmone</td>
<td align="left">Italy</td>
<td align="left">c/c/a or c/c</td>
<td align="left">c/c/c/g</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Aoba-komugi</td>
<td align="left">Japan</td>
<td align="left">e/e/e/e</td>
<td align="left">b/b/b/b</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Eshimashinriki</td>
<td align="left">Japan</td>
<td align="left">c/c/a or c/c</td>
<td align="left">d/d or i/d or i/d</td>
<td align="left">a/a/a/-</td>
</tr>
<tr>
<td align="left">Haruyutaka</td>
<td align="left">Japan</td>
<td align="left">c/c/a or c/c</td>
<td align="left">h/h/h/h</td>
<td align="left">b/b/b/-</td>
</tr>
<tr>
<td align="left">Kanto 107</td>
<td align="left">Japan</td>
<td align="left">c/c/a or c/c</td>
<td align="left">g/g/g/g</td>
<td align="left">a/a/a/-</td>
</tr>
<tr>
<td align="left">Kitanokaori</td>
<td align="left">Japan</td>
<td align="left">f/f/f/f</td>
<td align="left">j/j/j/j</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Nanbu-komugi</td>
<td align="left">Japan</td>
<td align="left">d/d/d/d</td>
<td align="left">b/ab/b/b</td>
<td align="left">a/a/a/-</td>
</tr>
<tr>
<td align="left">Norin 61</td>
<td align="left">Japan</td>
<td align="left">d/d/d/d</td>
<td align="left">i/d or i/d or i/-</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Norin 67</td>
<td align="left">Japan</td>
<td align="left">c/c/a or c/c</td>
<td align="left">g/g/g/g</td>
<td align="left">b/b/b/-</td>
</tr>
<tr>
<td align="left">Shinchunaga</td>
<td align="left">Japan</td>
<td align="left">c/c/a or c/c</td>
<td align="left">i/ad/d or i/-</td>
<td align="left">a/a/a/-</td>
</tr>
<tr>
<td align="left">Shirane-komugi</td>
<td align="left">Japan</td>
<td align="left">e/e/e/e</td>
<td align="left">i/ad/d or i/i</td>
<td align="left">a/a/a/-</td>
</tr>
<tr>
<td align="left">Amadina</td>
<td align="left">Mexico</td>
<td align="left">e/e/e/e</td>
<td align="left">j/j/j/j</td>
<td align="left">c/l/c/-</td>
</tr>
<tr>
<td align="left">Attila</td>
<td align="left">Mexico</td>
<td align="left">c/c/a or c/c</td>
<td align="left">h/h/h/h</td>
<td align="left">b/b/b/-</td>
</tr>
<tr>
<td align="left">Heilo</td>
<td align="left">Mexico</td>
<td align="left">f/f/f/f</td>
<td align="left">i/ad/d or i/i</td>
<td align="left">c/l/c/-</td>
</tr>
<tr>
<td align="left">Opata 85</td>
<td align="left">Mexico</td>
<td align="left">b/b/b/b</td>
<td align="left">i/ad/d or i/i</td>
<td align="left">a/a/a/-</td>
</tr>
<tr>
<td align="left">Pastor</td>
<td align="left">Mexico</td>
<td align="left">c/c/a or c/c</td>
<td align="left">g/g/g/g</td>
<td align="left">b/b/b/-</td>
</tr>
<tr>
<td align="left">Pavon 76</td>
<td align="left">Mexico</td>
<td align="left">b/b/b/b</td>
<td align="left">h/h/h/h</td>
<td align="left">b/b/b/-</td>
</tr>
<tr>
<td align="left">Pitic</td>
<td align="left">Mexico</td>
<td align="left">c/c/a or c/c</td>
<td align="left">b/b/b/b</td>
<td align="left">b/b/b/-</td>
</tr>
<tr>
<td align="left">Rebeca</td>
<td align="left">Mexico</td>
<td align="left">c/c/a or c/c</td>
<td align="left">g/g/g/g</td>
<td align="left">b/b/b/-</td>
</tr>
<tr>
<td align="left">Seri 82</td>
<td align="left">Mexico</td>
<td align="left">c/c/a or c/c</td>
<td align="left">j/j/j/j</td>
<td align="left">b/b/b/-</td>
</tr>
<tr>
<td align="left">Orca</td>
<td align="left">Netherlands</td>
<td align="left">d/d/d/d</td>
<td align="left">d/d or i/d or i/d</td>
<td align="left">c/c/c/-</td>
</tr>
<tr>
<td align="left">Pepital</td>
<td align="left">Netherlands</td>
<td align="left">f/f/f/f</td>
<td align="left">d/d or i/d or i/d</td>
<td align="left">c/l/c/-</td>
</tr>
<tr>
<td align="left">Ernest</td>
<td align="left">USA</td>
<td align="left">d/d/d/d</td>
<td align="left">d/d or i/d or i/d</td>
<td align="left">d/?/?-</td>
</tr>
<tr>
<td align="left">Splendor</td>
<td align="left">USA</td>
<td align="left">e/e/e/e</td>
<td align="left">g/g/g/g</td>
<td align="left">b/b/b/-</td>
</tr>
<tr>
<td align="left">Verde</td>
<td align="left">USA</td>
<td align="left">f/f/f/f</td>
<td align="left">h/h/h/h</td>
<td align="left">c/c/c/-</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>*, the first, second, third and fourth symbol in each column are alleles of
<italic>Glu-3 </italic>
loci identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR, respectively.</p>
<p>Data from five laboratories are combined data for SDS-PAGE. - indicates data not available</p>
</table-wrap-foot>
</table-wrap>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>
<bold>SDS-PAGE of LMW-GS</bold>
. The LMW-GS are propanol-insoluble fractions extracted with 50% propanol + 1% w/v DTT + 1.4% v/v 4-vinylpyridine (The same as below). Cultivars: 1. Neixiang 188, 2. Chinese Spring, 3. Gabo, 4. Pavon 76, 5. Pitic, 6. Seri, 7. Nidera Baguette 10, 8. Cappelle-Desprez, 9. Amadina, 10. Marquis, 11. Kitanokaori, 12. Renan, 13. Bluesky, 14. Glenlea. Arrow heads indicate bands corresponding to different
<italic>Glu-A3 </italic>
alleles.</p>
</caption>
<graphic xlink:href="1471-2229-10-124-1"></graphic>
</fig>
<fig id="F2" position="float">
<label>Figure 2</label>
<caption>
<p>
<bold>SDS-PAGE of gliadins</bold>
. The gliadins are 50% propanol (v/v) soluble fractions (The same as below). Cultivars in lanes 7, 8, 13, and 14, correspond to the same shown with same number in Figure 1. The linkage between
<italic>Gli-A1o </italic>
(indicated in lanes 7 and 8 in the omega-gliadin zone) and
<italic>Glu-A3d </italic>
helps to differentiate the latter from
<italic>Glu-A3g</italic>
.</p>
</caption>
<graphic xlink:href="1471-2229-10-124-2"></graphic>
</fig>
<p>Figure
<xref ref-type="fig" rid="F3">3</xref>
shows cultivars representing different
<italic>Glu-B3 </italic>
alleles. At the
<italic>Glu-B3 </italic>
locus, three alleles,
<italic>Glu-B3d</italic>
,
<italic>Glu-B3h </italic>
and
<italic>Glu-B3i</italic>
, each carried the slowest LMW-GS bands in the SDS-PAGE region B among the cultivars studied. The slowest
<italic>Glu-B3 </italic>
band,
<italic>Glu-B3b</italic>
, almost coincided with
<italic>Glu-A3a</italic>
, but the
<italic>Glu-B3b </italic>
band was usually lighter and thinner, permitting their discrimination. Allele
<italic>Glu-B3f </italic>
could not be reliably discriminated from
<italic>Glu-B3g </italic>
since these bands had very similar mobilities, including the presence of a band in the SDS-PAGE region (Figure
<xref ref-type="fig" rid="F3">3</xref>
, lanes 8-10) as previously reported [
<xref ref-type="bibr" rid="B7">7</xref>
,
<xref ref-type="bibr" rid="B34">34</xref>
,
<xref ref-type="bibr" rid="B41">41</xref>
]. However, taking advantage of the
<italic>Glu-B3</italic>
/
<italic>Gli-B1 </italic>
linkage, one can look at the omega-gliadins region in SDS-PAGE, to identify with confidence several of the
<italic>Glu-B3 </italic>
alleles (Figure
<xref ref-type="fig" rid="F4">4</xref>
). Actually, differentiating between several
<italic>Glu-B3 </italic>
alleles is possible only looking at both, gliadin and glutenin SDS-PAGE gels. Using this criteria,
<italic>Glu-B3 </italic>
alleles in lanes 15, 16, 17, 18, and 19, seem to correspond to
<italic>Glu-B3b</italic>
,
<italic>Glu-B3g</italic>
,
<italic>Glu-B3g</italic>
,
<italic>Glu-B3i</italic>
, and
<italic>Glu-B3i</italic>
, respectively (Figures
<xref ref-type="fig" rid="F3">3</xref>
and
<xref ref-type="fig" rid="F4">4</xref>
), however, 2-DE analysis indicates that these genotypes correspond to new alleles provisionally designated as
<italic>Glu-B3ab</italic>
,
<italic>Glu-B3ac</italic>
,
<italic>Glu-B3ac</italic>
,
<italic>Glu-B3ad</italic>
, and
<italic>Glu-B3ad</italic>
, respectively (Figure
<xref ref-type="fig" rid="F3">3</xref>
).</p>
<fig id="F3" position="float">
<label>Figure 3</label>
<caption>
<p>
<bold>SDS-PAGE of LMW-GS</bold>
. Cultivars: 1. Chinese Spring, 2. Renan, 3. Gabo, 4. Insignia, 5. Halberd, 6. Pepital, 7. Ernest, 8. Fengmai 27, 9. Splendor, 10. Cappelle-Desprez, 11. Aca 303, 12. Norin 61, 13. Grebe, 14. Seri 82, 15. Nanbu-komugi, 16. Thesee, 17. Aca 801, 18. Heilo, 19. Opata. Arrow heads indicate bands corresponding to different
<italic>Glu-B3 </italic>
alleles.
<italic>Glu-B3 </italic>
allele designation between brackets for cultivars in lanes 15-19 correspond to provisional nomenclature as indicated by spot differences in 2-DE.</p>
</caption>
<graphic xlink:href="1471-2229-10-124-3"></graphic>
</fig>
<fig id="F4" position="float">
<label>Figure 4</label>
<caption>
<p>
<bold>SDS-PAGE of gliadins</bold>
. Cultivars in lanes 1-19 are the same as in Figure 3. Arrow heads indicate bands corresponding to different
<italic>Gli-B1 </italic>
alleles.
<italic>Glu-B3 </italic>
and
<italic>Gli-B1 </italic>
alleles in each of the lanes 1 to 19 of Figures 3 and 4 are tightly linked. The bands indicated with arrow heads of Figure 4 are used as assisted bands for the identification of some
<italic>Glu-B3 </italic>
alleles shown on Figure 3 based on
<italic>Glu-B3</italic>
/
<italic>Gli-B1 </italic>
linkage.</p>
</caption>
<graphic xlink:href="1471-2229-10-124-4"></graphic>
</fig>
<p>Figure
<xref ref-type="fig" rid="F5">5</xref>
shows cultivars representing different
<italic>Glu-D3 </italic>
alleles. Although alleles
<italic>Glu-D3a</italic>
,
<italic>Glu-D3b</italic>
,
<italic>Glu-D3c </italic>
and
<italic>Glu-D3d </italic>
were frequently identified in germplasm from various origins [
<xref ref-type="bibr" rid="B35">35</xref>
], only alleles
<italic>Glu-D3a</italic>
,
<italic>Glu-D3b </italic>
and
<italic>Glu-D3d </italic>
were consistently differentiated [
<xref ref-type="bibr" rid="B34">34</xref>
].
<italic>Glu-D3 </italic>
alleles had similar mobilities to gliadins and were generally faintly stained due to the rapid diffusion of low molecular mass proteins from the gel. Thus the identification of
<italic>Glu-D3 </italic>
alleles was quite difficult using only SDS-PAGE, leading to the reported discrepancies [
<xref ref-type="bibr" rid="B13">13</xref>
,
<xref ref-type="bibr" rid="B19">19</xref>
,
<xref ref-type="bibr" rid="B41">41</xref>
]. Although improvements to the SDS-PAGE protocol now allow differentiating several of the
<italic>Glu-D3 </italic>
alleles with more certainty, as it is shown in Figure
<xref ref-type="fig" rid="F5">5</xref>
, other methods for definitive identification of these alleles, such as 2-DE, MALDI-TOF-MS and PCR, had to be implemented to facilitate identification of
<italic>Glu-D3 </italic>
alleles.</p>
<fig id="F5" position="float">
<label>Figure 5</label>
<caption>
<p>
<bold>SDS-PAGE of LMW-GS</bold>
. Cultivars: 1. Chinese Spring, 2. Neixiang 188, 3. Gabo, 4. Avocet, 5. Insignia, 6. Cappelle- Desprez, 7. Amadina, 8. Heilo, 9. Fengmai 27. Arrow heads indicate bands corresponding to different
<italic>Glu-D3 </italic>
alleles.</p>
</caption>
<graphic xlink:href="1471-2229-10-124-5"></graphic>
</fig>
</sec>
<sec>
<title>Characterization of LMW-GS by 2-DE</title>
<p>The identification of the LMW-GS alleles by 2-DE was consistent between the two laboratories. The discrimination between LMW-GS alleles in the collection by high resolution 2-DE is illustrated in Figures
<xref ref-type="fig" rid="F6">6</xref>
,
<xref ref-type="fig" rid="F7">7</xref>
,
<xref ref-type="fig" rid="F8">8</xref>
and
<xref ref-type="fig" rid="F9">9</xref>
and the results are shown in Table
<xref ref-type="table" rid="T1">1</xref>
. The
<italic>Glu-A3 </italic>
alleles
<italic>Glu-A3d </italic>
(Figure
<xref ref-type="fig" rid="F6">6</xref>
, (4)),
<italic>Glu-A3e </italic>
(Figure
<xref ref-type="fig" rid="F6">6</xref>
, (5)),
<italic>Glu-A3f </italic>
(Figure
<xref ref-type="fig" rid="F6">6</xref>
, (6)) and
<italic>Glu-A3g </italic>
(Figure
<xref ref-type="fig" rid="F7">7</xref>
, (1)), were readily differentiated on the basis of protein spots with clearly different molecular masses and pI. Alleles
<italic>Glu-A3a </italic>
(Figure
<xref ref-type="fig" rid="F6">6</xref>
, (1)),
<italic>Glu-A3b </italic>
(Figure
<xref ref-type="fig" rid="F6">6</xref>
, (2)) and
<italic>Glu-A3c </italic>
(Figure
<xref ref-type="fig" rid="F6">6</xref>
, (3)) had identical pI but different molecular masses, making it possible to discriminate between them.</p>
<fig id="F6" position="float">
<label>Figure 6</label>
<caption>
<p>
<bold>Identification of LMW-GS by two-dimensional gel electrophoresis (2-DE)</bold>
. Discrimination of alleles
<italic>Glu-A3a</italic>
,
<italic>Glu-A3b</italic>
,
<italic>Glu-A3c</italic>
,
<italic>Glu-A3d</italic>
,
<italic>Glu-A3e </italic>
and
<italic>Glu-A3f</italic>
. Cultivars: 1. Neixiang 188, 2. Gabo, 3. Pitic, 4. Nidera Baguette 10, 5. Amadina, 6. Kitanokaori.</p>
</caption>
<graphic xlink:href="1471-2229-10-124-6"></graphic>
</fig>
<fig id="F7" position="float">
<label>Figure 7</label>
<caption>
<p>
<bold>Identification of LMW-GS by two-dimensional gel electrophoresis (2-DE)</bold>
. Discrimination of alleles
<italic>Glu-A3g</italic>
,
<italic>Glu-B3a</italic>
,
<italic>Glu-B3b</italic>
,
<italic>Glu-B3ab</italic>
,
<italic>Glu-B3c </italic>
and
<italic>Glu-B3d/i</italic>
. Cultivars: 1. Bluesky, 2. Chinese Spring, 3. Renan, 4. Nanbu-komugi, 5. Insignia, 6. Pepital. Letters preceding and following "/" indicate pairs of alleles that could not be reliably distinguished.</p>
</caption>
<graphic xlink:href="1471-2229-10-124-7"></graphic>
</fig>
<fig id="F8" position="float">
<label>Figure 8</label>
<caption>
<p>
<bold>Identification of LMW-GS by two-dimensional gel electrophoresis (2-DE)</bold>
. Discrimination of alleles
<italic>Glu-B3g</italic>
,
<italic>Glu-B3ac</italic>
,
<italic>Glu-B3h</italic>
,
<italic>Glu-B3ad</italic>
,
<italic>Glu-B3j </italic>
and
<italic>Glu-D3a</italic>
. Cultivars: 1. Splendor, 2. Thesee, 3. Aca 303, 4. Heilo, 5. Grebe, 6. Chinese Spring.</p>
</caption>
<graphic xlink:href="1471-2229-10-124-8"></graphic>
</fig>
<fig id="F9" position="float">
<label>Figure 9</label>
<caption>
<p>
<bold>Identification of LMW-GS by two-dimensional gel electrophoresis (2-DE)</bold>
. Discrimination of alleles
<italic>Glu-D3b</italic>
,
<italic>Glu-D3c</italic>
,
<italic>Glu-D3l </italic>
and
<italic>Glu-D3m</italic>
. Cultivars: 1. Gabo, 2. Insignia, 3. Amadina, 4. Darus.</p>
</caption>
<graphic xlink:href="1471-2229-10-124-9"></graphic>
</fig>
<p>At the
<italic>Glu-B3</italic>
, the alleles
<italic>Glu-B3ab </italic>
(Figure
<xref ref-type="fig" rid="F7">7</xref>
, (4)),
<italic>Glu-B3ac </italic>
(Figure
<xref ref-type="fig" rid="F8">8</xref>
, (2)),
<italic>Glu-B3h </italic>
(Figure
<xref ref-type="fig" rid="F8">8</xref>
, (3)),
<italic>Glu-B3ad </italic>
(Figure
<xref ref-type="fig" rid="F8">8</xref>
, (4)) and
<italic>Glu-B3j </italic>
(Figure
<xref ref-type="fig" rid="F8">8</xref>
, (5)) were easily differentiated by protein spots having different molecular masses and pI. Alleles
<italic>Glu-B3ab </italic>
(Figure
<xref ref-type="fig" rid="F7">7</xref>
, (4)),
<italic>Glu-B3ac </italic>
(Figure
<xref ref-type="fig" rid="F8">8</xref>
, (2)) and
<italic>Glu-B3ad </italic>
(Figure
<xref ref-type="fig" rid="F8">8</xref>
, (4)) were each discriminated from
<italic>Glu-B3b </italic>
(Figure
<xref ref-type="fig" rid="F7">7</xref>
, (3)),
<italic>Glu-B3g </italic>
(Figure
<xref ref-type="fig" rid="F8">8</xref>
, (1)) and
<italic>Glu-B3i </italic>
(image not provided) by two distinct protein spots. Although the majority of the protein spots for alleles
<italic>Glu-B3b </italic>
and
<italic>Glu-B3g </italic>
had identical molecular masses and pI, they could be discriminated since allele
<italic>Glu-B3g </italic>
had one additional spot, at pH6, located between the HMW-GS and gliadins. There were no obvious differences in molecular mass or pI between alleles
<italic>Glu-B3d </italic>
(Figure
<xref ref-type="fig" rid="F7">7</xref>
, (6)) and
<italic>Glu-B3i </italic>
(image not provided), or between
<italic>Glu-B3f </italic>
(image not provided) and
<italic>Glu-B3g </italic>
(Figure
<xref ref-type="fig" rid="F8">8</xref>
, (1)), making differentiation by 2-DE impossible.</p>
<p>At the
<italic>Glu-D3</italic>
, only
<italic>Glu-D3c </italic>
(Figure
<xref ref-type="fig" rid="F9">9</xref>
, (2)),
<italic>Glu-D3l </italic>
(Figure
<xref ref-type="fig" rid="F9">9</xref>
, (3)) and
<italic>Glu-D3m </italic>
(Figure
<xref ref-type="fig" rid="F9">9</xref>
, (4)) could be definitely identified by 2-DE. Allele
<italic>Glu-D3l </italic>
(Figure
<xref ref-type="fig" rid="F9">9</xref>
, (3)) had two more distinctive spots compared to
<italic>Glu-D3c </italic>
(Figure
<xref ref-type="fig" rid="F9">9</xref>
, (2)) in 2-DE separations. As expected, alleles
<italic>Glu-D3c </italic>
and
<italic>Glu-D3e </italic>
(image not provided) could not be separated by 2-DE. These alleles appeared to be the same based on SDS-PAGE and MALDI-TOF-MS in the present study as they were in a previous study [
<xref ref-type="bibr" rid="B16">16</xref>
].</p>
<p>2-DE did not distinguish
<italic>Glu-D3a </italic>
(Figure
<xref ref-type="fig" rid="F8">8</xref>
, (6)),
<italic>Glu-D3b </italic>
(Figure
<xref ref-type="fig" rid="F9">9</xref>
, (1)) and
<italic>Glu-D3d </italic>
(image not provided), hence further investigation should target discrimination of
<italic>Glu-D3 </italic>
alleles by combining 2-DE with other methods such as PCR.</p>
</sec>
<sec>
<title>Identification of LMW-GS by MALDI-TOF-MS</title>
<p>The compositions of LMW-GS analyzed by MALDI-TOF-MS are presented in Table
<xref ref-type="table" rid="T1">1</xref>
. As shown in Figures
<xref ref-type="fig" rid="F10">10</xref>
,
<xref ref-type="fig" rid="F11">11</xref>
,
<xref ref-type="fig" rid="F12">12</xref>
and
<xref ref-type="fig" rid="F13">13</xref>
, the spectra of LMW subunits analyzed by this method consist of complex sets of peaks, consistent with the extensive diversity of the subunits. The LMW-GS exhibited molecular masses of 25-43 kDa in MALDI-TOF-MS spectra, considerably lower than the corresponding molecular masses of 42-51 kDa determined by SDS-PAGE and indicative of limitations of the SDS-PAGE method in determining the molecular masses of LMW glutenins [
<xref ref-type="bibr" rid="B24">24</xref>
]. Two major regions with masses from 30 to 35 kDa and from 36 to 43 kDa were separated in spectra of MALDI-TOF-MS (Figures
<xref ref-type="fig" rid="F10">10</xref>
,
<xref ref-type="fig" rid="F11">11</xref>
,
<xref ref-type="fig" rid="F12">12</xref>
and
<xref ref-type="fig" rid="F13">13</xref>
). These regions correspond to the C- LMW-GS and B- LMW-GS classified by SDS-PAGE. The region with molecular masses of 30-35 kDa also corresponds in mass to the major gliadins range [
<xref ref-type="bibr" rid="B1">1</xref>
]. The results were in agreement with previous studies based on SDS-PAGE, where there were extensive overlaps between gliadins and LMW-GS with lower molecular masses [
<xref ref-type="bibr" rid="B48">48</xref>
].</p>
<fig id="F10" position="float">
<label>Figure 10</label>
<caption>
<p>
<bold>Detection of LMW-GS by MALDI-TOF-MS</bold>
. Identification of alleles
<italic>Glu-A3a</italic>
,
<italic>Glu-A3b</italic>
,
<italic>Glu-A3d </italic>
and
<italic>Glu-A3e</italic>
. Cultivars: 1. Neixiang 188, 2. Gabo, 3. Nidera Baguette 10, 4. Amadina.</p>
</caption>
<graphic xlink:href="1471-2229-10-124-10"></graphic>
</fig>
<fig id="F11" position="float">
<label>Figure 11</label>
<caption>
<p>
<bold>Detection of LMW-GS by MALDI-TOF-MS</bold>
. Identification of alleles
<italic>Glu-A3f</italic>
,
<italic>Glu-B3a</italic>
,
<italic>Glu-B3b </italic>
and
<italic>Glu-B3c</italic>
. Cultivars: 1. Kitanokaori, 2. Chinese Spring, 3. Renan, 4. Insignia.</p>
</caption>
<graphic xlink:href="1471-2229-10-124-11"></graphic>
</fig>
<fig id="F12" position="float">
<label>Figure 12</label>
<caption>
<p>
<bold>Detection of LMW-GS by MALDI-TOF-MS</bold>
. Identification of alleles
<italic>Glu-B3f</italic>
,
<italic>Glu-B3g</italic>
,
<italic>Glu-B3h </italic>
and
<italic>Glu-B3j</italic>
. Cultivars: 1. Pepital, 2. Splendor, 3. Aca 303, 4. Grebe.</p>
</caption>
<graphic xlink:href="1471-2229-10-124-12"></graphic>
</fig>
<fig id="F13" position="float">
<label>Figure 13</label>
<caption>
<p>
<bold>Detection of LMW-GS by MALDI-TOF-MS</bold>
. Identification of alleles
<italic>Glu-D3a</italic>
,
<italic>Glu-D3b</italic>
,
<italic>Glu-D3c </italic>
and
<italic>Glu-D3m</italic>
. Cultivars: 1. Chinese Spring, 2. Gabo, 3. Insignia, 4. Darus.</p>
</caption>
<graphic xlink:href="1471-2229-10-124-13"></graphic>
</fig>
<p>MALDI-TOF-MS-based identification of LMW-GS alleles was established using a set of 19 near-isogenic lines (NIL) of cultivar Aroona (unpublished data, A Wang, W Ma, R Appels, Murdoch University, Australia). Most of the distinct peaks of the
<italic>Glu-A3 </italic>
alleles exhibited higher masses in the ranges of about 41.8-42.1 kDa and 43.5-43.8 kD, whereas the distinct peaks of the
<italic>Glu-D3 </italic>
alleles showed lower masses of 33.2-33.7 kDa. The middle masses in the ranges of about 40.1-40.2 kDa and 42.8-43.3 kDa corresponded to the
<italic>Glu-B3 </italic>
alleles. The distributions of distinct peaks of the
<italic>Glu-3 </italic>
alleles in the MALDI-TOF-MS were in agreement with their position in SDS-PAGE [
<xref ref-type="bibr" rid="B34">34</xref>
].</p>
<p>Compared to the other loci,
<italic>Glu-A3 </italic>
was less diverse and most protein bands had lower mobilities, so discrimination between them using SDS-PAGE is usually feasible. Similarly, most of the distinct peaks of the
<italic>Glu-A3 </italic>
alleles were well separated in MALDI-TOF-MS spectra, and alleles
<italic>Glu-A3b </italic>
(Figure
<xref ref-type="fig" rid="F10">10</xref>
, (2)),
<italic>Glu-A3d </italic>
(Figure
<xref ref-type="fig" rid="F10">10</xref>
, (3)),
<italic>Glu-A3e </italic>
(Figure
<xref ref-type="fig" rid="F10">10</xref>
, (4)) and
<italic>Glu-A3f </italic>
(Figure
<xref ref-type="fig" rid="F11">11</xref>
, (1)) were reliably discriminated.</p>
<p>The
<italic>Glu-B3 </italic>
alleles
<italic>Glu-B3a </italic>
(Figure
<xref ref-type="fig" rid="F11">11</xref>
, (2)),
<italic>Glu-B3b </italic>
(Figure
<xref ref-type="fig" rid="F11">11</xref>
, (3)),
<italic>Glu-B3c </italic>
(Figure
<xref ref-type="fig" rid="F11">11</xref>
, (4)),
<italic>Glu-B3h </italic>
(Figure
<xref ref-type="fig" rid="F12">12</xref>
, (3)), and
<italic>Glu-B3j </italic>
(Figure
<xref ref-type="fig" rid="F12">12</xref>
, (4)), as well as seven other alleles, were readily distinguished by MALDI-TOF-MS.</p>
<p>With regard the
<italic>Glu-D3 </italic>
locus, MALDI-TOF-MS clearly differentiated the
<italic>Glu-D3a </italic>
(Figure
<xref ref-type="fig" rid="F13">13</xref>
, (1)),
<italic>Glu-D3b </italic>
(Figure
<xref ref-type="fig" rid="F13">13</xref>
, (2)),
<italic>Glu-D3c </italic>
(Figure
<xref ref-type="fig" rid="F13">13</xref>
, (3)) and
<italic>Glu-D3m </italic>
(Figure
<xref ref-type="fig" rid="F13">13</xref>
, (4)) alleles. As expected,
<italic>Glu-D3e </italic>
(image not provided) could not be discriminated from
<italic>Glu-D3c </italic>
(Figure
<xref ref-type="fig" rid="F13">13</xref>
, (3)). Improved discrimination will be achieved as calibration technology improves. In addition, it may be of value to utilize the close linkage between gliadin and LMW glutenin alleles to further improve the power of MALDI-TOF-MS in differentiating LMW glutenin alleles.</p>
</sec>
<sec>
<title>Detection of LMW-GS by allele specific PCR markers</title>
<p>Seven primer pairs [
<xref ref-type="bibr" rid="B27">27</xref>
], including
<italic>gluA3a</italic>
,
<italic>gluA3b</italic>
,
<italic>gluA3ac</italic>
,
<italic>gluA3d</italic>
,
<italic>gluA3e</italic>
,
<italic>gluA3f </italic>
and
<italic>gluA3g</italic>
, were used to identify
<italic>Glu-A3 </italic>
alleles (Table
<xref ref-type="table" rid="T1">1</xref>
). The amplified fragment sizes for each marker were 529 bp for
<italic>Glu-A3a</italic>
, 894 bp for
<italic>Glu-A3b</italic>
, 967 bp for
<italic>Glu-A3d</italic>
, 158 bp for
<italic>Glu-A3e</italic>
, 552 bp for
<italic>Glu-A3f</italic>
, and 1345 bp for
<italic>Glu-A3g</italic>
, indicating that the
<italic>Glu-A3 </italic>
alleles in the collection could be readily distinguished from one another. Since no
<italic>Glu-A3c </italic>
allele-specific primer has been developed, identification of this allele required the use of the
<italic>gluA3ac </italic>
with a 573 bp band in combination with the marker
<italic>gluA3a </italic>
[
<xref ref-type="bibr" rid="B27">27</xref>
].</p>
<p>Ten primer pairs developed by Wang et al. [
<xref ref-type="bibr" rid="B28">28</xref>
] were utilized to test for
<italic>Glu-B3 </italic>
alleles and the results are summarized in Table
<xref ref-type="table" rid="T1">1</xref>
. Specifically amplified fragments included 1095 bp for
<italic>Glu-B3a</italic>
, 1549 bp for
<italic>Glu-B3b</italic>
, 472 bp for
<italic>Glu-B3c</italic>
, 662 bp for
<italic>Glu-B3d</italic>
, 669 bp for
<italic>Glu-B3e</italic>
, 853 bp for
<italic>Glu-B3g</italic>
, 1022 bp for
<italic>Glu-B3h</italic>
, and 621 bp for
<italic>Glu-B3i</italic>
, indicating that the
<italic>Glu-B3 </italic>
alleles could be well differentiated based on corresponding markers. Detection of
<italic>Glu-B3f </italic>
required the use of the
<italic>Glu-B3fg </italic>
marker with an 812-bp marker in combination with the
<italic>Glu-B3g </italic>
marker since no
<italic>Glu-B3f </italic>
allele-specific marker has been designed. Although
<italic>Glu-B3f </italic>
could not be clearly distinguished from
<italic>Glu-B3g </italic>
by protein based methods, these alleles could be definitively differentiated by PCR. In addition, there were obvious differences between genes
<italic>GluB3-1 </italic>
and
<italic>GluB3-2 </italic>
in the gene sequences of
<italic>Glu-B3f </italic>
and
<italic>Glu-B3g </italic>
[
<xref ref-type="bibr" rid="B28">28</xref>
]. The differences were firstly, the sequence length of
<italic>Glu-B3f </italic>
was 60 bp longer than that of
<italic>Glu-B3g </italic>
in the
<italic>GluB3-1 </italic>
gene, and secondly, there were single base differences between
<italic>Glu-B3f </italic>
and
<italic>Glu-B3g </italic>
in both
<italic>GluB3-1 </italic>
and
<italic>GluB3-2</italic>
. Therefore, alleles
<italic>Glu-B3f </italic>
and
<italic>Glu-B3g </italic>
reported in previous studies were different alleles although they could not be reliably differentiated by SDS-PAGE, 2-DE or MALDI-TOF-MS [
<xref ref-type="bibr" rid="B13">13</xref>
,
<xref ref-type="bibr" rid="B34">34</xref>
].</p>
<p>
<italic>Glu-D3 </italic>
appeared to be the most complicated locus. It contains the highest number of genes and expressed subunits compared to the other two loci, and yet most of the subunits across different alleles have similar molecular weights. Electrophoresis based methods and PCR are not efficient in differentiating
<italic>Glu-D3 </italic>
alleles. The MALDI-TOF-MS based method can differentiate
<italic>Glu-D3 </italic>
alleles since it is able to differentiate subtle changes in mass values. High accuracy mass calibration to remove the variations in mass measurement is the key to improve the efficiency of MALDI-TOF in differentiating these alleles.</p>
</sec>
<sec>
<title>Comparison of the four methods for identification of LMW-GS composition</title>
<p>The data from all five laboratories and the four methods employed showed that alleles
<italic>Glu-A3b</italic>
,
<italic>Glu-A3d </italic>
and
<italic>Glu-A3e </italic>
were consistently identified by all four methods. Similarly, analyses of alleles
<italic>Glu-B3a</italic>
,
<italic>Glu-B3b</italic>
,
<italic>Glu-B3c</italic>
,
<italic>Glu-B3h </italic>
and
<italic>Glu-B3j </italic>
were in agreement for all four methods. At the
<italic>Glu-D3</italic>
, only the
<italic>Glu-D3c </italic>
allele was consistently identified by SDS-PAGE, 2-DE and MALDI-TOF-MS. The discrepancies in allelic identification using the different methods are indicated in Table
<xref ref-type="table" rid="T2">2</xref>
. Alleles
<italic>Glu-A3a </italic>
and
<italic>Glu-A3c </italic>
could not be distinguished by MALDI-TOF-MS due to their nearly identical molecular masses. Similarly, these two alleles could not be reliably identified by SDS-PAGE and 2-DE due to their identical mobilities and pI. However, it was easy to differentiate them by PCR. In SDS-PAGE gels, the higher mobility patterns of alleles
<italic>Glu-B3d</italic>
,
<italic>Glu-B3h</italic>
,
<italic>Glu-B3i </italic>
overlapped with those of alleles
<italic>Glu-A3a </italic>
or
<italic>Glu-A3c</italic>
, and lower mobility patterns overlapped with those of allele
<italic>Glu-A3b</italic>
. These results were in agreement with the reports of Gupta and Shepherd [
<xref ref-type="bibr" rid="B13">13</xref>
], who concluded that ambiguous identification of subunits was possibly caused by differential staining intensity of banding patterns. The difficulty to differentiate
<italic>Glu-B3b </italic>
and
<italic>Glu-B3g </italic>
based on SDS-PAGE banding patterns arose from their similar mobilities. However, as shown in Figures
<xref ref-type="fig" rid="F3">3</xref>
and
<xref ref-type="fig" rid="F4">4</xref>
, several
<italic>Glu-B3 </italic>
alleles could be readily discriminated using gliadins as a marker for glutenin by SDS-PAGE. These alleles had clearly different peaks or spots using MALDI-TOF-MS or 2-DE, respectively. Alleles
<italic>Glu-D3a </italic>
and
<italic>Glu-D3b </italic>
could not be reliably separated by MALDI-TOF-MS or 2-DE. It is suggested that the
<italic>Glu-D3 </italic>
alleles should be differentiated by a combination of primers [
<xref ref-type="bibr" rid="B49">49</xref>
-
<xref ref-type="bibr" rid="B51">51</xref>
].</p>
<table-wrap id="T2" position="float">
<label>Table 2</label>
<caption>
<p>Allelic variants of LMW-GS identified using different methods</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">Locus</th>
<th align="left">Subunit</th>
<th align="left">SDS-PAGE</th>
<th align="left">2-DE</th>
<th align="left">MALDI-TOF-MS</th>
<th align="left">PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">
<italic>Glu-A3</italic>
</td>
<td align="left">
<italic>Glu-A3a</italic>
</td>
<td align="left">√*</td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-A3b</italic>
</td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-A3c</italic>
</td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-A3d</italic>
</td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-A3e</italic>
</td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-A3f</italic>
</td>
<td></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-A3g</italic>
</td>
<td></td>
<td align="left"></td>
<td></td>
<td align="left"></td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<italic>Glu-B3</italic>
</td>
<td align="left">
<italic>Glu-B3a</italic>
</td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-B3b</italic>
</td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-B3c</italic>
</td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-B3d</italic>
</td>
<td align="left"></td>
<td></td>
<td align="left"></td>
<td align="left"></td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-B3f</italic>
</td>
<td></td>
<td></td>
<td align="left"></td>
<td align="left"></td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-B3g</italic>
</td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-B3h</italic>
</td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-B3i</italic>
</td>
<td align="left"></td>
<td></td>
<td></td>
<td align="left"></td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-B3j</italic>
</td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-B3ab</italic>
</td>
<td></td>
<td align="left"></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-B3ac</italic>
</td>
<td></td>
<td align="left"></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-B3ad</italic>
</td>
<td></td>
<td align="left"></td>
<td></td>
<td></td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<italic>Glu-D3</italic>
</td>
<td align="left">
<italic>Glu-D3a</italic>
</td>
<td align="left"></td>
<td></td>
<td align="left"></td>
<td align="left">-</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-D3b</italic>
</td>
<td align="left"></td>
<td></td>
<td align="left"></td>
<td align="left">-</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-D3c</italic>
</td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left">-</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-D3m</italic>
</td>
<td></td>
<td align="left"></td>
<td align="left"></td>
<td align="left">-</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-D3l</italic>
</td>
<td align="left"></td>
<td align="left"></td>
<td></td>
<td align="left">-</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-D3n</italic>
</td>
<td></td>
<td align="left"></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>√ - confirmed; - data not available</p>
</table-wrap-foot>
</table-wrap>
<p>The 2-DE method is generally considered as the most powerful tool for identifying storage protein polymorphism of proteins in wheat [
<xref ref-type="bibr" rid="B52">52</xref>
]. However, different bands in SDS-PAGE separations were not always distinguishable in 2-DE separations. For example, alleles
<italic>Glu-B3d </italic>
and
<italic>Glu-B3i </italic>
could be identified by SDS-PAGE, but not by 2-DE. For LMW-GS identification in wheat breeding programs, PCR and/or SDS-PAGE of both gliadin and glutenin extracts should be used as the basic method, with 2-DE and MALDI-TOF-MS as complementary approaches. A combination of different methods is recommended for differentiating certain LMW-GS alleles, particularly those suspected as being novel.</p>
<p>Comparison of the four methods is presented in Table
<xref ref-type="table" rid="T3">3</xref>
. Utilization of a particular method will depend upon research objectives and the targeted materials. With appropriate classification of glutenin alleles, it is possible to improve wheat quality by selection of alleles and allelic combinations with desired quality performance. If progeny screening and cultivar development is the objective, PCR will likely be adequate for the identification of
<italic>Glu-A3 </italic>
and
<italic>Glu-B3 </italic>
alleles. However, if the aim is to determine the glutenin subunits of potential parents for predicting cross performance and designing crossing schemes, or to identify specific alleles such as
<italic>Glu-A3g</italic>
,
<italic>Glu-B3ab</italic>
,
<italic>Glu-B3ac</italic>
, or distinguish between the
<italic>Glu-D3 </italic>
alleles, a combination of methods should be used, i.e. PCR with 2-DE or PCR with SDS-PAGE and 2-DE, in order to achieve the correct identification of LMW-GS alleles.</p>
<table-wrap id="T3" position="float">
<label>Table 3</label>
<caption>
<p>Relative efficiencies of methods of gluten analysis for situations where cultivar identification is required</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">Subject</th>
<th align="left">SDS-PAGE</th>
<th align="left">2-DE</th>
<th align="left">MALDI-TOF-MS</th>
<th align="left">PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">Required sample amount</td>
<td align="left">40 μg
<break></break>
(Protein)</td>
<td align="left">150 μg
<break></break>
(Protein)</td>
<td align="left">0.04 μg
<break></break>
(Protein)</td>
<td align="left">2 μL
<break></break>
(DNA)</td>
</tr>
<tr>
<td align="left">Purity required</td>
<td align="left">Low</td>
<td align="left">High</td>
<td align="left">High</td>
<td align="left">Medium</td>
</tr>
<tr>
<td align="left">Number of alleles</td>
<td align="left">19</td>
<td align="left">22</td>
<td align="left">21</td>
<td align="left">16</td>
</tr>
<tr>
<td align="left">Alleles efficiently resolved</td>
<td align="left">
<italic>Glu-B3b </italic>
and
<italic>Glu-B3g</italic>
,
<break></break>
<italic>Glu-B3d </italic>
and
<italic>Glu-B3i</italic>
,</td>
<td align="left">
<italic>Glu-A3e</italic>
,
<italic>Glu-A3f</italic>
,
<italic>Glu-A3g</italic>
,
<italic>Glu-B3b</italic>
,
<italic>Glu-B3g</italic>
,
<italic>Glu-B3ab</italic>
,
<italic>Glu-B3ac</italic>
,
<italic>Glu-B3ad</italic>
,
<italic>Glu-D3l </italic>
and
<italic>Glu-D3m</italic>
</td>
<td align="left">
<italic>Glu-A3e</italic>
, and
<italic>Glu-A3f; Glu-D3a, Glu-D3b, Glu-D3c, and Glu-D3m</italic>
</td>
<td align="left">
<italic>Glu-A3e </italic>
and
<italic>Glu-A3f</italic>
,
<italic>Glu-B3d </italic>
and
<italic>Glu-B3i</italic>
,
<italic>Glu-B3f </italic>
and
<italic>Glu-B3g</italic>
</td>
</tr>
<tr>
<td align="left">Mass accuracy</td>
<td align="left">Inaccurate</td>
<td align="left">Inaccurate</td>
<td align="left">Accurate</td>
<td align="left">Accurate</td>
</tr>
<tr>
<td align="left">pI</td>
<td align="left">Unknown</td>
<td align="left">Known</td>
<td align="left">Unknown</td>
<td align="left">Unknown</td>
</tr>
<tr>
<td align="left">Cost of equipment</td>
<td align="left">≈$7,000</td>
<td align="left">≈$30,000</td>
<td align="left">≈$20,000-400,000</td>
<td align="left">≈$5,500</td>
</tr>
<tr>
<td align="left">Cost per sample</td>
<td align="left">≈$1.0</td>
<td align="left">≈$70.0</td>
<td align="left">≈$0.3</td>
<td align="left">≈$0.3</td>
</tr>
<tr>
<td align="left">Number of samples analysed per day for skilled technician</td>
<td align="left">30-160*</td>
<td align="left">1</td>
<td align="left">100</td>
<td align="left">100</td>
</tr>
<tr>
<td align="left">Automation</td>
<td align="left">Not possible</td>
<td align="left">Not possible</td>
<td align="left">Possible</td>
<td align="left">Possible</td>
</tr>
<tr>
<td align="left">Experience required</td>
<td align="left">Considerable</td>
<td align="left">Considerable</td>
<td align="left">Less</td>
<td align="left">Less</td>
</tr>
<tr>
<td align="left">Safety</td>
<td align="left">High toxicity</td>
<td align="left">High toxicity</td>
<td align="left">Safe</td>
<td align="left">Toxicity</td>
</tr>
<tr>
<td align="left">False positives</td>
<td align="left">No</td>
<td align="left">Yes</td>
<td align="left">No</td>
<td align="left">Yes</td>
</tr>
<tr>
<td align="left">Accuracy level</td>
<td align="left">++</td>
<td align="left">+++</td>
<td align="left">++</td>
<td align="left">++</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>*. Thirty samples/day if running two gels. Up to 160 samples/day if using multi-gel (8 gels) buffer tank.</p>
</table-wrap-foot>
</table-wrap>
</sec>
<sec>
<title>A set of standard cultivars for identification of LMW-GS</title>
<p>From this study of 103 wheat cultivars from 12 countries we propose a set of 30 cultivars for determination of LMW-GS (Table
<xref ref-type="table" rid="T4">4</xref>
) irrespective of the method to be used. Figures
<xref ref-type="fig" rid="F1">1</xref>
,
<xref ref-type="fig" rid="F3">3</xref>
,
<xref ref-type="fig" rid="F5">5</xref>
show glutenin electropherograms of 28 (missing Ernest and Darius) of the 30 genotypes presented in Table
<xref ref-type="table" rid="T4">4</xref>
. They cover all LMW-GS allelic variants identified in the original set. A core set of Chinese Spring, Opata 85, Seri 82 and Pavon 76 is recommended for inclusion in all gels. Most of the common
<italic>Glu-</italic>
3 alleles are represented among this group and their distributions on gels will provide useful landmarks for comparison with other bands. In this classification, it is possible to differentiate alleles
<italic>Glu-A3g </italic>
from
<italic>Glu-A3d</italic>
,
<italic>Glu-B3ab </italic>
from
<italic>Glu-B3b</italic>
,
<italic>Glu-B3ac </italic>
from
<italic>Glu-B3g</italic>
,
<italic>Glu-B3ad </italic>
from
<italic>Glu-B3i</italic>
, and
<italic>Glu-D3l </italic>
from
<italic>Glu-D3c</italic>
. Alleles
<italic>Glu-D3e </italic>
and
<italic>Glu-D3c </italic>
are assumed to be identical. The allele in cultivar Darius, with no distinct spot in 2-DE gels, is a new allele,
<italic>Glu-D3m</italic>
. The new allele
<italic>Glu-D3n </italic>
identified in the cultivar Fengmai 27 has a distinct spot in 2-DE and different mobility in SDS-PAGE (Figure
<xref ref-type="fig" rid="F5">5</xref>
). However, more work is needed to further characterize these new alleles at the
<italic>Glu-D3 </italic>
locus. The other alleles were the same as those observed by Gupta and Shepherd [
<xref ref-type="bibr" rid="B13">13</xref>
].</p>
<table-wrap id="T4" position="float">
<label>Table 4</label>
<caption>
<p>Thirty cultivars recommended as standards for the determination of LMW-GS alleles</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">Locus</th>
<th align="left">Allele</th>
<th align="left">Standard cultivar</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">
<italic>Glu-A3</italic>
</td>
<td align="left">
<italic>Glu-A3a</italic>
</td>
<td align="left">Neixiang 188,
<bold>Chinese Spring</bold>
</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-A3b</italic>
</td>
<td align="left">Gabo,
<bold>Pavon 76</bold>
</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-A3c</italic>
</td>
<td align="left">Pitic,
<bold>Seri 82</bold>
</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-A3d</italic>
</td>
<td align="left">Nidera Baguette 10, Cappelle-Desprez</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-A3e</italic>
</td>
<td align="left">Amadina, Marquis</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-A3f</italic>
</td>
<td align="left">Kitanokaori, Renan</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-A3g</italic>
</td>
<td align="left">Bluesky, Glenlea</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<italic>Glu-B3</italic>
</td>
<td align="left">
<italic>Glu-B3a</italic>
</td>
<td align="left">
<bold>Chinese Spring</bold>
</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-B3b</italic>
</td>
<td align="left">Renan, Gabo</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-B3c</italic>
</td>
<td align="left">Insignia, Halberd</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-B3d</italic>
</td>
<td align="left">Pepital, Ernest</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-B3f</italic>
</td>
<td align="left">Fengmai 27</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-B3g</italic>
</td>
<td align="left">Splendor, Cappelle-Desprez</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-B3h</italic>
</td>
<td align="left">Aca 303,
<bold>Pavon 76</bold>
</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-B3i</italic>
</td>
<td align="left">Norin 61</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-B3j</italic>
</td>
<td align="left">Grebe,
<bold>Seri 82</bold>
</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-B3ab</italic>
</td>
<td align="left">Nanbu-komugi</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-B3ac</italic>
</td>
<td align="left">Thesee, Aca 801</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-B3ad</italic>
</td>
<td align="left">Heilo,
<bold>Opata 85</bold>
</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<italic>Glu-D3</italic>
</td>
<td align="left">
<italic>Glu-D3a</italic>
</td>
<td align="left">
<bold>Chinese Spring</bold>
, Neixiang 188</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-D3b</italic>
</td>
<td align="left">Gabo, Avocet</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-D3c</italic>
</td>
<td align="left">Insignia, Cappelle-Desprez</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-D3m</italic>
</td>
<td align="left">Darius</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-D3l</italic>
</td>
<td align="left">Amadina, Heilo</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Glu-D3n</italic>
</td>
<td align="left">Fengmai 27</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>The core group is in bold</p>
</table-wrap-foot>
</table-wrap>
<p>Allele
<italic>Glu-A3g</italic>
, identified in the Canadian cultivars Bluesky and Glenlea by 2-DE in the current collection, is widely distributed in many cultivars from Canada and the U.S.A. [
<xref ref-type="bibr" rid="B41">41</xref>
]. In previous studies, allele
<italic>Glu-A3g </italic>
was frequently identified as
<italic>Glu-A3d </italic>
due to their similar SDS-PAGE patterns. The role of
<italic>Glu-A3g </italic>
in bread making quality therefore requires further study. Similarly, effects on bread making quality of alleles
<italic>Glu-B3ab</italic>
,
<italic>Glu-B3ac</italic>
,
<italic>Glu-B3ad </italic>
and
<italic>Glu-D3l</italic>
, with two additional distinct spots compared to alleles
<italic>Glu-B3b</italic>
,
<italic>Glu-B3g</italic>
,
<italic>Glu-B3i </italic>
and
<italic>Glu-D3c</italic>
, respectively, also need further investigation.</p>
</sec>
</sec>
<sec>
<title>Conclusions</title>
<p>Four methods, SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR, were used for identifying the LMW-GS composition in wheat cultivars from 12 countries. All seven
<italic>Glu-A3 </italic>
alleles could be identified by 2-DE and PCR, and only four and five of the seven could be differentiated by MALDI-TOF-MS and SDS-PAGE of the glutenin extract, respectively. The
<italic>Glu-B3 </italic>
alleles
<italic>Glu-B3a</italic>
,
<italic>Glu-B3b</italic>
,
<italic>Glu-B3c</italic>
,
<italic>Glu-B3g</italic>
,
<italic>Glu-B3h </italic>
and
<italic>Glu-B3j </italic>
could be identified by all four methods, but alleles
<italic>Glu-B3ab</italic>
,
<italic>Glu-B3ac</italic>
,
<italic>Glu-B3ad </italic>
could only be identified by the 2-DE method.
<italic>Glu-D3 </italic>
alleles were very difficult to clearly distinguish by SDS-PAGE, 2-DE and PCR. MALDI-TOF-MS was promising in reliably differentiating them. PCR is a simple, accurate, and low cost method for identifying
<italic>Glu-A3 </italic>
and
<italic>Glu-B3 </italic>
alleles that are currently routinely analysed by SDS-PAGE in breeding programs. However, SDS-PAGE using a multi-gel buffer chamber, and running both gliadins and glutenin extracts is also a highly reliable method. A combination of all methods will help to identify specific alleles, especially potentially new alleles.</p>
<p>A set of 30 cultivars (Table
<xref ref-type="table" rid="T4">4</xref>
) was recommended for identifying LMW-GS alleles. These standard cultivars cover all variants of LMW-GS in the collection investigated. Among them, Chinese Spring, Opata 85, Seri 82 and Pavon 76, are recommended as a core set to be included in each SDS-PAGE gel when identifying alleles of LMW-GS genes. The 30 cultivars have been placed in CIMMYT's and INRA Clermont Ferrand, France germplasm banks and seed is being multiplied to make them freely available as a set upon request. Accession numbers will be assigned once the
<italic>Glu-1/Glu-3 </italic>
allelic composition is confirmed.</p>
</sec>
<sec sec-type="methods">
<title>Methods</title>
<sec>
<title>Plant materials</title>
<p>One hundred and three cultivars of common wheat collected from 12 countries were used to develop a set of standard cultivars for identification of LMW-GS alleles (Table
<xref ref-type="table" rid="T1">1</xref>
). They included 21 cultivars from China, 19 from Argentina, 15 from Australia, 14 from France, 10 from Japan, eight from Mexico, seven from Canada, three from the USA, two from Italy, two from the Netherlands, one from Finland and one from Germany. These cultivars were widely utilized in investigating glutenin subunit compositions and their relationships to processing quality [
<xref ref-type="bibr" rid="B41">41</xref>
].</p>
</sec>
<sec>
<title>Protein extraction</title>
<p>A similar protocol was adopted for protein extraction in all five laboratories. Proteins were extracted from 100 mg whole meal according to the sequential procedure of Branlard and Bancel [
<xref ref-type="bibr" rid="B53">53</xref>
]. The samples were treated with 1.0 mL of 50% propanol-1-ol (v/v) for 5 min with continuous vortexing, followed by incubation (20 min at 65°C), vortexing (5 min), and centrifugation (5 min at 10, 000 × g). This step was repeated three times to remove most of the gliadins. The glutenin in the pellet was reduced with 50% propanol-1-ol, 50 mM Tris-HCl solution containing 1% w/v dithiothreitol (DTT), after which 1.4% v/v of 4-vinylpyridine was added, and alkylation was continued overnight at room temperature. The protein of each cultivar was extracted in three replicates.</p>
</sec>
<sec>
<title>SDS-PAGE</title>
<p>SDS-PAGE was performed in all five laboratories. Glutenin and gliadin protein extracts were separated using the method of Singh et al. [
<xref ref-type="bibr" rid="B46">46</xref>
] with some modifications in different laboratories to obtain the best resolution. To summarize, there were differences in three aspects. The concentrations of separation gel were 14.0% concentration (T) with 1.3% cross linker (C), 15.0% T with 1.3% C, 12.5% T with 0.97% C, 15.0% T with 1.4% C, and 13.5% T with 0.8% C in the laboratory of CAAS, CIMMYT, INRA, NARO and Universidad Nacionalm of Argentina, respectively. The pH for separation gel was pH8.8 in all laboratories except in CIMMYT with pH8.5. The currents of running gel were 16, 12.5, 30, 30 and 40 mA in the laboratory of CAAS, CIMMYT, INRA, NARO and Universidad Nacionalm of Argentina laboratory, respectively. Generally, lower current results in better resolution, but we could not find the optimum conditions for maximum resolution of LMW-GS in all laboratories since each laboratory used its own optimum conditions. Details were reported by Ikeda et al. [
<xref ref-type="bibr" rid="B35">35</xref>
].</p>
<p>The LMW-GS compositions were identified according to Singh et al. [
<xref ref-type="bibr" rid="B46">46</xref>
] and Jackson et al. [
<xref ref-type="bibr" rid="B16">16</xref>
] and the gliadins were used as indicators of LMW-GS based on the linkage between LMW-GS and gliadin because the gliadin composition can be screened more readily than specific LMW-GS. The nomenclature system of LMW-GS followed Gupta and Shepherd [
<xref ref-type="bibr" rid="B13">13</xref>
], Jackson et al. [
<xref ref-type="bibr" rid="B16">16</xref>
], Branlard et al. [
<xref ref-type="bibr" rid="B34">34</xref>
], Ikeda et al. [
<xref ref-type="bibr" rid="B35">35</xref>
], Appelbee et al. [
<xref ref-type="bibr" rid="B19">19</xref>
] and the catalogue of gene symbols for wheat
<ext-link ext-link-type="uri" xlink:href="http://wheat.pw.usda.gov/ggpages/awn/53/Textfile/WGC.html">http://wheat.pw.usda.gov/ggpages/awn/53/Textfile/WGC.html</ext-link>
.</p>
</sec>
<sec>
<title>2-DE procedure</title>
<p>The 2-DE method was only performed at CAAS and NARO. The 2-DE procedure employed to identify LMW-GS was performed with an IPGphor (GE Healthcare, Sweden) for isoelectric focusing (IEF), and an AE-6530 chamber and an AE-8450 power supply (ATTO, Japan) for SDS-PAGE. The glutenin fraction was precipitated with 80% acetone [
<xref ref-type="bibr" rid="B54">54</xref>
], and the resulting pellets containing 150 μg protein were dissolved in 250 μL of IEF rehydration solution [7 M urea, 2 M thiourea, 4% w/v CHAPS, 2% v/v IPG buffer pH 6-11 (GE Healthcare) and 20 mM DTT] for very basic proteins [
<xref ref-type="bibr" rid="B55">55</xref>
]. After incubation for 30 min at room temperature, samples were applied to Immobiline Dry-Strip pH 6-11 (13 cm, GE Healthcare). The rehydration step was carried out for 12 h at 20°C. IEF was performed with a step-wise protocol to 45 kVh. After IEF, the strips were stored at -80°C or prepared directly for 2-DE as follows: the gel strips were first equilibrated under gentle shaking for 15 min in equilibration buffer (50 mM Tris-HCl, pH 8.8, 6 M urea, 30% v/v glycerol, 2% w/v SDS) with 2% w/v DTT, and then in equilibration buffer containing 1.4% v/v 4-vinylpyridine. The second dimension separations (SDS-PAGE) were carried out on 13% acrylamide constant gels and ran at 7 mA/gel for 45 min and then 25 mA/gel for approximately 4 h, until the bromophenol blue had run off the bottom of the gel [
<xref ref-type="bibr" rid="B56">56</xref>
]. After the completion of 2-DE, gels were fixed and stained with Coomassie Brilliant Blue-G250 according to Neuhoff et al. [
<xref ref-type="bibr" rid="B57">57</xref>
]. The resulting gels were scanned using an Image Scanner (GE Healthcare) and the images analyzed with ImageMaster 2D Platinum v6.0 software (GE Healthcare). At least three gel images of each sample were taken and compared. The LMW-GS compositions were identified with the distinctive spot on 2-DE gels according to Ikeda et al. [
<xref ref-type="bibr" rid="B18">18</xref>
]. The nomenclature system of LMW-GS was the same as above SDS-PAGE separation.</p>
<p>In some cases the 2-DE was modified where glutenin proteins were not alkylated; 16% isopropanol was added to the IEF buffer, and IEF was performed at 18 kVh [
<xref ref-type="bibr" rid="B18">18</xref>
].</p>
</sec>
<sec>
<title>MALDI-TOF-MS protocol</title>
<p>MALDI-TOF-MS was performed at the State Agriculture Biotechnology Center, Murdoch University, Australia. The glutenin fraction was precipitated with 80% acetone [
<xref ref-type="bibr" rid="B54">54</xref>
], and the resulting pellets containing 100 μg protein were dissolved in 60 μL acetonitrile (ACN)/H
<sub>2</sub>
O (50:50 v/v) containing 0.05% v/v trifluoroacetic acid (TFA) for 1 h at room temperature. Sample preparation was carried out according to the dried droplet method [
<xref ref-type="bibr" rid="B58">58</xref>
], using sinapinic acid (SA) as matrix. The matrix solution was prepared by dissolving SA in 50% ACN/0.05% TFA (w/w) at a concentration of 10 mg/mL. A sandwich matrix/sample/matrix 1:1:1 (0.7 μL) was deposited on to a 96-sample MALDI target, and dried at room temperature.</p>
<p>MALDI-TOF-MS was performed on a Voyager DE-PRO TOF mass spectrometer (Applied Biosystems, Foster City, CA, USA) equipped with a 337 nm nitrogen laser and delayed extraction. Analyses were carried out on a positive linear ion mode at a mass range of 10000-50000 m/z with an accelerating voltage of 25 kV and a delay time of 900 ns. A low mass gate value of 10000 m/z was selected for analysis to avoid saturation of the detector. The identification of LMW-GS alleles based on MALDI-TOF-MS was established using a set of 19 near-isogenic lines (NIL) of cultivar Aroona (unpublished data, A Wang, W Ma, R Appels, Murdoch University, Australia).</p>
</sec>
<sec>
<title>DNA extraction and PCR amplification</title>
<p>PCR was performed only at CAAS. Genomic DNA was extracted from seeds using a modified CTAB procedure [
<xref ref-type="bibr" rid="B59">59</xref>
]. PCR was performed using TaKaRa (Dalian, China)
<italic>Taq </italic>
DNA polymerase (1.0 unit) in 20 μL reaction volumes containing approximately 50 ng of genomic DNA, 1× PCR buffer (1.5 mM MgCl
<sub>2</sub>
), 100 μM of each dNTP and 7.5 pmol of each PCR primer. Details of allele-specific markers for the discrimination of
<italic>Glu-A3 </italic>
and
<italic>Glu-B3 </italic>
alleles and PCR conditions were reported previously [
<xref ref-type="bibr" rid="B27">27</xref>
,
<xref ref-type="bibr" rid="B28">28</xref>
].</p>
</sec>
</sec>
<sec>
<title>Abbreviations</title>
<p>2-DE: two-dimensional gel electrophoresis (IEF × SDS-PAGE); ACN: acetonitrile; BIOLAB AZUL: Laboratory of Functional Biology and Biotechnology; CAAS: Chinese Academy of Agricultural Sciences; CEBB-MdP: Biotechnology and Biodiversity Study Center, Mar del Plata, Argentina; CHAPS: 3-[(3-Cholanidopropyl) dimethylammonio]-1-propanesulfonate; CICPBA: Scientific Research Commission of the Province of Buenos Aires; CIMMYT:International Maize and Wheat Improvement Center; CIISAS: Center for Integrated Research in Sustainable Agricultural Systems, COUNTRY; CONICET: National Science and Technology Research Council, Argentina; CRESCAA: Regional Center for Systemic Study of Agro-alimentary Chains, COUNTRY; CTAB: cetyltrimethylammonium bromide; DNA: deoxyribonucleic acid; dNTPs: deoxynucleoside triphosphates; DTT: dithiothreitol; HMW-GS: high-molecular-weight glutenin subunits; HPLC: high-performance liquid chromatography; IEF: isoelectric focusing; INBA: Research Institute of Agricultural and Environmental Biosciences; INRA: National Institute for Agricultural Research; kDa: kilodalton; kVh: kilo-volt-ampere-hour; LMW-GS: low-molecular-weight glutenin subunits; MALDI-TOF-MS: matrix-assisted laser desorption/ionization time-of-flight mass spectrometry; MgCl
<sub>2</sub>
: magnesium chloride; NARO: National Agriculture and Food Research Organization; NIL: near-isogenic lines; PCR: polymerase chain reaction; pI: isoelectric points; SA: sinapinic acid; SDS: sodium dodecyl sulfate; SDS-PAGE: sodium dodecyl sulphate-polyacrylamide gel electrophoresis; TFA: trifluoroacetic acid; Tris-HCl: tris (hydroxymethyl) aminomethane hydrochloride</p>
</sec>
<sec>
<title>Authors' contributions</title>
<p>LL carried out SDS-PAGE, 2-DE and MALDI-TOF-MS analyses and drafted the manuscript. TI participated in the design of the study, and performed SDS-PAGE and 2-DE analyses. GB participated in the design of the study and carried out SDS-PAGE analysis. RP participated in the design of the study and carried out the identification of LMW-GS by SDS-PAGE. WR participated in the design of the study and revised the manuscript. SL carried out SDS-PAGE analysis and revised the manuscript. MK carried out SDS-PAGE analysis. XX participated in the design of the study and revised the manuscript. LW carried out PCR analysis. WM participated in the identification of LMW-GS by MALDI-TOF-MS. RA participated in the identification of LMW-GS by MALDI-TOF-MS and revised the manuscript. HY participated in the design of the study. AW participated the identification of LMW-GS by MALDI-TOF-MS. YY participated the identification of LMW-GS by 2-DE. ZH conceived of the study and participated in its design, coordinated the various research groups, and revised the manuscript. All authors read and approved the final manuscript.</p>
</sec>
</body>
<back>
<sec>
<title>Acknowledgements</title>
<p>The authors are grateful to Prof. R. A. McIntosh, University of Sydney, for reviewing the manuscript. The study was supported by the National Natural Science Foundation of China (30830072), National Basic Research Program (2009CB118300) and National 863 Programs (2006AA10Z1A7 and 2006AA100102).</p>
</sec>
<ref-list>
<ref id="B1">
<mixed-citation publication-type="journal">
<name>
<surname>Payne</surname>
<given-names>PI</given-names>
</name>
<article-title>Genetics of wheat storage protein and the effect of allelic variation on pan bread quality</article-title>
<source>Annu Rev Plant Physiol</source>
<year>1987</year>
<volume>38</volume>
<fpage>141</fpage>
<lpage>153</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.pp.38.060187.001041</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<name>
<surname>Gianibelli</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Larroque</surname>
<given-names>OR</given-names>
</name>
<name>
<surname>MacRichie</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Wrigley</surname>
<given-names>CW</given-names>
</name>
<article-title>Biochemical, genetic, and molecular characterization of wheat glutenin and its component subunits</article-title>
<source>Cereal Chem</source>
<year>2001</year>
<volume>78</volume>
<issue>6</issue>
<fpage>635</fpage>
<lpage>646</lpage>
<pub-id pub-id-type="doi">10.1094/CCHEM.2001.78.6.635</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<name>
<surname>Shewry</surname>
<given-names>PR</given-names>
</name>
<name>
<surname>Halford</surname>
<given-names>NG</given-names>
</name>
<name>
<surname>Lafiandra</surname>
<given-names>D</given-names>
</name>
<article-title>Genetics of wheat gluten proteins</article-title>
<source>Adv Genet</source>
<year>2003</year>
<volume>49</volume>
<fpage>111</fpage>
<lpage>184</lpage>
<comment>full_text</comment>
<pub-id pub-id-type="pmid">12779252</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<name>
<surname>Shewry</surname>
<given-names>PR</given-names>
</name>
<name>
<surname>Tatham</surname>
<given-names>AS</given-names>
</name>
<article-title>The prolamin storage proteins of cereal seeds, structure and evolution</article-title>
<source>Biochem J</source>
<year>1990</year>
<volume>267</volume>
<issue>1</issue>
<fpage>1</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="pmid">2183790</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<name>
<surname>Bietz</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Wall</surname>
<given-names>JS</given-names>
</name>
<article-title>Isolation and characterization of gliadin-like subunits from glutelin</article-title>
<source>Cereal Chem</source>
<year>1973</year>
<volume>50</volume>
<issue>5</issue>
<fpage>537</fpage>
<lpage>547</lpage>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<name>
<surname>Cornish</surname>
<given-names>GB</given-names>
</name>
<name>
<surname>Békés</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Allen</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>JM</given-names>
</name>
<article-title>Flour proteins linked to quality traits in an Australian doubled haploid wheat population</article-title>
<source>Aust J Agric Res</source>
<year>2001</year>
<volume>52</volume>
<issue>12</issue>
<fpage>1339</fpage>
<lpage>1348</lpage>
<pub-id pub-id-type="doi">10.1071/AR01060</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<name>
<surname>Gupta</surname>
<given-names>RB</given-names>
</name>
<name>
<surname>Paul</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Cornish</surname>
<given-names>GB</given-names>
</name>
<name>
<surname>Palmer</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Bekes</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Rathjen</surname>
<given-names>AJ</given-names>
</name>
<article-title>Allelic variation at glutenin subunit and gliadin loci,
<italic>Glu-1</italic>
,
<italic>Glu-3 </italic>
and
<italic>Gli-1</italic>
, of common wheats. I. Its additive and interaction effects on dough properties</article-title>
<source>J Cereal Sci</source>
<year>1994</year>
<volume>19</volume>
<issue>1</issue>
<fpage>9</fpage>
<lpage>17</lpage>
<pub-id pub-id-type="doi">10.1006/jcrs.1994.1003</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="journal">
<name>
<surname>He</surname>
<given-names>ZH</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>XC</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Peña</surname>
<given-names>RJ</given-names>
</name>
<article-title>Composition of HMW and LMW glutenin subunits and their effects on dough properties, pan bread, and noodle quality of Chinese bread wheats</article-title>
<source>Cereal Chem</source>
<year>2005</year>
<volume>82</volume>
<issue>4</issue>
<fpage>345</fpage>
<lpage>350</lpage>
<pub-id pub-id-type="doi">10.1094/CC-82-0345</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="book">
<name>
<surname>Békés</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Morell</surname>
<given-names>M</given-names>
</name>
<person-group person-group-type="editor">Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P</person-group>
<article-title>An integrated approach to predicting end-product quality of wheat</article-title>
<source>Proc 11th Int Wheat Genet Symp, Sydney University Press, Sydney, Australia</source>
<year>2008</year>
<comment>O45</comment>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<name>
<surname>Singh</surname>
<given-names>NK</given-names>
</name>
<name>
<surname>Shepherd</surname>
<given-names>FW</given-names>
</name>
<article-title>Linkage mapping of genes controlling endosperm storage proteins in wheat. 1. Genes on the short arms of group 1 chromosomes</article-title>
<source>Theor Appl Genet</source>
<year>1988</year>
<volume>75</volume>
<issue>4</issue>
<fpage>628</fpage>
<lpage>641</lpage>
<pub-id pub-id-type="doi">10.1007/BF00289132</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<name>
<surname>Pogna</surname>
<given-names>NE</given-names>
</name>
<name>
<surname>Autran</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Mellini</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Lafiandra</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Feillet</surname>
<given-names>P</given-names>
</name>
<article-title>Chromosome 1B-encoded gliadins and glutenin subunits in durum wheat, genetics and relationship to gluten strength</article-title>
<source>J Cereal Sci</source>
<year>1990</year>
<volume>11</volume>
<issue>1</issue>
<fpage>15</fpage>
<lpage>34</lpage>
<pub-id pub-id-type="doi">10.1016/S0733-5210(09)80178-1</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<name>
<surname>Anderson</surname>
<given-names>OD</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>YQ</given-names>
</name>
<name>
<surname>Kong</surname>
<given-names>XY</given-names>
</name>
<name>
<surname>Lazo</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>JJ</given-names>
</name>
<article-title>The wheat ω-gliadin genes: structure and EST analysis</article-title>
<source>Funct Integr Genomics</source>
<year>2009</year>
<volume>9</volume>
<issue>3</issue>
<fpage>397</fpage>
<lpage>410</lpage>
<pub-id pub-id-type="doi">10.1007/s10142-009-0122-2</pub-id>
<pub-id pub-id-type="pmid">19367421</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<name>
<surname>Gupta</surname>
<given-names>RB</given-names>
</name>
<name>
<surname>Shepherd</surname>
<given-names>KW</given-names>
</name>
<article-title>Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutelin. 1. Variation and genetic control of the subunits in hexaploid wheats</article-title>
<source>Theor Appl Genet</source>
<year>1990</year>
<volume>80</volume>
<issue>1</issue>
<fpage>65</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="doi">10.1007/BF00224017</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<name>
<surname>Yan</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hsam</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>JZ</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ohtsuka</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Zeller</surname>
<given-names>FJ</given-names>
</name>
<article-title>HMW and LMW glutenin alleles among putative tetraploid and hexaploid European spelt wheat (
<italic>Triticum spelta </italic>
L.) progenitors</article-title>
<source>Theor Appl Genet</source>
<year>2003</year>
<volume>107</volume>
<issue>7</issue>
<fpage>1321</fpage>
<lpage>1330</lpage>
<pub-id pub-id-type="doi">10.1007/s00122-003-1315-z</pub-id>
<pub-id pub-id-type="pmid">13679994</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<name>
<surname>Lerner</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Kolman</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Rogers</surname>
<given-names>WJ</given-names>
</name>
<article-title>Quality and endosperm storage protein variation in Argentinean grown bread wheat. I. Allelic diversity and discrimination between cultivars</article-title>
<source>J Cereal Sci</source>
<year>2009</year>
<volume>49</volume>
<issue>3</issue>
<fpage>337</fpage>
<lpage>345</lpage>
<pub-id pub-id-type="doi">10.1016/j.jcs.2008.04.003</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<name>
<surname>Jackson</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Morel</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Sontag-Strohm</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Branlard</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Metakovsky</surname>
<given-names>EV</given-names>
</name>
<name>
<surname>Redaelli</surname>
<given-names>R</given-names>
</name>
<article-title>Proposal for combining the classification systems of alleles of
<italic>Gli-1 </italic>
and
<italic>Glu-3 </italic>
loci in bread wheat (
<italic>Triticum aestivum </italic>
L.)</article-title>
<source>J Genet Breed</source>
<year>1996</year>
<volume>50</volume>
<fpage>321</fpage>
<lpage>336</lpage>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<name>
<surname>Eagles</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Hollamby</surname>
<given-names>GJ</given-names>
</name>
<name>
<surname>Gororo</surname>
<given-names>NN</given-names>
</name>
<name>
<surname>Eastwood</surname>
<given-names>RF</given-names>
</name>
<article-title>Estimation and utilisation of glutenin gene effects from the analysis of unbalanced data from wheat breeding programs</article-title>
<source>Aust J Agric Res</source>
<year>2002</year>
<volume>53</volume>
<issue>4</issue>
<fpage>367</fpage>
<lpage>377</lpage>
<pub-id pub-id-type="doi">10.1071/AR01074</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<name>
<surname>Ikeda</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Araki</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Fujita</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yano</surname>
<given-names>H</given-names>
</name>
<article-title>Characterization of low-molecular-weight glutenin subunit genes and their protein products in common wheats</article-title>
<source>Theor Appl Genet</source>
<year>2006</year>
<volume>112</volume>
<issue>2</issue>
<fpage>327</fpage>
<lpage>334</lpage>
<pub-id pub-id-type="doi">10.1007/s00122-005-0131-z</pub-id>
<pub-id pub-id-type="pmid">16283233</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<name>
<surname>Appelbee</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Mekuria</surname>
<given-names>GT</given-names>
</name>
<name>
<surname>Nagasandra</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Bonneau</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Eagles</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Eastwood</surname>
<given-names>RF</given-names>
</name>
<name>
<surname>Mather</surname>
<given-names>DE</given-names>
</name>
<article-title>Novel allelic variants encoded at the
<italic>Glu-D3 </italic>
locus in bread wheat</article-title>
<source>J Cereal Sci</source>
<year>2009</year>
<volume>49</volume>
<issue>2</issue>
<fpage>254</fpage>
<lpage>261</lpage>
<pub-id pub-id-type="doi">10.1016/j.jcs.2008.10.011</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<name>
<surname>D'Ovidio</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Masci</surname>
<given-names>S</given-names>
</name>
<article-title>The low-molecular-weight glutenin subunits of wheat gluten</article-title>
<source>J Cereal Sci</source>
<year>2004</year>
<volume>39</volume>
<issue>3</issue>
<fpage>321</fpage>
<lpage>339</lpage>
<pub-id pub-id-type="doi">10.1016/j.jcs.2003.12.002</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="journal">
<name>
<surname>Anderson</surname>
<given-names>NG</given-names>
</name>
<name>
<surname>Tollaksen</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Pascoe</surname>
<given-names>FH</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>L</given-names>
</name>
<article-title>Two-dimensional electrophoretic analysis of wheat seed proteins</article-title>
<source>Crop Sci</source>
<year>1985</year>
<volume>25</volume>
<issue>4</issue>
<fpage>667</fpage>
<lpage>674</lpage>
</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="journal">
<name>
<surname>Dworschak</surname>
<given-names>RG</given-names>
</name>
<name>
<surname>Ens</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Standing</surname>
<given-names>KG</given-names>
</name>
<name>
<surname>Preston</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Marchylo</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Nightingale</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Stevenson</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Hatcher</surname>
<given-names>DW</given-names>
</name>
<article-title>Analysis of wheat gluten proteins by matrix-assisted laser desorption/ionization mass spectrometry</article-title>
<source>J Mass Spectrom</source>
<year>1998</year>
<volume>33</volume>
<issue>5</issue>
<fpage>429</fpage>
<lpage>435</lpage>
<pub-id pub-id-type="doi">10.1002/(SICI)1096-9888(199805)33:5<429::AID-JMS645>3.0.CO;2-O</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="journal">
<name>
<surname>Ghirardo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sørensen</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Petersen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jacobsen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Søndergaard</surname>
<given-names>I</given-names>
</name>
<article-title>Early prediction of wheat quality, analysis during grain development using mass spectrometry and multivariate data analysis</article-title>
<source>Rapid Commun Mass Spectrom</source>
<year>2005</year>
<volume>19</volume>
<issue>4</issue>
<fpage>525</fpage>
<lpage>532</lpage>
<pub-id pub-id-type="doi">10.1002/rcm.1823</pub-id>
<pub-id pub-id-type="pmid">15655793</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="journal">
<name>
<surname>Muccilli</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Cunsolo</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Saletti</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Foti</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Masci</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lafiandra</surname>
<given-names>D</given-names>
</name>
<article-title>Characterization of B- and C-type low molecular weight glutenin subunits by electrospray ionization mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry</article-title>
<source>Proteomics</source>
<year>2005</year>
<volume>5</volume>
<issue>3</issue>
<fpage>719</fpage>
<lpage>728</lpage>
<pub-id pub-id-type="doi">10.1002/pmic.200401029</pub-id>
<pub-id pub-id-type="pmid">15682464</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="journal">
<name>
<surname>Liu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Appels</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>XC</given-names>
</name>
<name>
<surname>Lan</surname>
<given-names>P</given-names>
</name>
<name>
<surname>He</surname>
<given-names>ZH</given-names>
</name>
<name>
<surname>Bekes</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>YM</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>WJ</given-names>
</name>
<article-title>A MALDI-TOF based analysis of high molecular weight glutenin subunits for wheat breeding</article-title>
<source>J Cereal Sci</source>
<year>2009</year>
<volume>50</volume>
<issue>2</issue>
<fpage>295</fpage>
<lpage>301</lpage>
<pub-id pub-id-type="doi">10.1016/j.jcs.2009.05.006</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="journal">
<name>
<surname>Zhang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Gianibelli</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Rampling</surname>
<given-names>LR</given-names>
</name>
<name>
<surname>Gale</surname>
<given-names>KR</given-names>
</name>
<article-title>Characterisation and marker development for low molecular weight glutenin genes from
<italic>Glu-A3 </italic>
alleles of bread wheat (
<italic>Triticum aestivum </italic>
L.)</article-title>
<source>Theor Appl Genet</source>
<year>2004</year>
<volume>108</volume>
<issue>7</issue>
<fpage>1409</fpage>
<lpage>1419</lpage>
<pub-id pub-id-type="doi">10.1007/s00122-003-1558-8</pub-id>
<pub-id pub-id-type="pmid">14727031</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>LH</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>GY</given-names>
</name>
<name>
<surname>Peña</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>XC</given-names>
</name>
<name>
<surname>He</surname>
<given-names>ZH</given-names>
</name>
<article-title>Development of STS markers and establishment of multiplex PCR for
<italic>Glu-A3 </italic>
alleles in common wheat (
<italic>Triticum aestivum </italic>
L.)</article-title>
<source>J Cereal Sci</source>
<year>2010</year>
<volume>51</volume>
<issue>3</issue>
<fpage>305</fpage>
<lpage>312</lpage>
<pub-id pub-id-type="doi">10.1016/j.jcs.2010.01.005</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>LH</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>XL</given-names>
</name>
<name>
<surname>He</surname>
<given-names>ZH</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Appels</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Peña</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>XC</given-names>
</name>
<article-title>Characterization of low-molecular-weight glutenin subunit
<italic>Glu-B3 </italic>
genes and development of STS markers in common wheat (
<italic>Triticum aestivum </italic>
L.)</article-title>
<source>Theor Appl Genet</source>
<year>2009</year>
<volume>118</volume>
<issue>3</issue>
<fpage>525</fpage>
<lpage>539</lpage>
<pub-id pub-id-type="doi">10.1007/s00122-008-0918-9</pub-id>
<pub-id pub-id-type="pmid">18989655</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="journal">
<name>
<surname>Beckwith</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Nielsen</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>Wall</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Huebner</surname>
<given-names>FR</given-names>
</name>
<article-title>Isolation and characterization of a high-molecular-weight protein from wheat gliadin</article-title>
<source>Cereal Chem</source>
<year>1966</year>
<volume>43</volume>
<issue>1</issue>
<fpage>14</fpage>
<lpage>28</lpage>
</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="journal">
<name>
<surname>Elton</surname>
<given-names>GAH</given-names>
</name>
<name>
<surname>Ewart</surname>
<given-names>JAD</given-names>
</name>
<article-title>Glutenins and gliadins electrophoretic studies</article-title>
<source>J Sci Food Agric</source>
<year>1966</year>
<volume>17</volume>
<issue>1</issue>
<fpage>34</fpage>
<lpage>38</lpage>
<pub-id pub-id-type="doi">10.1002/jsfa.2740170108</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="journal">
<name>
<surname>Jackson</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Holt</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Payne</surname>
<given-names>PI</given-names>
</name>
<article-title>Characterisation of high molecular weight gliadin and low-molecular-weight glutenin subunits of wheat endosperm by two-dimensional electrophoresis and the chromosomal localisation of their controlling genes</article-title>
<source>Theor Appl Genet</source>
<year>1983</year>
<volume>66</volume>
<issue>1</issue>
<fpage>29</fpage>
<lpage>37</lpage>
<pub-id pub-id-type="doi">10.1007/BF00281844</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="journal">
<name>
<surname>Ikeda</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Nagamine</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Fukuoka</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Yano</surname>
<given-names>H</given-names>
</name>
<article-title>Identification of new low-molecular-weight glutenin subunit genes in wheat</article-title>
<source>Theor Appl Genet</source>
<year>2002</year>
<volume>104</volume>
<issue>4</issue>
<fpage>680</fpage>
<lpage>687</lpage>
<pub-id pub-id-type="doi">10.1007/s001220100756</pub-id>
<pub-id pub-id-type="pmid">12582674</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="book">
<name>
<surname>Juhász</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gianibelli</surname>
<given-names>MC</given-names>
</name>
<person-group person-group-type="editor">Lafiandra D, Masci S, D'Ovidio R</person-group>
<article-title>Information hidden in the low molecular weight glutenin gene sequences</article-title>
<source>Proc 8th Gluten Workshop, Bitervo, Italy, The Gluten Proteins</source>
<year>2003</year>
<fpage>62</fpage>
<lpage>65</lpage>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="journal">
<name>
<surname>Branlard</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Dardevet</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Amiour</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Igrejas</surname>
<given-names>G</given-names>
</name>
<article-title>Allelic diversity of HMW and LMW glutenin subunits and omega-gliadins in French bread wheat (
<italic>Triticum aestivum </italic>
L.)</article-title>
<source>Genet Resour Crop Evol</source>
<year>2003</year>
<volume>50</volume>
<issue>7</issue>
<fpage>669</fpage>
<lpage>679</lpage>
<pub-id pub-id-type="doi">10.1023/A:1025077005401</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="book">
<name>
<surname>Ikeda</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Branlard</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Peña</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Takata</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>He</surname>
<given-names>ZH</given-names>
</name>
<name>
<surname>Lerner</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Kolman</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Yoshida</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Rogers</surname>
<given-names>WJ</given-names>
</name>
<person-group person-group-type="editor">Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P</person-group>
<article-title>International collaboration for unifying
<italic>Glu-3 </italic>
nomenclature systems in common wheat</article-title>
<source>Proc 11th Int Wheat Genet Symp, Sydney University Press, Sydney, Australia</source>
<year>2008</year>
<comment>O42</comment>
</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="journal">
<name>
<surname>Lew</surname>
<given-names>EJL</given-names>
</name>
<name>
<surname>Kuzmicky</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Kasarda</surname>
<given-names>DD</given-names>
</name>
<article-title>Characterization of low molecular weight glutenin subunits by reversed-phase high performance liquid chromatography, sodium dodecyl sulphate-polyacrylamide gel electrophoresis, and N-terminal amino acid sequencing</article-title>
<source>Cereal Chem</source>
<year>1992</year>
<volume>69</volume>
<issue>5</issue>
<fpage>508</fpage>
<lpage>515</lpage>
</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="journal">
<name>
<surname>Tao</surname>
<given-names>HP</given-names>
</name>
<name>
<surname>Kasarda</surname>
<given-names>DD</given-names>
</name>
<article-title>Two-dimensional gel mapping and N-terminal sequencing of LMW-glutenin subunits</article-title>
<source>J Exp Bot</source>
<year>1989</year>
<volume>40</volume>
<issue>9</issue>
<fpage>1015</fpage>
<lpage>1020</lpage>
<pub-id pub-id-type="doi">10.1093/jxb/40.9.1015</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="journal">
<name>
<surname>Masci</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rovelli</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Kasarda</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Vensel</surname>
<given-names>WH</given-names>
</name>
<name>
<surname>Lafiandra</surname>
<given-names>D</given-names>
</name>
<article-title>Characterisation and chromosomal localization of C-type low-molecular-weight glutenin subunits in the bread wheat cultivar Chinese Spring</article-title>
<source>Theor Appl Genet</source>
<year>2002</year>
<volume>104</volume>
<issue>2</issue>
<fpage>422</fpage>
<lpage>428</lpage>
<pub-id pub-id-type="doi">10.1007/s001220100761</pub-id>
<pub-id pub-id-type="pmid">12582715</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="journal">
<name>
<surname>Masci</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lafiandra</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Porceddu</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Lew</surname>
<given-names>EJL</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>HP</given-names>
</name>
<name>
<surname>Kasarda</surname>
<given-names>DD</given-names>
</name>
<article-title>D-glutenin subunits, N-terminal sequences and evidence for the presence of cysteine</article-title>
<source>Cereal Chem</source>
<year>1993</year>
<volume>70</volume>
<issue>5</issue>
<fpage>581</fpage>
<lpage>585</lpage>
</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<name>
<surname>Nieto-Taladriz</surname>
<given-names>MT</given-names>
</name>
<name>
<surname>Rodriguez-Quijano</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Carrillo</surname>
<given-names>JM</given-names>
</name>
<article-title>Biochemical and genetic characterization of a D glutenin subunit encoded at the
<italic>Glu-B3 </italic>
locus</article-title>
<source>Genome</source>
<year>1998</year>
<volume>41</volume>
<issue>2</issue>
<fpage>215</fpage>
<lpage>220</lpage>
<pub-id pub-id-type="doi">10.1139/gen-41-2-215</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="other">
<name>
<surname>Wrigley</surname>
<given-names>CW</given-names>
</name>
<name>
<surname>Bekes</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Bushuk</surname>
<given-names>W</given-names>
</name>
<article-title>The gluten composition of wheat varieties and genotypes</article-title>
<source>AACC International</source>
<year>2006</year>
<comment>ISBN 1-891127-51-9</comment>
</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="book">
<name>
<surname>Cornish</surname>
<given-names>GB</given-names>
</name>
<name>
<surname>Burridge</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Palmer</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Wrigley</surname>
<given-names>CW</given-names>
</name>
<person-group person-group-type="editor">Wrigley CW</person-group>
<article-title>Mapping the origins of some HMW and LMW glutenin subunit alleles in Australian germplasm</article-title>
<source>Proc 43rd Aust Cereal Chem Conf, Royal Aust Chem Inst, Melbourne</source>
<year>1993</year>
<fpage>255</fpage>
<lpage>260</lpage>
</mixed-citation>
</ref>
<ref id="B43">
<mixed-citation publication-type="journal">
<name>
<surname>Branlard</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Dardevet</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Saccomano</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Lagoutte</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Gourdon</surname>
<given-names>J</given-names>
</name>
<article-title>Genetic diversity of wheat storage proteins and bread wheat quality</article-title>
<source>Euphytica</source>
<year>2001</year>
<volume>119</volume>
<issue>1</issue>
<fpage>59</fpage>
<lpage>67</lpage>
<pub-id pub-id-type="doi">10.1023/A:1017586220359</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<mixed-citation publication-type="journal">
<name>
<surname>Luo</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Griffin</surname>
<given-names>WB</given-names>
</name>
<name>
<surname>Branlard</surname>
<given-names>G</given-names>
</name>
<name>
<surname>McNeil</surname>
<given-names>DL</given-names>
</name>
<article-title>Comparison of low and high molecular weight wheat glutenin allele effects on flour quality</article-title>
<source>Theor Appl Genet</source>
<year>2001</year>
<volume>102</volume>
<issue>6</issue>
<fpage>1088</fpage>
<lpage>1098</lpage>
<pub-id pub-id-type="doi">10.1007/s001220000433</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<mixed-citation publication-type="book">
<name>
<surname>Vawser</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Cornish</surname>
<given-names>GB</given-names>
</name>
<name>
<surname>Shepherd</surname>
<given-names>KW</given-names>
</name>
<person-group person-group-type="editor">Black CK, Panozzo JF, Wrigley CW, Batey IL, Larsen N</person-group>
<article-title>Rheological dough properties of Aroona isolines differing in glutenin subunit composition</article-title>
<source>Proc 52nd Aust Cereal Chem Conf, Royal Aust Chem Inst, Christchurch, New Zealand</source>
<year>2002</year>
<fpage>53</fpage>
<lpage>58</lpage>
</mixed-citation>
</ref>
<ref id="B46">
<mixed-citation publication-type="journal">
<name>
<surname>Singh</surname>
<given-names>NK</given-names>
</name>
<name>
<surname>Shepherd</surname>
<given-names>KW</given-names>
</name>
<name>
<surname>Cornish</surname>
<given-names>GB</given-names>
</name>
<article-title>A simplified SDS-PAGE procedure for separating LMW subunits of glutenin</article-title>
<source>J Cereal Sci</source>
<year>1991</year>
<volume>14</volume>
<issue>3</issue>
<fpage>203</fpage>
<lpage>208</lpage>
<pub-id pub-id-type="doi">10.1016/S0733-5210(09)80039-8</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<mixed-citation publication-type="journal">
<name>
<surname>Liu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>He</surname>
<given-names>ZH</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>XC</given-names>
</name>
<name>
<surname>Peña</surname>
<given-names>RJ</given-names>
</name>
<article-title>Allelic variation at the
<italic>Glu-1 </italic>
and
<italic>Glu-3 </italic>
loci, presence of the 1B/1R translocation, and their effects on mixographic properties in Chinese bread wheats</article-title>
<source>Euphytica</source>
<year>2005</year>
<volume>142</volume>
<issue>3</issue>
<fpage>197</fpage>
<lpage>204</lpage>
<pub-id pub-id-type="doi">10.1007/s10681-005-1682-4</pub-id>
</mixed-citation>
</ref>
<ref id="B48">
<mixed-citation publication-type="journal">
<name>
<surname>Marchylo</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Handel</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Mellish</surname>
<given-names>VJ</given-names>
</name>
<article-title>Fast horizontal sodium dodecyl sulfate gradient polyacrylamide gel electrophoresis for rapid wheat cultivar identification and analysis of high molecular weight glutenin subunits</article-title>
<source>Cereal Chem</source>
<year>1989</year>
<volume>66</volume>
<issue>3</issue>
<fpage>186</fpage>
<lpage>192</lpage>
</mixed-citation>
</ref>
<ref id="B49">
<mixed-citation publication-type="journal">
<name>
<surname>Zhao</surname>
<given-names>XL</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Gale</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Lei</surname>
<given-names>ZS</given-names>
</name>
<name>
<surname>He</surname>
<given-names>ZH</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>QX</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>XC</given-names>
</name>
<article-title>Identification of SNPs and development functional markers for LMW-GS genes at
<italic>Glu-D3 </italic>
and
<italic>Glu-B3 </italic>
loci in bread wheat (
<italic>Triticum aestivum </italic>
L.)</article-title>
<source>Mol Breed</source>
<year>2007</year>
<volume>20</volume>
<issue>3</issue>
<fpage>223</fpage>
<lpage>231</lpage>
<pub-id pub-id-type="doi">10.1007/s11032-007-9085-y</pub-id>
</mixed-citation>
</ref>
<ref id="B50">
<mixed-citation publication-type="journal">
<name>
<surname>Zhao</surname>
<given-names>XL</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>XC</given-names>
</name>
<name>
<surname>He</surname>
<given-names>ZH</given-names>
</name>
<name>
<surname>Gale</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Lei</surname>
<given-names>ZS</given-names>
</name>
<name>
<surname>Appels</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>WJ</given-names>
</name>
<article-title>Characterization of three low-molecular-weight
<italic>Glu-D3 </italic>
subunit genes in common wheat</article-title>
<source>Theor Appl Genet</source>
<year>2006</year>
<volume>113</volume>
<issue>7</issue>
<fpage>1247</fpage>
<lpage>1259</lpage>
<pub-id pub-id-type="doi">10.1007/s00122-006-0379-y</pub-id>
<pub-id pub-id-type="pmid">16941095</pub-id>
</mixed-citation>
</ref>
<ref id="B51">
<mixed-citation publication-type="journal">
<name>
<surname>Zhao</surname>
<given-names>XL</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>XC</given-names>
</name>
<name>
<surname>He</surname>
<given-names>ZH</given-names>
</name>
<name>
<surname>Lei</surname>
<given-names>ZS</given-names>
</name>
<name>
<surname>Appels</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>QX</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>W</given-names>
</name>
<article-title>Novel DNA variations to characterize low molecular weight glutenin
<italic>Glu-D3 </italic>
genes and develop STS markers in common wheat</article-title>
<source>Theor Appl Genet</source>
<year>2007</year>
<volume>114</volume>
<issue>3</issue>
<fpage>451</fpage>
<lpage>460</lpage>
<pub-id pub-id-type="doi">10.1007/s00122-006-0445-5</pub-id>
<pub-id pub-id-type="pmid">17106734</pub-id>
</mixed-citation>
</ref>
<ref id="B52">
<mixed-citation publication-type="journal">
<name>
<surname>Yahata</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Maruyama-Funatsuki</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Nishio</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Tabiki</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Takata</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Tanida</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Saruyama</surname>
<given-names>H</given-names>
</name>
<article-title>Wheat cultivar-specific proteins in grain revealed by 2-DE and their application to cultivar identification of flour</article-title>
<source>Proteomics</source>
<year>2005</year>
<volume>5</volume>
<issue>15</issue>
<fpage>3942</fpage>
<lpage>3953</lpage>
<pub-id pub-id-type="doi">10.1002/pmic.200402103</pub-id>
<pub-id pub-id-type="pmid">16152659</pub-id>
</mixed-citation>
</ref>
<ref id="B53">
<mixed-citation publication-type="journal">
<name>
<surname>Branlard</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Bancel</surname>
<given-names>E</given-names>
</name>
<article-title>Grain protein extraction. Plant proteomics, methods and protocols</article-title>
<source>Methods Mol Biol</source>
<year>2006</year>
<volume>355</volume>
<fpage>15</fpage>
<lpage>25</lpage>
</mixed-citation>
</ref>
<ref id="B54">
<mixed-citation publication-type="journal">
<name>
<surname>Melas</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Morel</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Autran</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Feillet</surname>
<given-names>P</given-names>
</name>
<article-title>Simple and rapid method for purifying low molecular weight subunits of glutenin from wheat</article-title>
<source>Cereal Chem</source>
<year>1994</year>
<volume>71</volume>
<issue>3</issue>
<fpage>234</fpage>
<lpage>237</lpage>
</mixed-citation>
</ref>
<ref id="B55">
<mixed-citation publication-type="journal">
<name>
<surname>Dumur</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jahier</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bancel</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Laurière</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bernard</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Branlard</surname>
<given-names>G</given-names>
</name>
<article-title>Proteomic analysis of aneuploid lines in the homeologous group 1 of the hexaploid wheat cultivar Courtot</article-title>
<source>Proteomics</source>
<year>2004</year>
<volume>4</volume>
<issue>9</issue>
<fpage>2685</fpage>
<lpage>2695</lpage>
<pub-id pub-id-type="doi">10.1002/pmic.200300800</pub-id>
<pub-id pub-id-type="pmid">15352243</pub-id>
</mixed-citation>
</ref>
<ref id="B56">
<mixed-citation publication-type="journal">
<name>
<surname>Görg</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Obermaier</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Boguth</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Harder</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Scheibe</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Wildgruber</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Weiss</surname>
<given-names>W</given-names>
</name>
<article-title>The current state of two-dimensional electrophoresis with immobilised pH gradients</article-title>
<source>Electrophoresis</source>
<year>2000</year>
<volume>21</volume>
<issue>6</issue>
<fpage>1037</fpage>
<lpage>1053</lpage>
<pub-id pub-id-type="doi">10.1002/(SICI)1522-2683(20000401)21:6<1037::AID-ELPS1037>3.0.CO;2-V</pub-id>
<pub-id pub-id-type="pmid">10786879</pub-id>
</mixed-citation>
</ref>
<ref id="B57">
<mixed-citation publication-type="journal">
<name>
<surname>Neuhoff</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Arold</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Taube</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Ehrhardt</surname>
<given-names>W</given-names>
</name>
<article-title>Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250</article-title>
<source>Electrophoresis</source>
<year>1988</year>
<volume>9</volume>
<issue>6</issue>
<fpage>255</fpage>
<lpage>262</lpage>
<pub-id pub-id-type="doi">10.1002/elps.1150090603</pub-id>
<pub-id pub-id-type="pmid">2466658</pub-id>
</mixed-citation>
</ref>
<ref id="B58">
<mixed-citation publication-type="journal">
<name>
<surname>Kussmann</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nordhoff</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Rahbek-Nielsen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Haebel</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rossel-Larsen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jakobsen</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Gobom</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mirgorodskaya</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Kroll-Kristensen</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Palm</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Roepstorff</surname>
<given-names>P</given-names>
</name>
<article-title>MALDI-MS sample preparation techniques designed for various peptide and protein analytes</article-title>
<source>J Mass Spectrom</source>
<year>1997</year>
<volume>32</volume>
<issue>6</issue>
<fpage>593</fpage>
<lpage>601</lpage>
<pub-id pub-id-type="doi">10.1002/(SICI)1096-9888(199706)32:6<593::AID-JMS511>3.0.CO;2-D</pub-id>
</mixed-citation>
</ref>
<ref id="B59">
<mixed-citation publication-type="book">
<name>
<surname>Gale</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Rampling</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Hill</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Appels</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Morris</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Morell</surname>
<given-names>M</given-names>
</name>
<etal></etal>
<person-group person-group-type="editor">Eastwood R</person-group>
<article-title>Simple high-throughput DNA markers for genotyping in wheat</article-title>
<source>Proc 10th Australian Wheat Breeding Assembly, Wheat Breeding Soc of Australia</source>
<year>2001</year>
<fpage>26</fpage>
<lpage>31</lpage>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0023019 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0023019 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024