Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Exploring the dynamics of reaction N(2D) + C2H4 with crossed molecular-beam experiments and quantum-chemical calculations

Identifieur interne : 001B73 ( PascalFrancis/Corpus ); précédent : 001B72; suivant : 001B74

Exploring the dynamics of reaction N(2D) + C2H4 with crossed molecular-beam experiments and quantum-chemical calculations

Auteurs : Shih-Huang Lee ; Chih-Hao Chin ; Wei-Kan Chen ; Wen-Jian Huang ; Chu-Chun Hsieh

Source :

RBID : Pascal:11-0291108

Descripteurs français

English descriptors

Abstract

We conducted the title reaction using a crossed molecular-beam apparatus, quantum-chemical calculations, and RRKM calculations. Synchrotron radiation from an undulator served to ionize selectively reaction products by advantage of negligibly small dissociative ionization. We observed two products with gross formula C2H3N and C2H2N associated with loss of one and two hydrogen atoms, respectively. Measurements of kinetic-energy distributions, angular distributions, low-resolution photoionization spectra, and branching ratios of the two products were carried out. Furthermore, we evaluated total branching ratios of various exit channels using RRKM calculations based on the potential-energy surface of reaction N(2D) + C2H4 established with the method CCSD(T)/6-311+G(3df,2p)//B3LYP/6-311G(d,p)+ZPE[B3LYP/6-311G(d,p)]. The combination of experimental and computational results allows us to reveal the reaction dynamics. The N(2D) atom adds to the C=C π-bond of ethene (C2H4) to form a cyclic complex c-CH2(N)CH2 that directly ejects a hydrogen atom or rearranges to other intermediates followed by elimination of a hydrogen atom to produce C2H3N; c-CH2(N)CH + H is the dominant product channel. Subsequently, most C2H3N radicals, notably c-CH2(N)CH, further decompose to CH2CN+H. This work provides results and explanations different from the previous work of Balucani et al. [J. Phys. Chem. A, 2000, 104, 5655], indicating that selective photoionization with synchrotron radiation as an ionization source is a good choice in chemical dynamics research.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1463-9076
A03   1    @0 PCCP, Phys. chem. chem. phys. : (Print)
A05       @2 13
A06       @2 18
A08 01  1  ENG  @1 Exploring the dynamics of reaction N(2D) + C2H4 with crossed molecular-beam experiments and quantum-chemical calculations
A09 01  1  ENG  @1 Molecular Collision Dynamics
A11 01  1    @1 LEE (Shih-Huang)
A11 02  1    @1 CHIN (Chih-Hao)
A11 03  1    @1 CHEN (Wei-Kan)
A11 04  1    @1 HUANG (Wen-Jian)
A11 05  1    @1 HSIEH (Chu-Chun)
A12 01  1    @1 CASAVECCHIA (Piergiorgio) @9 ed.
A12 02  1    @1 BROUARD (Mark) @9 ed.
A12 03  1    @1 COSTES (Michel) @9 ed.
A12 04  1    @1 NESBITT (David) @9 ed.
A12 05  1    @1 BIESKE (Evan) @9 ed.
A12 06  1    @1 KABLE (Scott) @9 ed.
A14 01      @1 National Synchrotron Radiation Research Center (NSRRC), 101 Hsin-Ann Road, Hsinchu Science Park @2 Hsinchu 30076 @3 TWN @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut.
A14 02      @1 Department of Applied Chemistry, National Chiao-Tung University, 1001 University Road @2 Hsinchu 30010 @3 TWN @Z 1 aut. @Z 5 aut.
A15 01      @1 Università degli Studi di Perugia, Dipartimento di Chimica, via Elce dio Sotto, 8 @2 06123 Perugia @3 ITA @Z 1 aut.
A15 02      @1 Oxford University, Department of Chemistry, The Physical and Theoretical Chemistry Laboratory, South Parks Road @2 Oxford, OX1 3QZ @3 GBR @Z 2 aut.
A15 03      @1 Université Bordeaux 1/CNRS UMR 5255, Institut des Sciences Moléculaires @2 33405 Talence @3 FRA @Z 3 aut.
A15 04      @1 JILA/NIST, Department of Chemistry and Biochemistry, University of Colorado, @2 Boulder, CO, 80309 @3 USA @Z 4 aut.
A15 05      @1 University of Melbourne, School of Chemistry @3 AUS @Z 5 aut.
A15 06      @1 University of Sydney, School of Chemistry @3 AUS @Z 6 aut.
A20       @1 8515-8525
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 26801 @5 354000191573960450
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 32 ref.
A47 01  1    @0 11-0291108
A60       @1 P @3 PR
A61       @0 A
A64 01  1    @0 PCCP. Physical chemistry chemical physics : (Print)
A66 01      @0 GBR
C01 01    ENG  @0 We conducted the title reaction using a crossed molecular-beam apparatus, quantum-chemical calculations, and RRKM calculations. Synchrotron radiation from an undulator served to ionize selectively reaction products by advantage of negligibly small dissociative ionization. We observed two products with gross formula C2H3N and C2H2N associated with loss of one and two hydrogen atoms, respectively. Measurements of kinetic-energy distributions, angular distributions, low-resolution photoionization spectra, and branching ratios of the two products were carried out. Furthermore, we evaluated total branching ratios of various exit channels using RRKM calculations based on the potential-energy surface of reaction N(2D) + C2H4 established with the method CCSD(T)/6-311+G(3df,2p)//B3LYP/6-311G(d,p)+ZPE[B3LYP/6-311G(d,p)]. The combination of experimental and computational results allows us to reveal the reaction dynamics. The N(2D) atom adds to the C=C π-bond of ethene (C2H4) to form a cyclic complex c-CH2(N)CH2 that directly ejects a hydrogen atom or rearranges to other intermediates followed by elimination of a hydrogen atom to produce C2H3N; c-CH2(N)CH + H is the dominant product channel. Subsequently, most C2H3N radicals, notably c-CH2(N)CH, further decompose to CH2CN+H. This work provides results and explanations different from the previous work of Balucani et al. [J. Phys. Chem. A, 2000, 104, 5655], indicating that selective photoionization with synchrotron radiation as an ionization source is a good choice in chemical dynamics research.
C02 01  X    @0 001C01
C03 01  X  FRE  @0 Dynamique @5 01
C03 01  X  ENG  @0 Dynamics @5 01
C03 01  X  SPA  @0 Dinámica @5 01
C03 02  X  FRE  @0 Ethylène @2 NK @2 FX @5 02
C03 02  X  ENG  @0 Ethylene @2 NK @2 FX @5 02
C03 02  X  SPA  @0 Etileno @2 NK @2 FX @5 02
C03 03  X  FRE  @0 Faisceau croisé @5 03
C03 03  X  ENG  @0 Crossed beams @5 03
C03 03  X  SPA  @0 Haz cruzado @5 03
C03 04  X  FRE  @0 Faisceau moléculaire @5 04
C03 04  X  ENG  @0 Molecular beam @5 04
C03 04  X  SPA  @0 Haz molecular @5 04
C03 05  X  FRE  @0 Calcul @5 05
C03 05  X  ENG  @0 Calculation @5 05
C03 05  X  SPA  @0 Cálculo @5 05
C03 06  X  FRE  @0 Dispositif expérimental @5 06
C03 06  X  ENG  @0 Experimental device @5 06
C03 06  X  SPA  @0 Dispositivo experimental @5 06
C03 07  X  FRE  @0 Rayonnement synchrotron @5 07
C03 07  X  ENG  @0 Synchrotron radiation @5 07
C03 07  X  SPA  @0 Radiación sincrotrón @5 07
C03 08  X  FRE  @0 Produit réaction @5 08
C03 08  X  ENG  @0 Reaction product @5 08
C03 08  X  SPA  @0 Producto reacción @5 08
C03 09  X  FRE  @0 Ionisation dissociative @5 09
C03 09  X  ENG  @0 Dissociative ionization @5 09
C03 09  X  SPA  @0 Ionización disociativa @5 09
C03 10  X  FRE  @0 Hydrogène @2 NC @5 10
C03 10  X  ENG  @0 Hydrogen @2 NC @5 10
C03 10  X  SPA  @0 Hidrógeno @2 NC @5 10
C03 11  X  FRE  @0 Energie cinétique @5 11
C03 11  X  ENG  @0 Kinetic energy @5 11
C03 11  X  SPA  @0 Energía cinética @5 11
C03 12  X  FRE  @0 Distribution énergie @5 12
C03 12  X  ENG  @0 Energy distribution @5 12
C03 12  X  SPA  @0 Distribución energía @5 12
C03 13  X  FRE  @0 Distribution angulaire @5 13
C03 13  X  ENG  @0 Angular distribution @5 13
C03 13  X  SPA  @0 Distribución angular @5 13
C03 14  X  FRE  @0 Résolution angulaire @5 14
C03 14  X  ENG  @0 Angular resolution @5 14
C03 14  X  SPA  @0 Separación angular @5 14
C03 15  X  FRE  @0 Photoionisation @5 15
C03 15  X  ENG  @0 Photoionization @5 15
C03 15  X  SPA  @0 Fotoionización @5 15
C03 16  X  FRE  @0 Rapport branchement @5 16
C03 16  X  ENG  @0 Branching ratio @5 16
C03 16  X  SPA  @0 Relación ramificación @5 16
C03 17  3  FRE  @0 Surface énergie potentielle @5 17
C03 17  3  ENG  @0 Potential energy surfaces @5 17
C03 18  X  FRE  @0 Méthode amas couplé @5 18
C03 18  X  ENG  @0 Coupled cluster method @5 18
C03 18  X  SPA  @0 Método conglomerado acoplado @5 18
C03 19  3  FRE  @0 Méthode fonctionnelle densité @5 19
C03 19  3  ENG  @0 Density functional method @5 19
C03 20  X  FRE  @0 Complexe @2 NA @5 20
C03 20  X  ENG  @0 Complexes @2 NA @5 20
C03 20  X  SPA  @0 Complejo @2 NA @5 20
C03 21  X  FRE  @0 Corrélation électronique @5 21
C03 21  X  ENG  @0 Electron correlation @5 21
C03 21  X  SPA  @0 Correlación electrónica @5 21
C03 22  X  FRE  @0 Etude théorique @5 22
C03 22  X  ENG  @0 Theoretical study @5 22
C03 22  X  SPA  @0 Estudio teórico @5 22
C03 23  X  FRE  @0 3115D @4 INC @5 32
C03 24  X  FRE  @0 3115E @4 INC @5 33
N21       @1 192
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 11-0291108 INIST
ET : Exploring the dynamics of reaction N(2D) + C2H4 with crossed molecular-beam experiments and quantum-chemical calculations
AU : LEE (Shih-Huang); CHIN (Chih-Hao); CHEN (Wei-Kan); HUANG (Wen-Jian); HSIEH (Chu-Chun); CASAVECCHIA (Piergiorgio); BROUARD (Mark); COSTES (Michel); NESBITT (David); BIESKE (Evan); KABLE (Scott)
AF : National Synchrotron Radiation Research Center (NSRRC), 101 Hsin-Ann Road, Hsinchu Science Park/Hsinchu 30076/Taïwan (1 aut., 2 aut., 3 aut., 4 aut., 5 aut.); Department of Applied Chemistry, National Chiao-Tung University, 1001 University Road/Hsinchu 30010/Taïwan (1 aut., 5 aut.); Università degli Studi di Perugia, Dipartimento di Chimica, via Elce dio Sotto, 8/06123 Perugia/Italie (1 aut.); Oxford University, Department of Chemistry, The Physical and Theoretical Chemistry Laboratory, South Parks Road/Oxford, OX1 3QZ/Royaume-Uni (2 aut.); Université Bordeaux 1/CNRS UMR 5255, Institut des Sciences Moléculaires/33405 Talence/France (3 aut.); JILA/NIST, Department of Chemistry and Biochemistry, University of Colorado,/Boulder, CO, 80309/Etats-Unis (4 aut.); University of Melbourne, School of Chemistry/Australie (5 aut.); University of Sydney, School of Chemistry/Australie (6 aut.)
DT : Publication en série; Papier de recherche; Niveau analytique
SO : PCCP. Physical chemistry chemical physics : (Print); ISSN 1463-9076; Royaume-Uni; Da. 2011; Vol. 13; No. 18; Pp. 8515-8525; Bibl. 32 ref.
LA : Anglais
EA : We conducted the title reaction using a crossed molecular-beam apparatus, quantum-chemical calculations, and RRKM calculations. Synchrotron radiation from an undulator served to ionize selectively reaction products by advantage of negligibly small dissociative ionization. We observed two products with gross formula C2H3N and C2H2N associated with loss of one and two hydrogen atoms, respectively. Measurements of kinetic-energy distributions, angular distributions, low-resolution photoionization spectra, and branching ratios of the two products were carried out. Furthermore, we evaluated total branching ratios of various exit channels using RRKM calculations based on the potential-energy surface of reaction N(2D) + C2H4 established with the method CCSD(T)/6-311+G(3df,2p)//B3LYP/6-311G(d,p)+ZPE[B3L YP/6-311G(d,p)]. The combination of experimental and computational results allows us to reveal the reaction dynamics. The N(2D) atom adds to the C=C π-bond of ethene (C2H4) to form a cyclic complex c-CH2(N)CH2 that directly ejects a hydrogen atom or rearranges to other intermediates followed by elimination of a hydrogen atom to produce C2H3N; c-CH2(N)CH + H is the dominant product channel. Subsequently, most C2H3N radicals, notably c-CH2(N)CH, further decompose to CH2CN+H. This work provides results and explanations different from the previous work of Balucani et al. [J. Phys. Chem. A, 2000, 104, 5655], indicating that selective photoionization with synchrotron radiation as an ionization source is a good choice in chemical dynamics research.
CC : 001C01
FD : Dynamique; Ethylène; Faisceau croisé; Faisceau moléculaire; Calcul; Dispositif expérimental; Rayonnement synchrotron; Produit réaction; Ionisation dissociative; Hydrogène; Energie cinétique; Distribution énergie; Distribution angulaire; Résolution angulaire; Photoionisation; Rapport branchement; Surface énergie potentielle; Méthode amas couplé; Méthode fonctionnelle densité; Complexe; Corrélation électronique; Etude théorique; 3115D; 3115E
ED : Dynamics; Ethylene; Crossed beams; Molecular beam; Calculation; Experimental device; Synchrotron radiation; Reaction product; Dissociative ionization; Hydrogen; Kinetic energy; Energy distribution; Angular distribution; Angular resolution; Photoionization; Branching ratio; Potential energy surfaces; Coupled cluster method; Density functional method; Complexes; Electron correlation; Theoretical study
SD : Dinámica; Etileno; Haz cruzado; Haz molecular; Cálculo; Dispositivo experimental; Radiación sincrotrón; Producto reacción; Ionización disociativa; Hidrógeno; Energía cinética; Distribución energía; Distribución angular; Separación angular; Fotoionización; Relación ramificación; Método conglomerado acoplado; Complejo; Correlación electrónica; Estudio teórico
LO : INIST-26801.354000191573960450
ID : 11-0291108

Links to Exploration step

Pascal:11-0291108

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Exploring the dynamics of reaction N(
<sup>2</sup>
D) + C
<sub>2</sub>
H
<sub>4</sub>
with crossed molecular-beam experiments and quantum-chemical calculations</title>
<author>
<name sortKey="Lee, Shih Huang" sort="Lee, Shih Huang" uniqKey="Lee S" first="Shih-Huang" last="Lee">Shih-Huang Lee</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Synchrotron Radiation Research Center (NSRRC), 101 Hsin-Ann Road, Hsinchu Science Park</s1>
<s2>Hsinchu 30076</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Applied Chemistry, National Chiao-Tung University, 1001 University Road</s1>
<s2>Hsinchu 30010</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chin, Chih Hao" sort="Chin, Chih Hao" uniqKey="Chin C" first="Chih-Hao" last="Chin">Chih-Hao Chin</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Synchrotron Radiation Research Center (NSRRC), 101 Hsin-Ann Road, Hsinchu Science Park</s1>
<s2>Hsinchu 30076</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chen, Wei Kan" sort="Chen, Wei Kan" uniqKey="Chen W" first="Wei-Kan" last="Chen">Wei-Kan Chen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Synchrotron Radiation Research Center (NSRRC), 101 Hsin-Ann Road, Hsinchu Science Park</s1>
<s2>Hsinchu 30076</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Huang, Wen Jian" sort="Huang, Wen Jian" uniqKey="Huang W" first="Wen-Jian" last="Huang">Wen-Jian Huang</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Synchrotron Radiation Research Center (NSRRC), 101 Hsin-Ann Road, Hsinchu Science Park</s1>
<s2>Hsinchu 30076</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hsieh, Chu Chun" sort="Hsieh, Chu Chun" uniqKey="Hsieh C" first="Chu-Chun" last="Hsieh">Chu-Chun Hsieh</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Synchrotron Radiation Research Center (NSRRC), 101 Hsin-Ann Road, Hsinchu Science Park</s1>
<s2>Hsinchu 30076</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Applied Chemistry, National Chiao-Tung University, 1001 University Road</s1>
<s2>Hsinchu 30010</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0291108</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0291108 INIST</idno>
<idno type="RBID">Pascal:11-0291108</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001B73</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Exploring the dynamics of reaction N(
<sup>2</sup>
D) + C
<sub>2</sub>
H
<sub>4</sub>
with crossed molecular-beam experiments and quantum-chemical calculations</title>
<author>
<name sortKey="Lee, Shih Huang" sort="Lee, Shih Huang" uniqKey="Lee S" first="Shih-Huang" last="Lee">Shih-Huang Lee</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Synchrotron Radiation Research Center (NSRRC), 101 Hsin-Ann Road, Hsinchu Science Park</s1>
<s2>Hsinchu 30076</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Applied Chemistry, National Chiao-Tung University, 1001 University Road</s1>
<s2>Hsinchu 30010</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chin, Chih Hao" sort="Chin, Chih Hao" uniqKey="Chin C" first="Chih-Hao" last="Chin">Chih-Hao Chin</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Synchrotron Radiation Research Center (NSRRC), 101 Hsin-Ann Road, Hsinchu Science Park</s1>
<s2>Hsinchu 30076</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chen, Wei Kan" sort="Chen, Wei Kan" uniqKey="Chen W" first="Wei-Kan" last="Chen">Wei-Kan Chen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Synchrotron Radiation Research Center (NSRRC), 101 Hsin-Ann Road, Hsinchu Science Park</s1>
<s2>Hsinchu 30076</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Huang, Wen Jian" sort="Huang, Wen Jian" uniqKey="Huang W" first="Wen-Jian" last="Huang">Wen-Jian Huang</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Synchrotron Radiation Research Center (NSRRC), 101 Hsin-Ann Road, Hsinchu Science Park</s1>
<s2>Hsinchu 30076</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hsieh, Chu Chun" sort="Hsieh, Chu Chun" uniqKey="Hsieh C" first="Chu-Chun" last="Hsieh">Chu-Chun Hsieh</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Synchrotron Radiation Research Center (NSRRC), 101 Hsin-Ann Road, Hsinchu Science Park</s1>
<s2>Hsinchu 30076</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Applied Chemistry, National Chiao-Tung University, 1001 University Road</s1>
<s2>Hsinchu 30010</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">PCCP. Physical chemistry chemical physics : (Print)</title>
<title level="j" type="abbreviated">PCCP, Phys. chem. chem. phys. : (Print)</title>
<idno type="ISSN">1463-9076</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">PCCP. Physical chemistry chemical physics : (Print)</title>
<title level="j" type="abbreviated">PCCP, Phys. chem. chem. phys. : (Print)</title>
<idno type="ISSN">1463-9076</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Angular distribution</term>
<term>Angular resolution</term>
<term>Branching ratio</term>
<term>Calculation</term>
<term>Complexes</term>
<term>Coupled cluster method</term>
<term>Crossed beams</term>
<term>Density functional method</term>
<term>Dissociative ionization</term>
<term>Dynamics</term>
<term>Electron correlation</term>
<term>Energy distribution</term>
<term>Ethylene</term>
<term>Experimental device</term>
<term>Hydrogen</term>
<term>Kinetic energy</term>
<term>Molecular beam</term>
<term>Photoionization</term>
<term>Potential energy surfaces</term>
<term>Reaction product</term>
<term>Synchrotron radiation</term>
<term>Theoretical study</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Dynamique</term>
<term>Ethylène</term>
<term>Faisceau croisé</term>
<term>Faisceau moléculaire</term>
<term>Calcul</term>
<term>Dispositif expérimental</term>
<term>Rayonnement synchrotron</term>
<term>Produit réaction</term>
<term>Ionisation dissociative</term>
<term>Hydrogène</term>
<term>Energie cinétique</term>
<term>Distribution énergie</term>
<term>Distribution angulaire</term>
<term>Résolution angulaire</term>
<term>Photoionisation</term>
<term>Rapport branchement</term>
<term>Surface énergie potentielle</term>
<term>Méthode amas couplé</term>
<term>Méthode fonctionnelle densité</term>
<term>Complexe</term>
<term>Corrélation électronique</term>
<term>Etude théorique</term>
<term>3115D</term>
<term>3115E</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We conducted the title reaction using a crossed molecular-beam apparatus, quantum-chemical calculations, and RRKM calculations. Synchrotron radiation from an undulator served to ionize selectively reaction products by advantage of negligibly small dissociative ionization. We observed two products with gross formula C
<sub>2</sub>
H
<sub>3</sub>
N and C
<sub>2</sub>
H
<sub>2</sub>
N associated with loss of one and two hydrogen atoms, respectively. Measurements of kinetic-energy distributions, angular distributions, low-resolution photoionization spectra, and branching ratios of the two products were carried out. Furthermore, we evaluated total branching ratios of various exit channels using RRKM calculations based on the potential-energy surface of reaction N(
<sup>2</sup>
D) + C
<sub>2</sub>
H
<sub>4</sub>
established with the method CCSD(T)/6-311+G(3df,2p)//B3LYP/6-311G(d,p)+ZPE[B3LYP/6-311G(d,p)]. The combination of experimental and computational results allows us to reveal the reaction dynamics. The N(
<sup>2</sup>
D) atom adds to the C=C π-bond of ethene (C
<sub>2</sub>
H
<sub>4</sub>
) to form a cyclic complex c-CH
<sub>2</sub>
(N)CH
<sub>2</sub>
that directly ejects a hydrogen atom or rearranges to other intermediates followed by elimination of a hydrogen atom to produce C
<sub>2</sub>
H
<sub>3</sub>
N; c-CH
<sub>2</sub>
(N)CH + H is the dominant product channel. Subsequently, most C
<sub>2</sub>
H
<sub>3</sub>
N radicals, notably c-CH
<sub>2</sub>
(N)CH, further decompose to CH
<sub>2</sub>
CN+H. This work provides results and explanations different from the previous work of Balucani et al. [J. Phys. Chem. A, 2000, 104, 5655], indicating that selective photoionization with synchrotron radiation as an ionization source is a good choice in chemical dynamics research.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1463-9076</s0>
</fA01>
<fA03 i2="1">
<s0>PCCP, Phys. chem. chem. phys. : (Print)</s0>
</fA03>
<fA05>
<s2>13</s2>
</fA05>
<fA06>
<s2>18</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Exploring the dynamics of reaction N(
<sup>2</sup>
D) + C
<sub>2</sub>
H
<sub>4</sub>
with crossed molecular-beam experiments and quantum-chemical calculations</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Molecular Collision Dynamics</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>LEE (Shih-Huang)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CHIN (Chih-Hao)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CHEN (Wei-Kan)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HUANG (Wen-Jian)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>HSIEH (Chu-Chun)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>CASAVECCHIA (Piergiorgio)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>BROUARD (Mark)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>COSTES (Michel)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>NESBITT (David)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>BIESKE (Evan)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="06" i2="1">
<s1>KABLE (Scott)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>National Synchrotron Radiation Research Center (NSRRC), 101 Hsin-Ann Road, Hsinchu Science Park</s1>
<s2>Hsinchu 30076</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Applied Chemistry, National Chiao-Tung University, 1001 University Road</s1>
<s2>Hsinchu 30010</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Università degli Studi di Perugia, Dipartimento di Chimica, via Elce dio Sotto, 8</s1>
<s2>06123 Perugia</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Oxford University, Department of Chemistry, The Physical and Theoretical Chemistry Laboratory, South Parks Road</s1>
<s2>Oxford, OX1 3QZ</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Université Bordeaux 1/CNRS UMR 5255, Institut des Sciences Moléculaires</s1>
<s2>33405 Talence</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>JILA/NIST, Department of Chemistry and Biochemistry, University of Colorado,</s1>
<s2>Boulder, CO, 80309</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA15 i1="05">
<s1>University of Melbourne, School of Chemistry</s1>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
</fA15>
<fA15 i1="06">
<s1>University of Sydney, School of Chemistry</s1>
<s3>AUS</s3>
<sZ>6 aut.</sZ>
</fA15>
<fA20>
<s1>8515-8525</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26801</s2>
<s5>354000191573960450</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>32 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0291108</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>PR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>PCCP. Physical chemistry chemical physics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We conducted the title reaction using a crossed molecular-beam apparatus, quantum-chemical calculations, and RRKM calculations. Synchrotron radiation from an undulator served to ionize selectively reaction products by advantage of negligibly small dissociative ionization. We observed two products with gross formula C
<sub>2</sub>
H
<sub>3</sub>
N and C
<sub>2</sub>
H
<sub>2</sub>
N associated with loss of one and two hydrogen atoms, respectively. Measurements of kinetic-energy distributions, angular distributions, low-resolution photoionization spectra, and branching ratios of the two products were carried out. Furthermore, we evaluated total branching ratios of various exit channels using RRKM calculations based on the potential-energy surface of reaction N(
<sup>2</sup>
D) + C
<sub>2</sub>
H
<sub>4</sub>
established with the method CCSD(T)/6-311+G(3df,2p)//B3LYP/6-311G(d,p)+ZPE[B3LYP/6-311G(d,p)]. The combination of experimental and computational results allows us to reveal the reaction dynamics. The N(
<sup>2</sup>
D) atom adds to the C=C π-bond of ethene (C
<sub>2</sub>
H
<sub>4</sub>
) to form a cyclic complex c-CH
<sub>2</sub>
(N)CH
<sub>2</sub>
that directly ejects a hydrogen atom or rearranges to other intermediates followed by elimination of a hydrogen atom to produce C
<sub>2</sub>
H
<sub>3</sub>
N; c-CH
<sub>2</sub>
(N)CH + H is the dominant product channel. Subsequently, most C
<sub>2</sub>
H
<sub>3</sub>
N radicals, notably c-CH
<sub>2</sub>
(N)CH, further decompose to CH
<sub>2</sub>
CN+H. This work provides results and explanations different from the previous work of Balucani et al. [J. Phys. Chem. A, 2000, 104, 5655], indicating that selective photoionization with synchrotron radiation as an ionization source is a good choice in chemical dynamics research.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Dynamique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Dynamics</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Dinámica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Ethylène</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Ethylene</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Etileno</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Faisceau croisé</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Crossed beams</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Haz cruzado</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Faisceau moléculaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Molecular beam</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Haz molecular</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Calcul</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Calculation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Cálculo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Dispositif expérimental</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Experimental device</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Dispositivo experimental</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Rayonnement synchrotron</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Synchrotron radiation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Radiación sincrotrón</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Produit réaction</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Reaction product</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Producto reacción</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Ionisation dissociative</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Dissociative ionization</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Ionización disociativa</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Hydrogène</s0>
<s2>NC</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Hydrogen</s0>
<s2>NC</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Hidrógeno</s0>
<s2>NC</s2>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Energie cinétique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Kinetic energy</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Energía cinética</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Distribution énergie</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Energy distribution</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Distribución energía</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Distribution angulaire</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Angular distribution</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Distribución angular</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Résolution angulaire</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Angular resolution</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Separación angular</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Photoionisation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Photoionization</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Fotoionización</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Rapport branchement</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Branching ratio</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Relación ramificación</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Surface énergie potentielle</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Potential energy surfaces</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Méthode amas couplé</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Coupled cluster method</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Método conglomerado acoplado</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Méthode fonctionnelle densité</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Density functional method</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Complexe</s0>
<s2>NA</s2>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Complexes</s0>
<s2>NA</s2>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Complejo</s0>
<s2>NA</s2>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Corrélation électronique</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Electron correlation</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Correlación electrónica</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Etude théorique</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Theoretical study</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Estudio teórico</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>3115D</s0>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>3115E</s0>
<s4>INC</s4>
<s5>33</s5>
</fC03>
<fN21>
<s1>192</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 11-0291108 INIST</NO>
<ET>Exploring the dynamics of reaction N(
<sup>2</sup>
D) + C
<sub>2</sub>
H
<sub>4</sub>
with crossed molecular-beam experiments and quantum-chemical calculations</ET>
<AU>LEE (Shih-Huang); CHIN (Chih-Hao); CHEN (Wei-Kan); HUANG (Wen-Jian); HSIEH (Chu-Chun); CASAVECCHIA (Piergiorgio); BROUARD (Mark); COSTES (Michel); NESBITT (David); BIESKE (Evan); KABLE (Scott)</AU>
<AF>National Synchrotron Radiation Research Center (NSRRC), 101 Hsin-Ann Road, Hsinchu Science Park/Hsinchu 30076/Taïwan (1 aut., 2 aut., 3 aut., 4 aut., 5 aut.); Department of Applied Chemistry, National Chiao-Tung University, 1001 University Road/Hsinchu 30010/Taïwan (1 aut., 5 aut.); Università degli Studi di Perugia, Dipartimento di Chimica, via Elce dio Sotto, 8/06123 Perugia/Italie (1 aut.); Oxford University, Department of Chemistry, The Physical and Theoretical Chemistry Laboratory, South Parks Road/Oxford, OX1 3QZ/Royaume-Uni (2 aut.); Université Bordeaux 1/CNRS UMR 5255, Institut des Sciences Moléculaires/33405 Talence/France (3 aut.); JILA/NIST, Department of Chemistry and Biochemistry, University of Colorado,/Boulder, CO, 80309/Etats-Unis (4 aut.); University of Melbourne, School of Chemistry/Australie (5 aut.); University of Sydney, School of Chemistry/Australie (6 aut.)</AF>
<DT>Publication en série; Papier de recherche; Niveau analytique</DT>
<SO>PCCP. Physical chemistry chemical physics : (Print); ISSN 1463-9076; Royaume-Uni; Da. 2011; Vol. 13; No. 18; Pp. 8515-8525; Bibl. 32 ref.</SO>
<LA>Anglais</LA>
<EA>We conducted the title reaction using a crossed molecular-beam apparatus, quantum-chemical calculations, and RRKM calculations. Synchrotron radiation from an undulator served to ionize selectively reaction products by advantage of negligibly small dissociative ionization. We observed two products with gross formula C
<sub>2</sub>
H
<sub>3</sub>
N and C
<sub>2</sub>
H
<sub>2</sub>
N associated with loss of one and two hydrogen atoms, respectively. Measurements of kinetic-energy distributions, angular distributions, low-resolution photoionization spectra, and branching ratios of the two products were carried out. Furthermore, we evaluated total branching ratios of various exit channels using RRKM calculations based on the potential-energy surface of reaction N(
<sup>2</sup>
D) + C
<sub>2</sub>
H
<sub>4</sub>
established with the method CCSD(T)/6-311+G(3df,2p)//B3LYP/6-311G(d,p)+ZPE[B3L YP/6-311G(d,p)]. The combination of experimental and computational results allows us to reveal the reaction dynamics. The N(
<sup>2</sup>
D) atom adds to the C=C π-bond of ethene (C
<sub>2</sub>
H
<sub>4</sub>
) to form a cyclic complex c-CH
<sub>2</sub>
(N)CH
<sub>2</sub>
that directly ejects a hydrogen atom or rearranges to other intermediates followed by elimination of a hydrogen atom to produce C
<sub>2</sub>
H
<sub>3</sub>
N; c-CH
<sub>2</sub>
(N)CH + H is the dominant product channel. Subsequently, most C
<sub>2</sub>
H
<sub>3</sub>
N radicals, notably c-CH
<sub>2</sub>
(N)CH, further decompose to CH
<sub>2</sub>
CN+H. This work provides results and explanations different from the previous work of Balucani et al. [J. Phys. Chem. A, 2000, 104, 5655], indicating that selective photoionization with synchrotron radiation as an ionization source is a good choice in chemical dynamics research.</EA>
<CC>001C01</CC>
<FD>Dynamique; Ethylène; Faisceau croisé; Faisceau moléculaire; Calcul; Dispositif expérimental; Rayonnement synchrotron; Produit réaction; Ionisation dissociative; Hydrogène; Energie cinétique; Distribution énergie; Distribution angulaire; Résolution angulaire; Photoionisation; Rapport branchement; Surface énergie potentielle; Méthode amas couplé; Méthode fonctionnelle densité; Complexe; Corrélation électronique; Etude théorique; 3115D; 3115E</FD>
<ED>Dynamics; Ethylene; Crossed beams; Molecular beam; Calculation; Experimental device; Synchrotron radiation; Reaction product; Dissociative ionization; Hydrogen; Kinetic energy; Energy distribution; Angular distribution; Angular resolution; Photoionization; Branching ratio; Potential energy surfaces; Coupled cluster method; Density functional method; Complexes; Electron correlation; Theoretical study</ED>
<SD>Dinámica; Etileno; Haz cruzado; Haz molecular; Cálculo; Dispositivo experimental; Radiación sincrotrón; Producto reacción; Ionización disociativa; Hidrógeno; Energía cinética; Distribución energía; Distribución angular; Separación angular; Fotoionización; Relación ramificación; Método conglomerado acoplado; Complejo; Correlación electrónica; Estudio teórico</SD>
<LO>INIST-26801.354000191573960450</LO>
<ID>11-0291108</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B73 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001B73 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:11-0291108
   |texte=   Exploring the dynamics of reaction N(2D) + C2H4 with crossed molecular-beam experiments and quantum-chemical calculations
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024