Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Taking measure of the Andromeda halo: a kinematic analysis of the giant stream surrounding M31

Identifieur interne : 004D79 ( PascalFrancis/Corpus ); précédent : 004D78; suivant : 004D80

Taking measure of the Andromeda halo: a kinematic analysis of the giant stream surrounding M31

Auteurs : R. Ibata ; S. Chapman ; A. M. N. Ferguson ; M. Irwin ; G. Lewis ; A. Mcconnachie

Source :

RBID : Pascal:04-0411439

Descripteurs français

English descriptors

Abstract

We present a spectroscopic survey of the giant stellar stream found in the halo of the Andromeda galaxy. Taken with the DEIMOS multi-object spectrograph on the Keck2 telescope, these data display a narrow velocity dispersion of 11 ± 3 km s-1, with a steady radial velocity gradient of 245 km s-1 over the 125-kpc radial extent of the stream studied so far. This implies that the Andromeda galaxy possesses a substantial dark matter halo. We fit the orbit of the stream in different galaxy potential models. In a simple model with a composite bulge, disc and halo, where the halo follows a universal profile that is compressed by the formation of the baryonic components, we find that the kinematics of the stream require a total mass inside 125 kpc of M125 = 7.5+2.51.3x 1011M◦., or M125 > 5.4 x 1011 M◦.at the 99 per cent confidence level. This is the first galaxy in which it has been possible to measure the halo mass distribution by such direct dynamical means over such a large distance range. The resulting orbit shows that if M32 or NGC 205 is connected with the stream, they must either trail or lag the densest region of the stream by more than 100 kpc. Furthermore, according to the best-fitting orbit, the stream passes very close to M31, causing its demise as a coherent structure and producing a fan of stars that will pollute the inner halo, thereby confusing efforts to measure the properties of genuine halo populations. Our data show that several recently identified planetary nebulae, which have been proposed as evidence for the existence of a new companion of M31, are likely members of the Andromeda stream.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0035-8711
A02 01      @0 MNRAA4
A03   1    @0 Mon. Not. R. Astron. Soc.
A05       @2 351
A06       @2 1
A08 01  1  ENG  @1 Taking measure of the Andromeda halo: a kinematic analysis of the giant stream surrounding M31
A11 01  1    @1 IBATA (R.)
A11 02  1    @1 CHAPMAN (S.)
A11 03  1    @1 FERGUSON (A. M. N.)
A11 04  1    @1 IRWIN (M.)
A11 05  1    @1 LEWIS (G.)
A11 06  1    @1 MCCONNACHIE (A.)
A14 01      @1 Observatoire de Strasbourg, 11, rue de l'Université @2 Strasbourg 67000 @3 FRA @Z 1 aut.
A14 02      @1 California Institute of Technology @2 Pasadena, CA 91125 @3 USA @Z 2 aut.
A14 03      @1 Max-Plank-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, Postfach 1317 @2 Garching 85741 @3 DEU @Z 3 aut.
A14 04      @1 Institute of Astronomy, Madingley Road @2 Cambridge CB3 0HA @3 GBR @Z 4 aut. @Z 6 aut.
A14 05      @1 Institute of Astronomy, School of Physics, A29, University of Sydney @2 NSW 2006 @3 AUS @Z 5 aut.
A20       @1 117-124
A21       @1 2004
A23 01      @0 ENG
A43 01      @1 INIST @2 2067 @5 354000110328450160
A44       @0 0000 @1 © 2004 INIST-CNRS. All rights reserved.
A45       @0 34 ref.
A47 01  1    @0 04-0411439
A60       @1 P
A61       @0 A
A64 01  1    @0 Monthly Notices of the Royal Astronomical Society
A66 01      @0 GBR
C01 01    ENG  @0 We present a spectroscopic survey of the giant stellar stream found in the halo of the Andromeda galaxy. Taken with the DEIMOS multi-object spectrograph on the Keck2 telescope, these data display a narrow velocity dispersion of 11 ± 3 km s-1, with a steady radial velocity gradient of 245 km s-1 over the 125-kpc radial extent of the stream studied so far. This implies that the Andromeda galaxy possesses a substantial dark matter halo. We fit the orbit of the stream in different galaxy potential models. In a simple model with a composite bulge, disc and halo, where the halo follows a universal profile that is compressed by the formation of the baryonic components, we find that the kinematics of the stream require a total mass inside 125 kpc of M125 = 7.5+2.51.3x 1011M◦., or M125 > 5.4 x 1011 M◦.at the 99 per cent confidence level. This is the first galaxy in which it has been possible to measure the halo mass distribution by such direct dynamical means over such a large distance range. The resulting orbit shows that if M32 or NGC 205 is connected with the stream, they must either trail or lag the densest region of the stream by more than 100 kpc. Furthermore, according to the best-fitting orbit, the stream passes very close to M31, causing its demise as a coherent structure and producing a fan of stars that will pollute the inner halo, thereby confusing efforts to measure the properties of genuine halo populations. Our data show that several recently identified planetary nebulae, which have been proposed as evidence for the existence of a new companion of M31, are likely members of the Andromeda stream.
C02 01  3    @0 001E03D56N
C03 01  3  FRE  @0 Cinématique @5 26
C03 01  3  ENG  @0 Kinematics @5 26
C03 02  X  FRE  @0 Dispersion vitesse @5 28
C03 02  X  ENG  @0 Velocity dispersion @5 28
C03 02  X  SPA  @0 Dispersión velocidad @5 28
C03 03  3  FRE  @0 Vitesse radiale @5 29
C03 03  3  ENG  @0 Radial velocity @5 29
C03 04  X  FRE  @0 Gradient radial @5 30
C03 04  X  ENG  @0 Radial gradient @5 30
C03 04  X  SPA  @0 Gradiente radial @5 30
C03 05  3  FRE  @0 Matière sombre @5 31
C03 05  3  ENG  @0 Dark matter @5 31
C03 06  3  FRE  @0 Orbite @5 32
C03 06  3  ENG  @0 Orbits @5 32
C03 07  X  FRE  @0 Modèle @5 33
C03 07  X  ENG  @0 Models @5 33
C03 07  X  SPA  @0 Modelo @5 33
C03 08  3  FRE  @0 Distribution masse @5 34
C03 08  3  ENG  @0 Mass distribution @5 34
C03 09  3  FRE  @0 Nébuleuse planétaire @5 35
C03 09  3  ENG  @0 Planetary nebulae @5 35
C03 10  3  FRE  @0 Dynamique @5 36
C03 10  3  ENG  @0 Dynamics @5 36
C03 11  3  FRE  @0 Spectrométrie @5 38
C03 11  3  ENG  @0 Spectroscopy @5 38
C03 12  3  FRE  @0 Galaxies spirales @5 81
C03 12  3  ENG  @0 Spiral galaxies @5 81
N21       @1 236
N44 01      @1 PSI
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 04-0411439 INIST
ET : Taking measure of the Andromeda halo: a kinematic analysis of the giant stream surrounding M31
AU : IBATA (R.); CHAPMAN (S.); FERGUSON (A. M. N.); IRWIN (M.); LEWIS (G.); MCCONNACHIE (A.)
AF : Observatoire de Strasbourg, 11, rue de l'Université/Strasbourg 67000/France (1 aut.); California Institute of Technology/Pasadena, CA 91125/Etats-Unis (2 aut.); Max-Plank-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, Postfach 1317/Garching 85741/Allemagne (3 aut.); Institute of Astronomy, Madingley Road/Cambridge CB3 0HA/Royaume-Uni (4 aut., 6 aut.); Institute of Astronomy, School of Physics, A29, University of Sydney/NSW 2006/Australie (5 aut.)
DT : Publication en série; Niveau analytique
SO : Monthly Notices of the Royal Astronomical Society; ISSN 0035-8711; Coden MNRAA4; Royaume-Uni; Da. 2004; Vol. 351; No. 1; Pp. 117-124; Bibl. 34 ref.
LA : Anglais
EA : We present a spectroscopic survey of the giant stellar stream found in the halo of the Andromeda galaxy. Taken with the DEIMOS multi-object spectrograph on the Keck2 telescope, these data display a narrow velocity dispersion of 11 ± 3 km s-1, with a steady radial velocity gradient of 245 km s-1 over the 125-kpc radial extent of the stream studied so far. This implies that the Andromeda galaxy possesses a substantial dark matter halo. We fit the orbit of the stream in different galaxy potential models. In a simple model with a composite bulge, disc and halo, where the halo follows a universal profile that is compressed by the formation of the baryonic components, we find that the kinematics of the stream require a total mass inside 125 kpc of M125 = 7.5+2.51.3x 1011M◦., or M125 > 5.4 x 1011 M◦.at the 99 per cent confidence level. This is the first galaxy in which it has been possible to measure the halo mass distribution by such direct dynamical means over such a large distance range. The resulting orbit shows that if M32 or NGC 205 is connected with the stream, they must either trail or lag the densest region of the stream by more than 100 kpc. Furthermore, according to the best-fitting orbit, the stream passes very close to M31, causing its demise as a coherent structure and producing a fan of stars that will pollute the inner halo, thereby confusing efforts to measure the properties of genuine halo populations. Our data show that several recently identified planetary nebulae, which have been proposed as evidence for the existence of a new companion of M31, are likely members of the Andromeda stream.
CC : 001E03D56N
FD : Cinématique; Dispersion vitesse; Vitesse radiale; Gradient radial; Matière sombre; Orbite; Modèle; Distribution masse; Nébuleuse planétaire; Dynamique; Spectrométrie; Galaxies spirales
ED : Kinematics; Velocity dispersion; Radial velocity; Radial gradient; Dark matter; Orbits; Models; Mass distribution; Planetary nebulae; Dynamics; Spectroscopy; Spiral galaxies
SD : Dispersión velocidad; Gradiente radial; Modelo
LO : INIST-2067.354000110328450160
ID : 04-0411439

Links to Exploration step

Pascal:04-0411439

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Taking measure of the Andromeda halo: a kinematic analysis of the giant stream surrounding M31</title>
<author>
<name sortKey="Ibata, R" sort="Ibata, R" uniqKey="Ibata R" first="R." last="Ibata">R. Ibata</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Observatoire de Strasbourg, 11, rue de l'Université</s1>
<s2>Strasbourg 67000</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chapman, S" sort="Chapman, S" uniqKey="Chapman S" first="S." last="Chapman">S. Chapman</name>
<affiliation>
<inist:fA14 i1="02">
<s1>California Institute of Technology</s1>
<s2>Pasadena, CA 91125</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ferguson, A M N" sort="Ferguson, A M N" uniqKey="Ferguson A" first="A. M. N." last="Ferguson">A. M. N. Ferguson</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Max-Plank-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, Postfach 1317</s1>
<s2>Garching 85741</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Irwin, M" sort="Irwin, M" uniqKey="Irwin M" first="M." last="Irwin">M. Irwin</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Institute of Astronomy, Madingley Road</s1>
<s2>Cambridge CB3 0HA</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lewis, G" sort="Lewis, G" uniqKey="Lewis G" first="G." last="Lewis">G. Lewis</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Institute of Astronomy, School of Physics, A29, University of Sydney</s1>
<s2>NSW 2006</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mcconnachie, A" sort="Mcconnachie, A" uniqKey="Mcconnachie A" first="A." last="Mcconnachie">A. Mcconnachie</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Institute of Astronomy, Madingley Road</s1>
<s2>Cambridge CB3 0HA</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0411439</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 04-0411439 INIST</idno>
<idno type="RBID">Pascal:04-0411439</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">004D79</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Taking measure of the Andromeda halo: a kinematic analysis of the giant stream surrounding M31</title>
<author>
<name sortKey="Ibata, R" sort="Ibata, R" uniqKey="Ibata R" first="R." last="Ibata">R. Ibata</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Observatoire de Strasbourg, 11, rue de l'Université</s1>
<s2>Strasbourg 67000</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chapman, S" sort="Chapman, S" uniqKey="Chapman S" first="S." last="Chapman">S. Chapman</name>
<affiliation>
<inist:fA14 i1="02">
<s1>California Institute of Technology</s1>
<s2>Pasadena, CA 91125</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ferguson, A M N" sort="Ferguson, A M N" uniqKey="Ferguson A" first="A. M. N." last="Ferguson">A. M. N. Ferguson</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Max-Plank-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, Postfach 1317</s1>
<s2>Garching 85741</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Irwin, M" sort="Irwin, M" uniqKey="Irwin M" first="M." last="Irwin">M. Irwin</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Institute of Astronomy, Madingley Road</s1>
<s2>Cambridge CB3 0HA</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lewis, G" sort="Lewis, G" uniqKey="Lewis G" first="G." last="Lewis">G. Lewis</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Institute of Astronomy, School of Physics, A29, University of Sydney</s1>
<s2>NSW 2006</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mcconnachie, A" sort="Mcconnachie, A" uniqKey="Mcconnachie A" first="A." last="Mcconnachie">A. Mcconnachie</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Institute of Astronomy, Madingley Road</s1>
<s2>Cambridge CB3 0HA</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="abbreviated">Mon. Not. R. Astron. Soc.</title>
<idno type="ISSN">0035-8711</idno>
<imprint>
<date when="2004">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="abbreviated">Mon. Not. R. Astron. Soc.</title>
<idno type="ISSN">0035-8711</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Dark matter</term>
<term>Dynamics</term>
<term>Kinematics</term>
<term>Mass distribution</term>
<term>Models</term>
<term>Orbits</term>
<term>Planetary nebulae</term>
<term>Radial gradient</term>
<term>Radial velocity</term>
<term>Spectroscopy</term>
<term>Spiral galaxies</term>
<term>Velocity dispersion</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Cinématique</term>
<term>Dispersion vitesse</term>
<term>Vitesse radiale</term>
<term>Gradient radial</term>
<term>Matière sombre</term>
<term>Orbite</term>
<term>Modèle</term>
<term>Distribution masse</term>
<term>Nébuleuse planétaire</term>
<term>Dynamique</term>
<term>Spectrométrie</term>
<term>Galaxies spirales</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We present a spectroscopic survey of the giant stellar stream found in the halo of the Andromeda galaxy. Taken with the DEIMOS multi-object spectrograph on the Keck2 telescope, these data display a narrow velocity dispersion of 11 ± 3 km s
<sup>-1</sup>
, with a steady radial velocity gradient of 245 km s
<sup>-1</sup>
over the 125-kpc radial extent of the stream studied so far. This implies that the Andromeda galaxy possesses a substantial dark matter halo. We fit the orbit of the stream in different galaxy potential models. In a simple model with a composite bulge, disc and halo, where the halo follows a universal profile that is compressed by the formation of the baryonic components, we find that the kinematics of the stream require a total mass inside 125 kpc of M
<sub>125</sub>
= 7.5
<sup>+2.5</sup>
1.3x 10
<sup>11</sup>
M
<sub>◦.</sub>
, or M
<sub>125</sub>
> 5.4 x 10
<sup>11</sup>
M
<sub>◦.</sub>
at the 99 per cent confidence level. This is the first galaxy in which it has been possible to measure the halo mass distribution by such direct dynamical means over such a large distance range. The resulting orbit shows that if M32 or NGC 205 is connected with the stream, they must either trail or lag the densest region of the stream by more than 100 kpc. Furthermore, according to the best-fitting orbit, the stream passes very close to M31, causing its demise as a coherent structure and producing a fan of stars that will pollute the inner halo, thereby confusing efforts to measure the properties of genuine halo populations. Our data show that several recently identified planetary nebulae, which have been proposed as evidence for the existence of a new companion of M31, are likely members of the Andromeda stream.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0035-8711</s0>
</fA01>
<fA02 i1="01">
<s0>MNRAA4</s0>
</fA02>
<fA03 i2="1">
<s0>Mon. Not. R. Astron. Soc.</s0>
</fA03>
<fA05>
<s2>351</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Taking measure of the Andromeda halo: a kinematic analysis of the giant stream surrounding M31</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>IBATA (R.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CHAPMAN (S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FERGUSON (A. M. N.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>IRWIN (M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LEWIS (G.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>MCCONNACHIE (A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Observatoire de Strasbourg, 11, rue de l'Université</s1>
<s2>Strasbourg 67000</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>California Institute of Technology</s1>
<s2>Pasadena, CA 91125</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Max-Plank-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, Postfach 1317</s1>
<s2>Garching 85741</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Institute of Astronomy, Madingley Road</s1>
<s2>Cambridge CB3 0HA</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Institute of Astronomy, School of Physics, A29, University of Sydney</s1>
<s2>NSW 2006</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>117-124</s1>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>2067</s2>
<s5>354000110328450160</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2004 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>34 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0411439</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Monthly Notices of the Royal Astronomical Society</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We present a spectroscopic survey of the giant stellar stream found in the halo of the Andromeda galaxy. Taken with the DEIMOS multi-object spectrograph on the Keck2 telescope, these data display a narrow velocity dispersion of 11 ± 3 km s
<sup>-1</sup>
, with a steady radial velocity gradient of 245 km s
<sup>-1</sup>
over the 125-kpc radial extent of the stream studied so far. This implies that the Andromeda galaxy possesses a substantial dark matter halo. We fit the orbit of the stream in different galaxy potential models. In a simple model with a composite bulge, disc and halo, where the halo follows a universal profile that is compressed by the formation of the baryonic components, we find that the kinematics of the stream require a total mass inside 125 kpc of M
<sub>125</sub>
= 7.5
<sup>+2.5</sup>
1.3x 10
<sup>11</sup>
M
<sub>◦.</sub>
, or M
<sub>125</sub>
> 5.4 x 10
<sup>11</sup>
M
<sub>◦.</sub>
at the 99 per cent confidence level. This is the first galaxy in which it has been possible to measure the halo mass distribution by such direct dynamical means over such a large distance range. The resulting orbit shows that if M32 or NGC 205 is connected with the stream, they must either trail or lag the densest region of the stream by more than 100 kpc. Furthermore, according to the best-fitting orbit, the stream passes very close to M31, causing its demise as a coherent structure and producing a fan of stars that will pollute the inner halo, thereby confusing efforts to measure the properties of genuine halo populations. Our data show that several recently identified planetary nebulae, which have been proposed as evidence for the existence of a new companion of M31, are likely members of the Andromeda stream.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001E03D56N</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Cinématique</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Kinematics</s0>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Dispersion vitesse</s0>
<s5>28</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Velocity dispersion</s0>
<s5>28</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Dispersión velocidad</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Vitesse radiale</s0>
<s5>29</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Radial velocity</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Gradient radial</s0>
<s5>30</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Radial gradient</s0>
<s5>30</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Gradiente radial</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Matière sombre</s0>
<s5>31</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Dark matter</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Orbite</s0>
<s5>32</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Orbits</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Modèle</s0>
<s5>33</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Models</s0>
<s5>33</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Modelo</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Distribution masse</s0>
<s5>34</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Mass distribution</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Nébuleuse planétaire</s0>
<s5>35</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Planetary nebulae</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Dynamique</s0>
<s5>36</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Dynamics</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Spectrométrie</s0>
<s5>38</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Spectroscopy</s0>
<s5>38</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Galaxies spirales</s0>
<s5>81</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Spiral galaxies</s0>
<s5>81</s5>
</fC03>
<fN21>
<s1>236</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 04-0411439 INIST</NO>
<ET>Taking measure of the Andromeda halo: a kinematic analysis of the giant stream surrounding M31</ET>
<AU>IBATA (R.); CHAPMAN (S.); FERGUSON (A. M. N.); IRWIN (M.); LEWIS (G.); MCCONNACHIE (A.)</AU>
<AF>Observatoire de Strasbourg, 11, rue de l'Université/Strasbourg 67000/France (1 aut.); California Institute of Technology/Pasadena, CA 91125/Etats-Unis (2 aut.); Max-Plank-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, Postfach 1317/Garching 85741/Allemagne (3 aut.); Institute of Astronomy, Madingley Road/Cambridge CB3 0HA/Royaume-Uni (4 aut., 6 aut.); Institute of Astronomy, School of Physics, A29, University of Sydney/NSW 2006/Australie (5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Monthly Notices of the Royal Astronomical Society; ISSN 0035-8711; Coden MNRAA4; Royaume-Uni; Da. 2004; Vol. 351; No. 1; Pp. 117-124; Bibl. 34 ref.</SO>
<LA>Anglais</LA>
<EA>We present a spectroscopic survey of the giant stellar stream found in the halo of the Andromeda galaxy. Taken with the DEIMOS multi-object spectrograph on the Keck2 telescope, these data display a narrow velocity dispersion of 11 ± 3 km s
<sup>-1</sup>
, with a steady radial velocity gradient of 245 km s
<sup>-1</sup>
over the 125-kpc radial extent of the stream studied so far. This implies that the Andromeda galaxy possesses a substantial dark matter halo. We fit the orbit of the stream in different galaxy potential models. In a simple model with a composite bulge, disc and halo, where the halo follows a universal profile that is compressed by the formation of the baryonic components, we find that the kinematics of the stream require a total mass inside 125 kpc of M
<sub>125</sub>
= 7.5
<sup>+2.5</sup>
1.3x 10
<sup>11</sup>
M
<sub>◦.</sub>
, or M
<sub>125</sub>
> 5.4 x 10
<sup>11</sup>
M
<sub>◦.</sub>
at the 99 per cent confidence level. This is the first galaxy in which it has been possible to measure the halo mass distribution by such direct dynamical means over such a large distance range. The resulting orbit shows that if M32 or NGC 205 is connected with the stream, they must either trail or lag the densest region of the stream by more than 100 kpc. Furthermore, according to the best-fitting orbit, the stream passes very close to M31, causing its demise as a coherent structure and producing a fan of stars that will pollute the inner halo, thereby confusing efforts to measure the properties of genuine halo populations. Our data show that several recently identified planetary nebulae, which have been proposed as evidence for the existence of a new companion of M31, are likely members of the Andromeda stream.</EA>
<CC>001E03D56N</CC>
<FD>Cinématique; Dispersion vitesse; Vitesse radiale; Gradient radial; Matière sombre; Orbite; Modèle; Distribution masse; Nébuleuse planétaire; Dynamique; Spectrométrie; Galaxies spirales</FD>
<ED>Kinematics; Velocity dispersion; Radial velocity; Radial gradient; Dark matter; Orbits; Models; Mass distribution; Planetary nebulae; Dynamics; Spectroscopy; Spiral galaxies</ED>
<SD>Dispersión velocidad; Gradiente radial; Modelo</SD>
<LO>INIST-2067.354000110328450160</LO>
<ID>04-0411439</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004D79 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 004D79 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:04-0411439
   |texte=   Taking measure of the Andromeda halo: a kinematic analysis of the giant stream surrounding M31
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024