Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Circadian clock regulation of starch metabolism establishes GBSSI as a major contributor to amylopectin synthesis in Chlamydomonas reinhardtii[W][OA]

Identifieur interne : 004137 ( PascalFrancis/Corpus ); précédent : 004136; suivant : 004138

Circadian clock regulation of starch metabolism establishes GBSSI as a major contributor to amylopectin synthesis in Chlamydomonas reinhardtii[W][OA]

Auteurs : Jean-Philippe Ral ; Christophe Colleoni ; Fabrice Wattebled ; David Dauvillee ; Clément Nempont ; Philippe Deschamps ; ZHONGYI LI ; Matthew K. Morell ; Ravindra Chibbar ; Saul Purton ; Christophe D'Hulst ; Steven G. Ball

Source :

RBID : Pascal:06-0460322

Descripteurs français

English descriptors

Abstract

Chlamydomonas reinhardtii displays a diurnal rhythm of starch content that peaks in the middle of the night phase if the algae are provided with acetate and CO2 as a carbon source. We show that this rhythm is controlled by the circadian clock and is tightly correlated to ADP-glucose pyrophosphorylase activity. Persistence of this rhythm depends on the presence of either soluble starch synthase III or granule-bound starch synthase I (GBSSI). We show that both enzymes play a similar function in synthesizing the long glucan fraction that interconnects the amylopectin clusters. We demonstrate that in log phase-oscillating cultures, GBSSI is required to obtain maximal polysaccharide content and fully compensates for the loss of soluble starch synthase III. A point mutation in the GBSSI gene that prevents extension of amylopectin chains, but retains the enzyme's normal ability to extend maltooligosaccharides, abolishes the function of GBSSI both in amylopectin and amylose synthesis and leads to a decrease in starch content in oscillating cultures. We propose that GBSSI has evolved as a major enzyme of amylopectin synthesis and that amylose synthesis comes as a secondary consequence of prolonged synthesis by GBSSI in arrhythmic systems. Maintenance in higher plant leaves of circadian clock control of GBSSI transcription is discussed.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0032-0889
A02 01      @0 PPHYA5
A03   1    @0 Plant physiol. : (Bethesda)
A05       @2 142
A06       @2 1
A08 01  1  ENG  @1 Circadian clock regulation of starch metabolism establishes GBSSI as a major contributor to amylopectin synthesis in Chlamydomonas reinhardtii[W][OA]
A11 01  1    @1 RAL (Jean-Philippe)
A11 02  1    @1 COLLEONI (Christophe)
A11 03  1    @1 WATTEBLED (Fabrice)
A11 04  1    @1 DAUVILLEE (David)
A11 05  1    @1 NEMPONT (Clément)
A11 06  1    @1 DESCHAMPS (Philippe)
A11 07  1    @1 ZHONGYI LI
A11 08  1    @1 MORELL (Matthew K.)
A11 09  1    @1 CHIBBAR (Ravindra)
A11 10  1    @1 PURTON (Saul)
A11 11  1    @1 D'HULST (Christophe)
A11 12  1    @1 BALL (Steven G.)
A14 01      @1 Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Institut Fédératif de Recherche @2 59655 Villeneuve d'Ascq @3 FRA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut. @Z 6 aut. @Z 11 aut. @Z 12 aut.
A14 02      @1 CSIRO Plant Industry, Australian Capital Territory 2601 @2 Canberra @3 AUS @Z 7 aut. @Z 8 aut.
A14 03      @1 Plant Biotechnology Institute, National Research Council of Canada @2 Saskatoon, Saskatchewan, S7N 0W9 @3 CAN @Z 9 aut.
A14 04      @1 Department of Biology, University College London @2 London WC1E 6BT @3 GBR @Z 10 aut.
A20       @1 305-317
A21       @1 2006
A23 01      @0 ENG
A43 01      @1 INIST @2 3000 @5 354000157136890260
A44       @0 0000 @1 © 2006 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/4
A47 01  1    @0 06-0460322
A60       @1 P
A61       @0 A
A64 01  1    @0 Plant physiology : (Bethesda)
A66 01      @0 USA
C01 01    ENG  @0 Chlamydomonas reinhardtii displays a diurnal rhythm of starch content that peaks in the middle of the night phase if the algae are provided with acetate and CO2 as a carbon source. We show that this rhythm is controlled by the circadian clock and is tightly correlated to ADP-glucose pyrophosphorylase activity. Persistence of this rhythm depends on the presence of either soluble starch synthase III or granule-bound starch synthase I (GBSSI). We show that both enzymes play a similar function in synthesizing the long glucan fraction that interconnects the amylopectin clusters. We demonstrate that in log phase-oscillating cultures, GBSSI is required to obtain maximal polysaccharide content and fully compensates for the loss of soluble starch synthase III. A point mutation in the GBSSI gene that prevents extension of amylopectin chains, but retains the enzyme's normal ability to extend maltooligosaccharides, abolishes the function of GBSSI both in amylopectin and amylose synthesis and leads to a decrease in starch content in oscillating cultures. We propose that GBSSI has evolved as a major enzyme of amylopectin synthesis and that amylose synthesis comes as a secondary consequence of prolonged synthesis by GBSSI in arrhythmic systems. Maintenance in higher plant leaves of circadian clock control of GBSSI transcription is discussed.
C02 01  X    @0 002A10E02
C03 01  X  FRE  @0 Amidon @5 01
C03 01  X  ENG  @0 Starch @5 01
C03 01  X  SPA  @0 Almidón @5 01
C03 02  X  FRE  @0 Métabolisme @5 02
C03 02  X  ENG  @0 Metabolism @5 02
C03 02  X  SPA  @0 Metabolismo @5 02
C03 03  X  FRE  @0 Pyrophosphorylase @2 FE @5 03
C03 03  X  ENG  @0 Pyrophosphorylase @2 FE @5 03
C03 03  X  SPA  @0 Pyrophosphorylase @2 FE @5 03
C03 04  X  FRE  @0 Starch synthase @2 FE @5 04
C03 04  X  ENG  @0 Starch synthase @2 FE @5 04
C03 04  X  SPA  @0 Starch synthase @2 FE @5 04
C03 05  X  FRE  @0 Mutation @5 05
C03 05  X  ENG  @0 Mutation @5 05
C03 05  X  SPA  @0 Mutación @5 05
C03 06  X  FRE  @0 Gène @5 06
C03 06  X  ENG  @0 Gene @5 06
C03 06  X  SPA  @0 Gen @5 06
C03 07  X  FRE  @0 Feuille végétal @5 07
C03 07  X  ENG  @0 Plant leaf @5 07
C03 07  X  SPA  @0 Hoja vegetal @5 07
C03 08  X  FRE  @0 Transcription @5 08
C03 08  X  ENG  @0 Transcription @5 08
C03 08  X  SPA  @0 Transcripción @5 08
C03 09  X  FRE  @0 Chlamydomonas reinhardtii @2 NS @5 10
C03 09  X  ENG  @0 Chlamydomonas reinhardtii @2 NS @5 10
C03 09  X  SPA  @0 Chlamydomonas reinhardtii @2 NS @5 10
C03 10  X  FRE  @0 Carbone dioxyde @2 NK @2 FX @5 15
C03 10  X  ENG  @0 Carbon dioxide @2 NK @2 FX @5 15
C03 10  X  SPA  @0 Carbono dióxido @2 NK @2 FX @5 15
C03 11  X  FRE  @0 Polyoside @2 NK @5 16
C03 11  X  ENG  @0 Polysaccharide @2 NK @5 16
C03 11  X  SPA  @0 Poliósido @2 NK @5 16
C07 01  X  FRE  @0 Transferases @2 FE
C07 01  X  ENG  @0 Transferases @2 FE
C07 01  X  SPA  @0 Transferases @2 FE
C07 02  X  FRE  @0 Enzyme @2 FE
C07 02  X  ENG  @0 Enzyme @2 FE
C07 02  X  SPA  @0 Enzima @2 FE
C07 03  X  FRE  @0 Hexosyltransferases @2 FE
C07 03  X  ENG  @0 Hexosyltransferases @2 FE
C07 03  X  SPA  @0 Hexosyltransferases @2 FE
C07 04  X  FRE  @0 Glycosyltransferases @2 FE
C07 04  X  ENG  @0 Glycosyltransferases @2 FE
C07 04  X  SPA  @0 Glycosyltransferases @2 FE
C07 05  X  FRE  @0 Chlorophyceae @2 NS
C07 05  X  ENG  @0 Chlorophyceae @2 NS
C07 05  X  SPA  @0 Chlorophyceae @2 NS
C07 06  X  FRE  @0 Chlorophyta @2 NS
C07 06  X  ENG  @0 Chlorophyta @2 NS
C07 06  X  SPA  @0 Chlorophyta @2 NS
C07 07  X  FRE  @0 Algae @2 NS
C07 07  X  ENG  @0 Algae @2 NS
C07 07  X  SPA  @0 Algae @2 NS
C07 08  X  FRE  @0 Thallophyta @2 NS
C07 08  X  ENG  @0 Thallophyta @2 NS
C07 08  X  SPA  @0 Thallophyta @2 NS
N21       @1 303
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 06-0460322 INIST
ET : Circadian clock regulation of starch metabolism establishes GBSSI as a major contributor to amylopectin synthesis in Chlamydomonas reinhardtii[W][OA]
AU : RAL (Jean-Philippe); COLLEONI (Christophe); WATTEBLED (Fabrice); DAUVILLEE (David); NEMPONT (Clément); DESCHAMPS (Philippe); ZHONGYI LI; MORELL (Matthew K.); CHIBBAR (Ravindra); PURTON (Saul); D'HULST (Christophe); BALL (Steven G.)
AF : Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Institut Fédératif de Recherche/59655 Villeneuve d'Ascq/France (1 aut., 2 aut., 3 aut., 4 aut., 5 aut., 6 aut., 11 aut., 12 aut.); CSIRO Plant Industry, Australian Capital Territory 2601/Canberra/Australie (7 aut., 8 aut.); Plant Biotechnology Institute, National Research Council of Canada/Saskatoon, Saskatchewan, S7N 0W9/Canada (9 aut.); Department of Biology, University College London/London WC1E 6BT/Royaume-Uni (10 aut.)
DT : Publication en série; Niveau analytique
SO : Plant physiology : (Bethesda); ISSN 0032-0889; Coden PPHYA5; Etats-Unis; Da. 2006; Vol. 142; No. 1; Pp. 305-317; Bibl. 1 p.1/4
LA : Anglais
EA : Chlamydomonas reinhardtii displays a diurnal rhythm of starch content that peaks in the middle of the night phase if the algae are provided with acetate and CO2 as a carbon source. We show that this rhythm is controlled by the circadian clock and is tightly correlated to ADP-glucose pyrophosphorylase activity. Persistence of this rhythm depends on the presence of either soluble starch synthase III or granule-bound starch synthase I (GBSSI). We show that both enzymes play a similar function in synthesizing the long glucan fraction that interconnects the amylopectin clusters. We demonstrate that in log phase-oscillating cultures, GBSSI is required to obtain maximal polysaccharide content and fully compensates for the loss of soluble starch synthase III. A point mutation in the GBSSI gene that prevents extension of amylopectin chains, but retains the enzyme's normal ability to extend maltooligosaccharides, abolishes the function of GBSSI both in amylopectin and amylose synthesis and leads to a decrease in starch content in oscillating cultures. We propose that GBSSI has evolved as a major enzyme of amylopectin synthesis and that amylose synthesis comes as a secondary consequence of prolonged synthesis by GBSSI in arrhythmic systems. Maintenance in higher plant leaves of circadian clock control of GBSSI transcription is discussed.
CC : 002A10E02
FD : Amidon; Métabolisme; Pyrophosphorylase; Starch synthase; Mutation; Gène; Feuille végétal; Transcription; Chlamydomonas reinhardtii; Carbone dioxyde; Polyoside
FG : Transferases; Enzyme; Hexosyltransferases; Glycosyltransferases; Chlorophyceae; Chlorophyta; Algae; Thallophyta
ED : Starch; Metabolism; Pyrophosphorylase; Starch synthase; Mutation; Gene; Plant leaf; Transcription; Chlamydomonas reinhardtii; Carbon dioxide; Polysaccharide
EG : Transferases; Enzyme; Hexosyltransferases; Glycosyltransferases; Chlorophyceae; Chlorophyta; Algae; Thallophyta
SD : Almidón; Metabolismo; Pyrophosphorylase; Starch synthase; Mutación; Gen; Hoja vegetal; Transcripción; Chlamydomonas reinhardtii; Carbono dióxido; Poliósido
LO : INIST-3000.354000157136890260
ID : 06-0460322

Links to Exploration step

Pascal:06-0460322

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Circadian clock regulation of starch metabolism establishes GBSSI as a major contributor to amylopectin synthesis in Chlamydomonas reinhardtii
<sup>[W][OA]</sup>
</title>
<author>
<name sortKey="Ral, Jean Philippe" sort="Ral, Jean Philippe" uniqKey="Ral J" first="Jean-Philippe" last="Ral">Jean-Philippe Ral</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Institut Fédératif de Recherche</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Colleoni, Christophe" sort="Colleoni, Christophe" uniqKey="Colleoni C" first="Christophe" last="Colleoni">Christophe Colleoni</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Institut Fédératif de Recherche</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wattebled, Fabrice" sort="Wattebled, Fabrice" uniqKey="Wattebled F" first="Fabrice" last="Wattebled">Fabrice Wattebled</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Institut Fédératif de Recherche</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dauvillee, David" sort="Dauvillee, David" uniqKey="Dauvillee D" first="David" last="Dauvillee">David Dauvillee</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Institut Fédératif de Recherche</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Nempont, Clement" sort="Nempont, Clement" uniqKey="Nempont C" first="Clément" last="Nempont">Clément Nempont</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Institut Fédératif de Recherche</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Deschamps, Philippe" sort="Deschamps, Philippe" uniqKey="Deschamps P" first="Philippe" last="Deschamps">Philippe Deschamps</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Institut Fédératif de Recherche</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zhongyi Li" sort="Zhongyi Li" uniqKey="Zhongyi Li" last="Zhongyi Li">ZHONGYI LI</name>
<affiliation>
<inist:fA14 i1="02">
<s1>CSIRO Plant Industry, Australian Capital Territory 2601</s1>
<s2>Canberra</s2>
<s3>AUS</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Morell, Matthew K" sort="Morell, Matthew K" uniqKey="Morell M" first="Matthew K." last="Morell">Matthew K. Morell</name>
<affiliation>
<inist:fA14 i1="02">
<s1>CSIRO Plant Industry, Australian Capital Territory 2601</s1>
<s2>Canberra</s2>
<s3>AUS</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chibbar, Ravindra" sort="Chibbar, Ravindra" uniqKey="Chibbar R" first="Ravindra" last="Chibbar">Ravindra Chibbar</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Plant Biotechnology Institute, National Research Council of Canada</s1>
<s2>Saskatoon, Saskatchewan, S7N 0W9</s2>
<s3>CAN</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Purton, Saul" sort="Purton, Saul" uniqKey="Purton S" first="Saul" last="Purton">Saul Purton</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Biology, University College London</s1>
<s2>London WC1E 6BT</s2>
<s3>GBR</s3>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="D Hulst, Christophe" sort="D Hulst, Christophe" uniqKey="D Hulst C" first="Christophe" last="D'Hulst">Christophe D'Hulst</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Institut Fédératif de Recherche</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ball, Steven G" sort="Ball, Steven G" uniqKey="Ball S" first="Steven G." last="Ball">Steven G. Ball</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Institut Fédératif de Recherche</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0460322</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 06-0460322 INIST</idno>
<idno type="RBID">Pascal:06-0460322</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">004137</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Circadian clock regulation of starch metabolism establishes GBSSI as a major contributor to amylopectin synthesis in Chlamydomonas reinhardtii
<sup>[W][OA]</sup>
</title>
<author>
<name sortKey="Ral, Jean Philippe" sort="Ral, Jean Philippe" uniqKey="Ral J" first="Jean-Philippe" last="Ral">Jean-Philippe Ral</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Institut Fédératif de Recherche</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Colleoni, Christophe" sort="Colleoni, Christophe" uniqKey="Colleoni C" first="Christophe" last="Colleoni">Christophe Colleoni</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Institut Fédératif de Recherche</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wattebled, Fabrice" sort="Wattebled, Fabrice" uniqKey="Wattebled F" first="Fabrice" last="Wattebled">Fabrice Wattebled</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Institut Fédératif de Recherche</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dauvillee, David" sort="Dauvillee, David" uniqKey="Dauvillee D" first="David" last="Dauvillee">David Dauvillee</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Institut Fédératif de Recherche</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Nempont, Clement" sort="Nempont, Clement" uniqKey="Nempont C" first="Clément" last="Nempont">Clément Nempont</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Institut Fédératif de Recherche</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Deschamps, Philippe" sort="Deschamps, Philippe" uniqKey="Deschamps P" first="Philippe" last="Deschamps">Philippe Deschamps</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Institut Fédératif de Recherche</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zhongyi Li" sort="Zhongyi Li" uniqKey="Zhongyi Li" last="Zhongyi Li">ZHONGYI LI</name>
<affiliation>
<inist:fA14 i1="02">
<s1>CSIRO Plant Industry, Australian Capital Territory 2601</s1>
<s2>Canberra</s2>
<s3>AUS</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Morell, Matthew K" sort="Morell, Matthew K" uniqKey="Morell M" first="Matthew K." last="Morell">Matthew K. Morell</name>
<affiliation>
<inist:fA14 i1="02">
<s1>CSIRO Plant Industry, Australian Capital Territory 2601</s1>
<s2>Canberra</s2>
<s3>AUS</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chibbar, Ravindra" sort="Chibbar, Ravindra" uniqKey="Chibbar R" first="Ravindra" last="Chibbar">Ravindra Chibbar</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Plant Biotechnology Institute, National Research Council of Canada</s1>
<s2>Saskatoon, Saskatchewan, S7N 0W9</s2>
<s3>CAN</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Purton, Saul" sort="Purton, Saul" uniqKey="Purton S" first="Saul" last="Purton">Saul Purton</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Biology, University College London</s1>
<s2>London WC1E 6BT</s2>
<s3>GBR</s3>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="D Hulst, Christophe" sort="D Hulst, Christophe" uniqKey="D Hulst C" first="Christophe" last="D'Hulst">Christophe D'Hulst</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Institut Fédératif de Recherche</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ball, Steven G" sort="Ball, Steven G" uniqKey="Ball S" first="Steven G." last="Ball">Steven G. Ball</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Institut Fédératif de Recherche</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Plant physiology : (Bethesda)</title>
<title level="j" type="abbreviated">Plant physiol. : (Bethesda)</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Plant physiology : (Bethesda)</title>
<title level="j" type="abbreviated">Plant physiol. : (Bethesda)</title>
<idno type="ISSN">0032-0889</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon dioxide</term>
<term>Chlamydomonas reinhardtii</term>
<term>Gene</term>
<term>Metabolism</term>
<term>Mutation</term>
<term>Plant leaf</term>
<term>Polysaccharide</term>
<term>Pyrophosphorylase</term>
<term>Starch</term>
<term>Starch synthase</term>
<term>Transcription</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Amidon</term>
<term>Métabolisme</term>
<term>Pyrophosphorylase</term>
<term>Starch synthase</term>
<term>Mutation</term>
<term>Gène</term>
<term>Feuille végétal</term>
<term>Transcription</term>
<term>Chlamydomonas reinhardtii</term>
<term>Carbone dioxyde</term>
<term>Polyoside</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Chlamydomonas reinhardtii displays a diurnal rhythm of starch content that peaks in the middle of the night phase if the algae are provided with acetate and CO
<sub>2</sub>
as a carbon source. We show that this rhythm is controlled by the circadian clock and is tightly correlated to ADP-glucose pyrophosphorylase activity. Persistence of this rhythm depends on the presence of either soluble starch synthase III or granule-bound starch synthase I (GBSSI). We show that both enzymes play a similar function in synthesizing the long glucan fraction that interconnects the amylopectin clusters. We demonstrate that in log phase-oscillating cultures, GBSSI is required to obtain maximal polysaccharide content and fully compensates for the loss of soluble starch synthase III. A point mutation in the GBSSI gene that prevents extension of amylopectin chains, but retains the enzyme's normal ability to extend maltooligosaccharides, abolishes the function of GBSSI both in amylopectin and amylose synthesis and leads to a decrease in starch content in oscillating cultures. We propose that GBSSI has evolved as a major enzyme of amylopectin synthesis and that amylose synthesis comes as a secondary consequence of prolonged synthesis by GBSSI in arrhythmic systems. Maintenance in higher plant leaves of circadian clock control of GBSSI transcription is discussed.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0032-0889</s0>
</fA01>
<fA02 i1="01">
<s0>PPHYA5</s0>
</fA02>
<fA03 i2="1">
<s0>Plant physiol. : (Bethesda)</s0>
</fA03>
<fA05>
<s2>142</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Circadian clock regulation of starch metabolism establishes GBSSI as a major contributor to amylopectin synthesis in Chlamydomonas reinhardtii
<sup>[W][OA]</sup>
</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>RAL (Jean-Philippe)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>COLLEONI (Christophe)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WATTEBLED (Fabrice)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>DAUVILLEE (David)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>NEMPONT (Clément)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>DESCHAMPS (Philippe)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>ZHONGYI LI</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>MORELL (Matthew K.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>CHIBBAR (Ravindra)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>PURTON (Saul)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>D'HULST (Christophe)</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>BALL (Steven G.)</s1>
</fA11>
<fA14 i1="01">
<s1>Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Institut Fédératif de Recherche</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>CSIRO Plant Industry, Australian Capital Territory 2601</s1>
<s2>Canberra</s2>
<s3>AUS</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Plant Biotechnology Institute, National Research Council of Canada</s1>
<s2>Saskatoon, Saskatchewan, S7N 0W9</s2>
<s3>CAN</s3>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Biology, University College London</s1>
<s2>London WC1E 6BT</s2>
<s3>GBR</s3>
<sZ>10 aut.</sZ>
</fA14>
<fA20>
<s1>305-317</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3000</s2>
<s5>354000157136890260</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0460322</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Plant physiology : (Bethesda)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Chlamydomonas reinhardtii displays a diurnal rhythm of starch content that peaks in the middle of the night phase if the algae are provided with acetate and CO
<sub>2</sub>
as a carbon source. We show that this rhythm is controlled by the circadian clock and is tightly correlated to ADP-glucose pyrophosphorylase activity. Persistence of this rhythm depends on the presence of either soluble starch synthase III or granule-bound starch synthase I (GBSSI). We show that both enzymes play a similar function in synthesizing the long glucan fraction that interconnects the amylopectin clusters. We demonstrate that in log phase-oscillating cultures, GBSSI is required to obtain maximal polysaccharide content and fully compensates for the loss of soluble starch synthase III. A point mutation in the GBSSI gene that prevents extension of amylopectin chains, but retains the enzyme's normal ability to extend maltooligosaccharides, abolishes the function of GBSSI both in amylopectin and amylose synthesis and leads to a decrease in starch content in oscillating cultures. We propose that GBSSI has evolved as a major enzyme of amylopectin synthesis and that amylose synthesis comes as a secondary consequence of prolonged synthesis by GBSSI in arrhythmic systems. Maintenance in higher plant leaves of circadian clock control of GBSSI transcription is discussed.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A10E02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Amidon</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Starch</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Almidón</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Métabolisme</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Metabolism</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Metabolismo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Pyrophosphorylase</s0>
<s2>FE</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Pyrophosphorylase</s0>
<s2>FE</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Pyrophosphorylase</s0>
<s2>FE</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Starch synthase</s0>
<s2>FE</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Starch synthase</s0>
<s2>FE</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Starch synthase</s0>
<s2>FE</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Mutation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Mutation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Mutación</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Gène</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Gene</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Gen</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Feuille végétal</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Plant leaf</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Hoja vegetal</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Transcription</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Transcription</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Transcripción</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Chlamydomonas reinhardtii</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Chlamydomonas reinhardtii</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Chlamydomonas reinhardtii</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Carbone dioxyde</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Carbon dioxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Carbono dióxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Polyoside</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Polysaccharide</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Poliósido</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Transferases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Transferases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Transferases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Enzyme</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Enzyme</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Enzima</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Hexosyltransferases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Hexosyltransferases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Hexosyltransferases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Glycosyltransferases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Glycosyltransferases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Glycosyltransferases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Chlorophyceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Chlorophyceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Chlorophyceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Chlorophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>Chlorophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>Chlorophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="07" i2="X" l="FRE">
<s0>Algae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="07" i2="X" l="ENG">
<s0>Algae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="07" i2="X" l="SPA">
<s0>Algae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="08" i2="X" l="FRE">
<s0>Thallophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="08" i2="X" l="ENG">
<s0>Thallophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="08" i2="X" l="SPA">
<s0>Thallophyta</s0>
<s2>NS</s2>
</fC07>
<fN21>
<s1>303</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 06-0460322 INIST</NO>
<ET>Circadian clock regulation of starch metabolism establishes GBSSI as a major contributor to amylopectin synthesis in Chlamydomonas reinhardtii
<sup>[W][OA]</sup>
</ET>
<AU>RAL (Jean-Philippe); COLLEONI (Christophe); WATTEBLED (Fabrice); DAUVILLEE (David); NEMPONT (Clément); DESCHAMPS (Philippe); ZHONGYI LI; MORELL (Matthew K.); CHIBBAR (Ravindra); PURTON (Saul); D'HULST (Christophe); BALL (Steven G.)</AU>
<AF>Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Institut Fédératif de Recherche/59655 Villeneuve d'Ascq/France (1 aut., 2 aut., 3 aut., 4 aut., 5 aut., 6 aut., 11 aut., 12 aut.); CSIRO Plant Industry, Australian Capital Territory 2601/Canberra/Australie (7 aut., 8 aut.); Plant Biotechnology Institute, National Research Council of Canada/Saskatoon, Saskatchewan, S7N 0W9/Canada (9 aut.); Department of Biology, University College London/London WC1E 6BT/Royaume-Uni (10 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Plant physiology : (Bethesda); ISSN 0032-0889; Coden PPHYA5; Etats-Unis; Da. 2006; Vol. 142; No. 1; Pp. 305-317; Bibl. 1 p.1/4</SO>
<LA>Anglais</LA>
<EA>Chlamydomonas reinhardtii displays a diurnal rhythm of starch content that peaks in the middle of the night phase if the algae are provided with acetate and CO
<sub>2</sub>
as a carbon source. We show that this rhythm is controlled by the circadian clock and is tightly correlated to ADP-glucose pyrophosphorylase activity. Persistence of this rhythm depends on the presence of either soluble starch synthase III or granule-bound starch synthase I (GBSSI). We show that both enzymes play a similar function in synthesizing the long glucan fraction that interconnects the amylopectin clusters. We demonstrate that in log phase-oscillating cultures, GBSSI is required to obtain maximal polysaccharide content and fully compensates for the loss of soluble starch synthase III. A point mutation in the GBSSI gene that prevents extension of amylopectin chains, but retains the enzyme's normal ability to extend maltooligosaccharides, abolishes the function of GBSSI both in amylopectin and amylose synthesis and leads to a decrease in starch content in oscillating cultures. We propose that GBSSI has evolved as a major enzyme of amylopectin synthesis and that amylose synthesis comes as a secondary consequence of prolonged synthesis by GBSSI in arrhythmic systems. Maintenance in higher plant leaves of circadian clock control of GBSSI transcription is discussed.</EA>
<CC>002A10E02</CC>
<FD>Amidon; Métabolisme; Pyrophosphorylase; Starch synthase; Mutation; Gène; Feuille végétal; Transcription; Chlamydomonas reinhardtii; Carbone dioxyde; Polyoside</FD>
<FG>Transferases; Enzyme; Hexosyltransferases; Glycosyltransferases; Chlorophyceae; Chlorophyta; Algae; Thallophyta</FG>
<ED>Starch; Metabolism; Pyrophosphorylase; Starch synthase; Mutation; Gene; Plant leaf; Transcription; Chlamydomonas reinhardtii; Carbon dioxide; Polysaccharide</ED>
<EG>Transferases; Enzyme; Hexosyltransferases; Glycosyltransferases; Chlorophyceae; Chlorophyta; Algae; Thallophyta</EG>
<SD>Almidón; Metabolismo; Pyrophosphorylase; Starch synthase; Mutación; Gen; Hoja vegetal; Transcripción; Chlamydomonas reinhardtii; Carbono dióxido; Poliósido</SD>
<LO>INIST-3000.354000157136890260</LO>
<ID>06-0460322</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004137 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 004137 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:06-0460322
   |texte=   Circadian clock regulation of starch metabolism establishes GBSSI as a major contributor to amylopectin synthesis in Chlamydomonas reinhardtii[W][OA]
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024