Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Henipaviruses: recent observations on regulation of transcription and the nature of the cell receptor

Identifieur interne : 001396 ( PascalFrancis/Curation ); précédent : 001395; suivant : 001397

Henipaviruses: recent observations on regulation of transcription and the nature of the cell receptor

Auteurs : B. T. Eaton [Australie] ; P. J. Wright [Australie] ; L.-F. Wang [Australie] ; O. Sergeyev [Australie] ; W. P. Michalski [Australie] ; K. N. Bossart [États-Unis] ; C. C. Broder [États-Unis]

Source :

RBID : Pascal:04-0472244

Descripteurs français

English descriptors

Abstract

Hendra virus (HENV) and Nipah virus (NIPV) are classified in the new genus Henipavirus, within the subfamily Paramyxovirinae, family Paramyxoviridae. The genetic and biological characteristics that differentiate henipaviruses from other members of the subfamily are summarized. Although they do not display neuraminidase and hemagglutination activities and in that regard resemble viruses in the genus Morbillivirus, several recent observations highlight similarities between henipaviruses and respiroviruses (genus Respirovirus) in structure and replication strategy. First, three-dimensional modeling studies suggest that the external globular head domain of the HENV G protein resembles that of respiroviruses rather than morbilliviruses. Second, the pattern of transcriptional attenuation in HENV-infected cells resembles that observed with Sendai virus, a respirovirus, and differs from that found in cells infected with measles virus, a morbillivirus. Henipaviruses have a broad host range in vitro and in vivo, indicating wide distribution of cellular receptor molecules. The extensive host range has been confirmed in a quantitative in vitro cell-fusion assay using recombinant vaccinia viruses expressing the attachment and fusion proteins of HENV and NIPV. Cell lines of diverse origin and which are permissive in the in vitro cell fusion assay have been identified and the pattern of relative susceptibilities is the same for both HENV and NIPV, implying that both viruses use the same cell receptor. Protease treatment of permissive cells destroys their ability to fuse with cells expressing viral envelope glycoproteins. Virus overlay protein binding assay (VOPBA) and radio-immune precipitation assays confirm that both HENV and NIPV bind to membrane proteins in the 35-50 kD range. Treatment of cell membrane proteins with N-glycosidase eliminates HeV binding activity in VOPBA whereas treatment with neuraminidase has no effect on binding. Thus preliminary evidence suggests that NIPV and HENV bind to the same glycoprotein receptor via a non-sialic acid-dependant mechanism.
pA  
A01 01  1    @0 0939-1983
A03   1    @0 Arch. virol., Suppl.
A06       @2 18
A08 01  1  ENG  @1 Henipaviruses: recent observations on regulation of transcription and the nature of the cell receptor
A09 01  1  ENG  @1 Emergence and control of zoonotic viral encephalitides
A11 01  1    @1 EATON (B. T.)
A11 02  1    @1 WRIGHT (P. J.)
A11 03  1    @1 WANG (L.-F.)
A11 04  1    @1 SERGEYEV (O.)
A11 05  1    @1 MICHALSKI (W. P.)
A11 06  1    @1 BOSSART (K. N.)
A11 07  1    @1 BRODER (C. C.)
A12 01  1    @1 CALISHER (Charles H.) @9 ed.
A12 02  1    @1 GRIFFIN (Diane E.) @9 ed.
A14 01      @1 Australian Animal Health Laboratory, CSIRO Livestock Industries @2 Geelong @3 AUS @Z 1 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut.
A14 02      @1 Department of Microbiology, Monash University @2 Clayton @3 AUS @Z 2 aut.
A14 03      @1 Department of Microbiology, Uniformed Services University @2 Bethesda, Maryland @3 USA @Z 6 aut. @Z 7 aut.
A18 01  1    @1 Mérieux Foundation @2 Lyon @3 FRA @9 patr.
A20       @1 123-131
A21       @1 2004
A23 01      @0 ENG
A43 01      @1 INIST @2 6355S @5 354000117181120100
A44       @0 0000 @1 © 2004 INIST-CNRS. All rights reserved.
A45       @0 32 ref.
A47 01  1    @0 04-0472244
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Archives of virology. Supplementum
A66 01      @0 AUT
C01 01    ENG  @0 Hendra virus (HENV) and Nipah virus (NIPV) are classified in the new genus Henipavirus, within the subfamily Paramyxovirinae, family Paramyxoviridae. The genetic and biological characteristics that differentiate henipaviruses from other members of the subfamily are summarized. Although they do not display neuraminidase and hemagglutination activities and in that regard resemble viruses in the genus Morbillivirus, several recent observations highlight similarities between henipaviruses and respiroviruses (genus Respirovirus) in structure and replication strategy. First, three-dimensional modeling studies suggest that the external globular head domain of the HENV G protein resembles that of respiroviruses rather than morbilliviruses. Second, the pattern of transcriptional attenuation in HENV-infected cells resembles that observed with Sendai virus, a respirovirus, and differs from that found in cells infected with measles virus, a morbillivirus. Henipaviruses have a broad host range in vitro and in vivo, indicating wide distribution of cellular receptor molecules. The extensive host range has been confirmed in a quantitative in vitro cell-fusion assay using recombinant vaccinia viruses expressing the attachment and fusion proteins of HENV and NIPV. Cell lines of diverse origin and which are permissive in the in vitro cell fusion assay have been identified and the pattern of relative susceptibilities is the same for both HENV and NIPV, implying that both viruses use the same cell receptor. Protease treatment of permissive cells destroys their ability to fuse with cells expressing viral envelope glycoproteins. Virus overlay protein binding assay (VOPBA) and radio-immune precipitation assays confirm that both HENV and NIPV bind to membrane proteins in the 35-50 kD range. Treatment of cell membrane proteins with N-glycosidase eliminates HeV binding activity in VOPBA whereas treatment with neuraminidase has no effect on binding. Thus preliminary evidence suggests that NIPV and HENV bind to the same glycoprotein receptor via a non-sialic acid-dependant mechanism.
C02 01  X    @0 002A05C05
C03 01  X  FRE  @0 Paramyxoviridae @2 NW @5 01
C03 01  X  ENG  @0 Paramyxoviridae @2 NW @5 01
C03 01  X  SPA  @0 Paramyxoviridae @2 NW @5 01
C03 02  X  FRE  @0 Régulation @5 05
C03 02  X  ENG  @0 Regulation(control) @5 05
C03 02  X  SPA  @0 Regulación @5 05
C03 03  X  FRE  @0 Transcription @5 06
C03 03  X  ENG  @0 Transcription @5 06
C03 03  X  SPA  @0 Transcripción @5 06
C03 04  X  FRE  @0 Protéine @5 07
C03 04  X  ENG  @0 Protein @5 07
C03 04  X  SPA  @0 Proteína @5 07
C03 05  X  FRE  @0 Maladie émergente @2 NM @5 14
C03 05  X  ENG  @0 Emerging disease @2 NM @5 14
C03 05  X  SPA  @0 Enfermedad emergente @2 NM @5 14
C03 06  X  FRE  @0 Virus Nipah @4 INC @5 15
C03 07  X  FRE  @0 Virus Hendra @4 INC @5 79
C07 01  X  FRE  @0 Mononegavirales @2 NW
C07 01  X  ENG  @0 Mononegavirales @2 NW
C07 01  X  SPA  @0 Mononegavirales @2 NW
C07 02  X  FRE  @0 Virus @2 NW
C07 02  X  ENG  @0 Virus @2 NW
C07 02  X  SPA  @0 Virus @2 NW
N21       @1 264
pR  
A30 01  1  ENG  @1 Emergence and control of zoonotic viral encephalitis. Symposium @3 Veyrier du Lac FRA @4 2003-04-06

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:04-0472244

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Henipaviruses: recent observations on regulation of transcription and the nature of the cell receptor</title>
<author>
<name sortKey="Eaton, B T" sort="Eaton, B T" uniqKey="Eaton B" first="B. T." last="Eaton">B. T. Eaton</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Australian Animal Health Laboratory, CSIRO Livestock Industries</s1>
<s2>Geelong</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Wright, P J" sort="Wright, P J" uniqKey="Wright P" first="P. J." last="Wright">P. J. Wright</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Microbiology, Monash University</s1>
<s2>Clayton</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Wang, L F" sort="Wang, L F" uniqKey="Wang L" first="L.-F." last="Wang">L.-F. Wang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Australian Animal Health Laboratory, CSIRO Livestock Industries</s1>
<s2>Geelong</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Sergeyev, O" sort="Sergeyev, O" uniqKey="Sergeyev O" first="O." last="Sergeyev">O. Sergeyev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Australian Animal Health Laboratory, CSIRO Livestock Industries</s1>
<s2>Geelong</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Michalski, W P" sort="Michalski, W P" uniqKey="Michalski W" first="W. P." last="Michalski">W. P. Michalski</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Australian Animal Health Laboratory, CSIRO Livestock Industries</s1>
<s2>Geelong</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Bossart, K N" sort="Bossart, K N" uniqKey="Bossart K" first="K. N." last="Bossart">K. N. Bossart</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Microbiology, Uniformed Services University</s1>
<s2>Bethesda, Maryland</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Broder, C C" sort="Broder, C C" uniqKey="Broder C" first="C. C." last="Broder">C. C. Broder</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Microbiology, Uniformed Services University</s1>
<s2>Bethesda, Maryland</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0472244</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 04-0472244 INIST</idno>
<idno type="RBID">Pascal:04-0472244</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">004D18</idno>
<idno type="wicri:Area/PascalFrancis/Curation">001396</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Henipaviruses: recent observations on regulation of transcription and the nature of the cell receptor</title>
<author>
<name sortKey="Eaton, B T" sort="Eaton, B T" uniqKey="Eaton B" first="B. T." last="Eaton">B. T. Eaton</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Australian Animal Health Laboratory, CSIRO Livestock Industries</s1>
<s2>Geelong</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Wright, P J" sort="Wright, P J" uniqKey="Wright P" first="P. J." last="Wright">P. J. Wright</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Microbiology, Monash University</s1>
<s2>Clayton</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Wang, L F" sort="Wang, L F" uniqKey="Wang L" first="L.-F." last="Wang">L.-F. Wang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Australian Animal Health Laboratory, CSIRO Livestock Industries</s1>
<s2>Geelong</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Sergeyev, O" sort="Sergeyev, O" uniqKey="Sergeyev O" first="O." last="Sergeyev">O. Sergeyev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Australian Animal Health Laboratory, CSIRO Livestock Industries</s1>
<s2>Geelong</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Michalski, W P" sort="Michalski, W P" uniqKey="Michalski W" first="W. P." last="Michalski">W. P. Michalski</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Australian Animal Health Laboratory, CSIRO Livestock Industries</s1>
<s2>Geelong</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Bossart, K N" sort="Bossart, K N" uniqKey="Bossart K" first="K. N." last="Bossart">K. N. Bossart</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Microbiology, Uniformed Services University</s1>
<s2>Bethesda, Maryland</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Broder, C C" sort="Broder, C C" uniqKey="Broder C" first="C. C." last="Broder">C. C. Broder</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Microbiology, Uniformed Services University</s1>
<s2>Bethesda, Maryland</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Archives of virology. Supplementum</title>
<title level="j" type="abbreviated">Arch. virol., Suppl.</title>
<idno type="ISSN">0939-1983</idno>
<imprint>
<date when="2004">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Archives of virology. Supplementum</title>
<title level="j" type="abbreviated">Arch. virol., Suppl.</title>
<idno type="ISSN">0939-1983</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Emerging disease</term>
<term>Paramyxoviridae</term>
<term>Protein</term>
<term>Regulation(control)</term>
<term>Transcription</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Paramyxoviridae</term>
<term>Régulation</term>
<term>Transcription</term>
<term>Protéine</term>
<term>Maladie émergente</term>
<term>Virus Nipah</term>
<term>Virus Hendra</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Hendra virus (HENV) and Nipah virus (NIPV) are classified in the new genus Henipavirus, within the subfamily Paramyxovirinae, family Paramyxoviridae. The genetic and biological characteristics that differentiate henipaviruses from other members of the subfamily are summarized. Although they do not display neuraminidase and hemagglutination activities and in that regard resemble viruses in the genus Morbillivirus, several recent observations highlight similarities between henipaviruses and respiroviruses (genus Respirovirus) in structure and replication strategy. First, three-dimensional modeling studies suggest that the external globular head domain of the HENV G protein resembles that of respiroviruses rather than morbilliviruses. Second, the pattern of transcriptional attenuation in HENV-infected cells resembles that observed with Sendai virus, a respirovirus, and differs from that found in cells infected with measles virus, a morbillivirus. Henipaviruses have a broad host range in vitro and in vivo, indicating wide distribution of cellular receptor molecules. The extensive host range has been confirmed in a quantitative in vitro cell-fusion assay using recombinant vaccinia viruses expressing the attachment and fusion proteins of HENV and NIPV. Cell lines of diverse origin and which are permissive in the in vitro cell fusion assay have been identified and the pattern of relative susceptibilities is the same for both HENV and NIPV, implying that both viruses use the same cell receptor. Protease treatment of permissive cells destroys their ability to fuse with cells expressing viral envelope glycoproteins. Virus overlay protein binding assay (VOPBA) and radio-immune precipitation assays confirm that both HENV and NIPV bind to membrane proteins in the 35-50 kD range. Treatment of cell membrane proteins with N-glycosidase eliminates HeV binding activity in VOPBA whereas treatment with neuraminidase has no effect on binding. Thus preliminary evidence suggests that NIPV and HENV bind to the same glycoprotein receptor via a non-sialic acid-dependant mechanism.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0939-1983</s0>
</fA01>
<fA03 i2="1">
<s0>Arch. virol., Suppl.</s0>
</fA03>
<fA06>
<s2>18</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Henipaviruses: recent observations on regulation of transcription and the nature of the cell receptor</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Emergence and control of zoonotic viral encephalitides</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>EATON (B. T.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WRIGHT (P. J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WANG (L.-F.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SERGEYEV (O.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MICHALSKI (W. P.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BOSSART (K. N.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>BRODER (C. C.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>CALISHER (Charles H.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>GRIFFIN (Diane E.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Australian Animal Health Laboratory, CSIRO Livestock Industries</s1>
<s2>Geelong</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Microbiology, Monash University</s1>
<s2>Clayton</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Microbiology, Uniformed Services University</s1>
<s2>Bethesda, Maryland</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>Mérieux Foundation</s1>
<s2>Lyon</s2>
<s3>FRA</s3>
<s9>patr.</s9>
</fA18>
<fA20>
<s1>123-131</s1>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>6355S</s2>
<s5>354000117181120100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2004 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>32 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0472244</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Archives of virology. Supplementum</s0>
</fA64>
<fA66 i1="01">
<s0>AUT</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Hendra virus (HENV) and Nipah virus (NIPV) are classified in the new genus Henipavirus, within the subfamily Paramyxovirinae, family Paramyxoviridae. The genetic and biological characteristics that differentiate henipaviruses from other members of the subfamily are summarized. Although they do not display neuraminidase and hemagglutination activities and in that regard resemble viruses in the genus Morbillivirus, several recent observations highlight similarities between henipaviruses and respiroviruses (genus Respirovirus) in structure and replication strategy. First, three-dimensional modeling studies suggest that the external globular head domain of the HENV G protein resembles that of respiroviruses rather than morbilliviruses. Second, the pattern of transcriptional attenuation in HENV-infected cells resembles that observed with Sendai virus, a respirovirus, and differs from that found in cells infected with measles virus, a morbillivirus. Henipaviruses have a broad host range in vitro and in vivo, indicating wide distribution of cellular receptor molecules. The extensive host range has been confirmed in a quantitative in vitro cell-fusion assay using recombinant vaccinia viruses expressing the attachment and fusion proteins of HENV and NIPV. Cell lines of diverse origin and which are permissive in the in vitro cell fusion assay have been identified and the pattern of relative susceptibilities is the same for both HENV and NIPV, implying that both viruses use the same cell receptor. Protease treatment of permissive cells destroys their ability to fuse with cells expressing viral envelope glycoproteins. Virus overlay protein binding assay (VOPBA) and radio-immune precipitation assays confirm that both HENV and NIPV bind to membrane proteins in the 35-50 kD range. Treatment of cell membrane proteins with N-glycosidase eliminates HeV binding activity in VOPBA whereas treatment with neuraminidase has no effect on binding. Thus preliminary evidence suggests that NIPV and HENV bind to the same glycoprotein receptor via a non-sialic acid-dependant mechanism.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A05C05</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Paramyxoviridae</s0>
<s2>NW</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Paramyxoviridae</s0>
<s2>NW</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Paramyxoviridae</s0>
<s2>NW</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Régulation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Regulation(control)</s0>
<s5>05</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Regulación</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Transcription</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Transcription</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Transcripción</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Protéine</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Protein</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Proteína</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Maladie émergente</s0>
<s2>NM</s2>
<s5>14</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Emerging disease</s0>
<s2>NM</s2>
<s5>14</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Enfermedad emergente</s0>
<s2>NM</s2>
<s5>14</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Virus Nipah</s0>
<s4>INC</s4>
<s5>15</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Virus Hendra</s0>
<s4>INC</s4>
<s5>79</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Mononegavirales</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Mononegavirales</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Mononegavirales</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fN21>
<s1>264</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Emergence and control of zoonotic viral encephalitis. Symposium</s1>
<s3>Veyrier du Lac FRA</s3>
<s4>2003-04-06</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001396 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 001396 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:04-0472244
   |texte=   Henipaviruses: recent observations on regulation of transcription and the nature of the cell receptor
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024