Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sibship analysis of associations between SNP haplotypes and a continuous trait with application to mammographic density

Identifieur interne : 001848 ( Istex/Corpus ); précédent : 001847; suivant : 001849

Sibship analysis of associations between SNP haplotypes and a continuous trait with application to mammographic density

Auteurs : J. Stone ; L. C. Gurrin ; V. M. Hayes ; M. C. Southey ; J. L. Hopper ; G. B. Byrnes

Source :

RBID : ISTEX:818BF96E999B268CC244202129409325489377EE

English descriptors

Abstract

Haplotype‐based association studies have been proposed as a powerful comprehensive approach to identify causal genetic variation underlying complex diseases. Data comparisons within families offer the additional advantage of dealing naturally with complex sources of noise, confounding and population stratification. Two problems encountered when investigating associations between haplotypes and a continuous trait using data from sibships are (i) the need to define within‐sibship comparisons for sibships of size greater than two and (ii) the difficulty of resolving the joint distribution of haplotype pairs within sibships in the absence of parental genotypes. We therefore propose first a method of orthogonal transformation of both outcomes and exposures that allow the decomposition of between‐ and within‐sibship regression effects when sibship size is greater than two. We conducted a simulation study, which confirmed analysis using all members of a sibship is statistically more powerful than methods based on cross‐sectional analysis or using subsets of sib‐pairs. Second, we propose a simple permutation approach to avoid errors of inference due to the within‐sibship correlation of any errors in haplotype assignment. These methods were applied to investigate the association between mammographic density (MD), a continuously distributed and heritable risk factor for breast cancer, and single nucleotide polymorphisms (SNPs) and haplotypes from the VDR gene using data from a study of 430 twins and sisters. We found evidence of association between MD and a 4‐SNP VDR haplotype. In conclusion, our proposed method retains the benefits of the between‐ and within‐pair analysis for pairs of siblings and can be implemented in standard software. Genet. Epidemiol. 34: 309–318, 2010.  © 2009 Wiley‐Liss, Inc.

Url:
DOI: 10.1002/gepi.20462

Links to Exploration step

ISTEX:818BF96E999B268CC244202129409325489377EE

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sibship analysis of associations between SNP haplotypes and a continuous trait with application to mammographic density</title>
<author>
<name sortKey="Stone, J" sort="Stone, J" uniqKey="Stone J" first="J." last="Stone">J. Stone</name>
<affiliation>
<mods:affiliation>Centre for Molecular, Environmental, Genetic, and Analytic (MEGA) Epidemiology, University of Melbourne, Melbourne, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gurrin, L C" sort="Gurrin, L C" uniqKey="Gurrin L" first="L. C." last="Gurrin">L. C. Gurrin</name>
<affiliation>
<mods:affiliation>Centre for Molecular, Environmental, Genetic, and Analytic (MEGA) Epidemiology, University of Melbourne, Melbourne, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hayes, V M" sort="Hayes, V M" uniqKey="Hayes V" first="V. M." last="Hayes">V. M. Hayes</name>
<affiliation>
<mods:affiliation>Cancer Genetics Group, Children's Cancer Institute Australia for Medical Research, Sydney Children's Hospital, Randwick, NSW, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Southey, M C" sort="Southey, M C" uniqKey="Southey M" first="M. C." last="Southey">M. C. Southey</name>
<affiliation>
<mods:affiliation>Department of Pathology, University of Melbourne, Melbourne, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hopper, J L" sort="Hopper, J L" uniqKey="Hopper J" first="J. L." last="Hopper">J. L. Hopper</name>
<affiliation>
<mods:affiliation>Centre for Molecular, Environmental, Genetic, and Analytic (MEGA) Epidemiology, University of Melbourne, Melbourne, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Byrnes, G B" sort="Byrnes, G B" uniqKey="Byrnes G" first="G. B." last="Byrnes">G. B. Byrnes</name>
<affiliation>
<mods:affiliation>Biostatistics Group, International Agency for Research on Cancer, Lyon, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: byrnesg@iarc.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Epidemiology Methods and Support Group, International Agency for Research on Cancer, 150 cours Albert Thomas 69372 Lyon, cedex 08, France===</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:818BF96E999B268CC244202129409325489377EE</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1002/gepi.20462</idno>
<idno type="url">https://api.istex.fr/document/818BF96E999B268CC244202129409325489377EE/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001848</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001848</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Sibship analysis of associations between SNP haplotypes and a continuous trait with application to mammographic density</title>
<author>
<name sortKey="Stone, J" sort="Stone, J" uniqKey="Stone J" first="J." last="Stone">J. Stone</name>
<affiliation>
<mods:affiliation>Centre for Molecular, Environmental, Genetic, and Analytic (MEGA) Epidemiology, University of Melbourne, Melbourne, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gurrin, L C" sort="Gurrin, L C" uniqKey="Gurrin L" first="L. C." last="Gurrin">L. C. Gurrin</name>
<affiliation>
<mods:affiliation>Centre for Molecular, Environmental, Genetic, and Analytic (MEGA) Epidemiology, University of Melbourne, Melbourne, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hayes, V M" sort="Hayes, V M" uniqKey="Hayes V" first="V. M." last="Hayes">V. M. Hayes</name>
<affiliation>
<mods:affiliation>Cancer Genetics Group, Children's Cancer Institute Australia for Medical Research, Sydney Children's Hospital, Randwick, NSW, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Southey, M C" sort="Southey, M C" uniqKey="Southey M" first="M. C." last="Southey">M. C. Southey</name>
<affiliation>
<mods:affiliation>Department of Pathology, University of Melbourne, Melbourne, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hopper, J L" sort="Hopper, J L" uniqKey="Hopper J" first="J. L." last="Hopper">J. L. Hopper</name>
<affiliation>
<mods:affiliation>Centre for Molecular, Environmental, Genetic, and Analytic (MEGA) Epidemiology, University of Melbourne, Melbourne, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Byrnes, G B" sort="Byrnes, G B" uniqKey="Byrnes G" first="G. B." last="Byrnes">G. B. Byrnes</name>
<affiliation>
<mods:affiliation>Biostatistics Group, International Agency for Research on Cancer, Lyon, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: byrnesg@iarc.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Epidemiology Methods and Support Group, International Agency for Research on Cancer, 150 cours Albert Thomas 69372 Lyon, cedex 08, France===</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Genetic Epidemiology</title>
<title level="j" type="alt">GENETIC EPIDEMIOLOGY</title>
<idno type="ISSN">0741-0395</idno>
<idno type="eISSN">1098-2272</idno>
<imprint>
<biblScope unit="vol">34</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="309">309</biblScope>
<biblScope unit="page" to="318">318</biblScope>
<biblScope unit="page-count">10</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2010-05">2010-05</date>
</imprint>
<idno type="ISSN">0741-0395</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0741-0395</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active phenotype</term>
<term>Algorithm</term>
<term>Association studies</term>
<term>Carlin</term>
<term>Coefficient</term>
<term>Continuous trait</term>
<term>Covariates</term>
<term>Dense area</term>
<term>Different sizes</term>
<term>Effect size</term>
<term>Effect sizes</term>
<term>Epidemiol</term>
<term>Error rate</term>
<term>Estimate percent</term>
<term>First birth</term>
<term>General model</term>
<term>Genet</term>
<term>Genotype</term>
<term>Genotype data</term>
<term>Gurrin</term>
<term>Haplotype</term>
<term>Haplotype dosage</term>
<term>Intra</term>
<term>Linear regression model</term>
<term>Mammogram</term>
<term>Mammographic</term>
<term>Mammographic density</term>
<term>Mammographic measures</term>
<term>Menopausal status</term>
<term>Nondense</term>
<term>Nondense area</term>
<term>Nondense areab</term>
<term>Nonparous women</term>
<term>Null hypothesis</term>
<term>Orthogonal</term>
<term>Orthogonal transformation</term>
<term>Orthogonal transformation extension</term>
<term>Orthogonal transformation extensions</term>
<term>Orthogonal transformations</term>
<term>Other covariates</term>
<term>Pack smoking</term>
<term>Pack years</term>
<term>Permutation</term>
<term>Phenotype</term>
<term>Population distribution</term>
<term>Ppermutation</term>
<term>Random intercept</term>
<term>Regression</term>
<term>Regression analysis</term>
<term>Regression coefficient</term>
<term>Regression coefficients</term>
<term>Regression estimates</term>
<term>Regression model</term>
<term>Regression models</term>
<term>Sibling</term>
<term>Sibling haplotypes</term>
<term>Sibship</term>
<term>Sibships</term>
<term>Simulation</term>
<term>Simulation study</term>
<term>Snp</term>
<term>Software</term>
<term>Standard software</term>
<term>Unbiased estimates</term>
<term>Uncorrected</term>
<term>Unrelated individuals</term>
<term>Variant alleles</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Active phenotype</term>
<term>Algorithm</term>
<term>Association studies</term>
<term>Carlin</term>
<term>Coefficient</term>
<term>Continuous trait</term>
<term>Covariates</term>
<term>Dense area</term>
<term>Different sizes</term>
<term>Effect size</term>
<term>Effect sizes</term>
<term>Epidemiol</term>
<term>Error rate</term>
<term>Estimate percent</term>
<term>First birth</term>
<term>General model</term>
<term>Genet</term>
<term>Genotype</term>
<term>Genotype data</term>
<term>Gurrin</term>
<term>Haplotype</term>
<term>Haplotype dosage</term>
<term>Intra</term>
<term>Linear regression model</term>
<term>Mammogram</term>
<term>Mammographic</term>
<term>Mammographic density</term>
<term>Mammographic measures</term>
<term>Menopausal status</term>
<term>Nondense</term>
<term>Nondense area</term>
<term>Nondense areab</term>
<term>Nonparous women</term>
<term>Null hypothesis</term>
<term>Orthogonal</term>
<term>Orthogonal transformation</term>
<term>Orthogonal transformation extension</term>
<term>Orthogonal transformation extensions</term>
<term>Orthogonal transformations</term>
<term>Other covariates</term>
<term>Pack smoking</term>
<term>Pack years</term>
<term>Permutation</term>
<term>Phenotype</term>
<term>Population distribution</term>
<term>Ppermutation</term>
<term>Random intercept</term>
<term>Regression</term>
<term>Regression analysis</term>
<term>Regression coefficient</term>
<term>Regression coefficients</term>
<term>Regression estimates</term>
<term>Regression model</term>
<term>Regression models</term>
<term>Sibling</term>
<term>Sibling haplotypes</term>
<term>Sibship</term>
<term>Sibships</term>
<term>Simulation</term>
<term>Simulation study</term>
<term>Snp</term>
<term>Software</term>
<term>Standard software</term>
<term>Unbiased estimates</term>
<term>Uncorrected</term>
<term>Unrelated individuals</term>
<term>Variant alleles</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Haplotype‐based association studies have been proposed as a powerful comprehensive approach to identify causal genetic variation underlying complex diseases. Data comparisons within families offer the additional advantage of dealing naturally with complex sources of noise, confounding and population stratification. Two problems encountered when investigating associations between haplotypes and a continuous trait using data from sibships are (i) the need to define within‐sibship comparisons for sibships of size greater than two and (ii) the difficulty of resolving the joint distribution of haplotype pairs within sibships in the absence of parental genotypes. We therefore propose first a method of orthogonal transformation of both outcomes and exposures that allow the decomposition of between‐ and within‐sibship regression effects when sibship size is greater than two. We conducted a simulation study, which confirmed analysis using all members of a sibship is statistically more powerful than methods based on cross‐sectional analysis or using subsets of sib‐pairs. Second, we propose a simple permutation approach to avoid errors of inference due to the within‐sibship correlation of any errors in haplotype assignment. These methods were applied to investigate the association between mammographic density (MD), a continuously distributed and heritable risk factor for breast cancer, and single nucleotide polymorphisms (SNPs) and haplotypes from the VDR gene using data from a study of 430 twins and sisters. We found evidence of association between MD and a 4‐SNP VDR haplotype. In conclusion, our proposed method retains the benefits of the between‐ and within‐pair analysis for pairs of siblings and can be implemented in standard software. Genet. Epidemiol. 34: 309–318, 2010.  © 2009 Wiley‐Liss, Inc.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>haplotype</json:string>
<json:string>genotype</json:string>
<json:string>sibships</json:string>
<json:string>orthogonal</json:string>
<json:string>phenotype</json:string>
<json:string>genet</json:string>
<json:string>permutation</json:string>
<json:string>mammographic</json:string>
<json:string>sibship</json:string>
<json:string>epidemiol</json:string>
<json:string>nondense</json:string>
<json:string>gurrin</json:string>
<json:string>uncorrected</json:string>
<json:string>effect size</json:string>
<json:string>regression coefficients</json:string>
<json:string>mammogram</json:string>
<json:string>snp</json:string>
<json:string>ppermutation</json:string>
<json:string>mammographic measures</json:string>
<json:string>software</json:string>
<json:string>pack years</json:string>
<json:string>error rate</json:string>
<json:string>nondense area</json:string>
<json:string>simulation study</json:string>
<json:string>dense area</json:string>
<json:string>carlin</json:string>
<json:string>covariates</json:string>
<json:string>sibling</json:string>
<json:string>regression model</json:string>
<json:string>mammographic density</json:string>
<json:string>haplotype dosage</json:string>
<json:string>first birth</json:string>
<json:string>regression coefficient</json:string>
<json:string>regression</json:string>
<json:string>algorithm</json:string>
<json:string>simulation</json:string>
<json:string>unrelated individuals</json:string>
<json:string>regression estimates</json:string>
<json:string>association studies</json:string>
<json:string>regression analysis</json:string>
<json:string>variant alleles</json:string>
<json:string>regression models</json:string>
<json:string>menopausal status</json:string>
<json:string>linear regression model</json:string>
<json:string>pack smoking</json:string>
<json:string>nonparous women</json:string>
<json:string>continuous trait</json:string>
<json:string>estimate percent</json:string>
<json:string>null hypothesis</json:string>
<json:string>other covariates</json:string>
<json:string>population distribution</json:string>
<json:string>genotype data</json:string>
<json:string>sibling haplotypes</json:string>
<json:string>intra</json:string>
<json:string>orthogonal transformation extensions</json:string>
<json:string>active phenotype</json:string>
<json:string>orthogonal transformations</json:string>
<json:string>orthogonal transformation</json:string>
<json:string>general model</json:string>
<json:string>effect sizes</json:string>
<json:string>different sizes</json:string>
<json:string>random intercept</json:string>
<json:string>unbiased estimates</json:string>
<json:string>nondense areab</json:string>
<json:string>standard software</json:string>
<json:string>orthogonal transformation extension</json:string>
<json:string>coefficient</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>J. Stone</name>
<affiliations>
<json:string>Centre for Molecular, Environmental, Genetic, and Analytic (MEGA) Epidemiology, University of Melbourne, Melbourne, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>L. C. Gurrin</name>
<affiliations>
<json:string>Centre for Molecular, Environmental, Genetic, and Analytic (MEGA) Epidemiology, University of Melbourne, Melbourne, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>V. M. Hayes</name>
<affiliations>
<json:string>Cancer Genetics Group, Children's Cancer Institute Australia for Medical Research, Sydney Children's Hospital, Randwick, NSW, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>M. C. Southey</name>
<affiliations>
<json:string>Department of Pathology, University of Melbourne, Melbourne, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>J. L. Hopper</name>
<affiliations>
<json:string>Centre for Molecular, Environmental, Genetic, and Analytic (MEGA) Epidemiology, University of Melbourne, Melbourne, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>G. B. Byrnes</name>
<affiliations>
<json:string>Biostatistics Group, International Agency for Research on Cancer, Lyon, France</json:string>
<json:string>E-mail: byrnesg@iarc.fr</json:string>
<json:string>Correspondence address: Epidemiology Methods and Support Group, International Agency for Research on Cancer, 150 cours Albert Thomas 69372 Lyon, cedex 08, France===</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>family studies</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>regression modelling</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>simulation study</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>VDR gene</value>
</json:item>
</subject>
<articleId>
<json:string>GEPI20462</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-FJQVXVJ6-P</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Haplotype‐based association studies have been proposed as a powerful comprehensive approach to identify causal genetic variation underlying complex diseases. Data comparisons within families offer the additional advantage of dealing naturally with complex sources of noise, confounding and population stratification. Two problems encountered when investigating associations between haplotypes and a continuous trait using data from sibships are (i) the need to define within‐sibship comparisons for sibships of size greater than two and (ii) the difficulty of resolving the joint distribution of haplotype pairs within sibships in the absence of parental genotypes. We therefore propose first a method of orthogonal transformation of both outcomes and exposures that allow the decomposition of between‐ and within‐sibship regression effects when sibship size is greater than two. We conducted a simulation study, which confirmed analysis using all members of a sibship is statistically more powerful than methods based on cross‐sectional analysis or using subsets of sib‐pairs. Second, we propose a simple permutation approach to avoid errors of inference due to the within‐sibship correlation of any errors in haplotype assignment. These methods were applied to investigate the association between mammographic density (MD), a continuously distributed and heritable risk factor for breast cancer, and single nucleotide polymorphisms (SNPs) and haplotypes from the VDR gene using data from a study of 430 twins and sisters. We found evidence of association between MD and a 4‐SNP VDR haplotype. In conclusion, our proposed method retains the benefits of the between‐ and within‐pair analysis for pairs of siblings and can be implemented in standard software. Genet. Epidemiol. 34: 309–318, 2010.  © 2009 Wiley‐Liss, Inc.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>6465</pdfWordCount>
<pdfCharCount>42636</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>10</pdfPageCount>
<pdfPageSize>595.276 x 790.866 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>261</abstractWordCount>
<abstractCharCount>1820</abstractCharCount>
<keywordCount>4</keywordCount>
</qualityIndicators>
<title>Sibship analysis of associations between SNP haplotypes and a continuous trait with application to mammographic density</title>
<pmid>
<json:string>19918759</json:string>
</pmid>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Genetic Epidemiology</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1098-2272</json:string>
</doi>
<issn>
<json:string>0741-0395</json:string>
</issn>
<eissn>
<json:string>1098-2272</json:string>
</eissn>
<publisherId>
<json:string>GEPI</json:string>
</publisherId>
<volume>34</volume>
<issue>4</issue>
<pages>
<first>309</first>
<last>318</last>
<total>10</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Original Article</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2010</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Research on Cancer</json:string>
<json:string>Biostatistics Group, International Agency</json:string>
<json:string>MEGA</json:string>
<json:string>Support Group, International Agency</json:string>
<json:string>SAS Institute, Cary, NC</json:string>
<json:string>Department of Pathology, University of Melbourne, Melbourne, Australia</json:string>
<json:string>University of Melbourne</json:string>
<json:string>Wiley-Liss, Inc</json:string>
<json:string>Research on Cancer, Lyon, France Haplotype</json:string>
<json:string>Australia Cancer Genetics Group, Children</json:string>
<json:string>Cancer Institute Australia for Medical Research, Sydney Children</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Our</json:string>
<json:string>Albert Thomas</json:string>
<json:string>G. B. Byrnes</json:string>
<json:string>Liu</json:string>
<json:string>C. Southey</json:string>
<json:string>M. Hayes</json:string>
<json:string>The</json:string>
<json:string>L. Hopper</json:string>
<json:string>C. Gurrin</json:string>
<json:string>I. Results</json:string>
<json:string>Lu</json:string>
<json:string>Marchini</json:string>
<json:string>Cutler</json:string>
</persName>
<placeName>
<json:string>Australia</json:string>
<json:string>France</json:string>
<json:string>Lyon</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Weale and Depondt, 2003</json:string>
<json:string>Stone et al.</json:string>
<json:string>Dite and Gurrin, 2008</json:string>
<json:string>Hayes and Severi, 2005</json:string>
<json:string>Gurrin and Carlin, 2006</json:string>
<json:string>Begg and Parides, 2003</json:string>
<json:string>Scheet and Stephens, 2006</json:string>
<json:string>Stram and Haiman, 2003</json:string>
<json:string>[2006]</json:string>
<json:string>Becker and Knapp, 2004a,b</json:string>
<json:string>Marchini and Howie, 2007</json:string>
<json:string>Stone and Gurrin, 2007</json:string>
<json:string>Servin and Stephens, 2007</json:string>
<json:string>Daly and Kruglyak, 1998</json:string>
<json:string>Willer and Sanna, 2008</json:string>
<json:string>Carlin and Gurrin, 2005</json:string>
<json:string>Sanna and Jackson, 2008</json:string>
<json:string>Zhang and Sun, 2005</json:string>
<json:string>Barrett and Fry, 2005</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-FJQVXVJ6-P</json:string>
</ark>
<categories>
<wos>
<json:string>1 - social science</json:string>
<json:string>2 - public, environmental & occupational health</json:string>
<json:string>1 - science</json:string>
<json:string>2 - genetics & heredity</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - public health & health services</json:string>
<json:string>3 - epidemiology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Health Sciences</json:string>
<json:string>2 - Medicine</json:string>
<json:string>3 - Genetics(clinical)</json:string>
<json:string>1 - Health Sciences</json:string>
<json:string>2 - Medicine</json:string>
<json:string>3 - Epidemiology</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2010</publicationDate>
<copyrightDate>2010</copyrightDate>
<doi>
<json:string>10.1002/gepi.20462</json:string>
</doi>
<id>818BF96E999B268CC244202129409325489377EE</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/818BF96E999B268CC244202129409325489377EE/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/818BF96E999B268CC244202129409325489377EE/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/818BF96E999B268CC244202129409325489377EE/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Sibship analysis of associations between SNP haplotypes and a continuous trait with application to mammographic density</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<licence>© 2009 Wiley‐Liss, Inc.</licence>
</availability>
<date type="published" when="2010-05"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Sibship analysis of associations between SNP haplotypes and a continuous trait with application to mammographic density</title>
<title level="a" type="short" xml:lang="en">Sibling Haplotypes and a Continuous Trait</title>
<author xml:id="author-0000">
<persName>
<forename type="first">J.</forename>
<surname>Stone</surname>
</persName>
<affiliation>Centre for Molecular, Environmental, Genetic, and Analytic (MEGA) Epidemiology, University of Melbourne, Melbourne, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">L. C.</forename>
<surname>Gurrin</surname>
</persName>
<affiliation>Centre for Molecular, Environmental, Genetic, and Analytic (MEGA) Epidemiology, University of Melbourne, Melbourne, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">V. M.</forename>
<surname>Hayes</surname>
</persName>
<affiliation>Cancer Genetics Group, Children's Cancer Institute Australia for Medical Research, Sydney Children's Hospital, Randwick, NSW, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">M. C.</forename>
<surname>Southey</surname>
</persName>
<affiliation>Department of Pathology, University of Melbourne, Melbourne, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">J. L.</forename>
<surname>Hopper</surname>
</persName>
<affiliation>Centre for Molecular, Environmental, Genetic, and Analytic (MEGA) Epidemiology, University of Melbourne, Melbourne, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0005" role="corresp">
<persName>
<forename type="first">G. B.</forename>
<surname>Byrnes</surname>
</persName>
<email>byrnesg@iarc.fr</email>
<affiliation>Biostatistics Group, International Agency for Research on Cancer, Lyon, France
<address>
<country key="FR"></country>
</address>
</affiliation>
<affiliation>Epidemiology Methods and Support Group, International Agency for Research on Cancer, 150 cours Albert Thomas 69372 Lyon, cedex 08, France===</affiliation>
</author>
<idno type="istex">818BF96E999B268CC244202129409325489377EE</idno>
<idno type="ark">ark:/67375/WNG-FJQVXVJ6-P</idno>
<idno type="DOI">10.1002/gepi.20462</idno>
<idno type="unit">GEPI20462</idno>
<idno type="toTypesetVersion">file:GEPI.GEPI20462.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Genetic Epidemiology</title>
<title level="j" type="alt">GENETIC EPIDEMIOLOGY</title>
<idno type="pISSN">0741-0395</idno>
<idno type="eISSN">1098-2272</idno>
<idno type="book-DOI">10.1002/(ISSN)1098-2272</idno>
<idno type="book-part-DOI">10.1002/gepi.v34:4</idno>
<idno type="product">GEPI</idno>
<imprint>
<biblScope unit="vol">34</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="309">309</biblScope>
<biblScope unit="page" to="318">318</biblScope>
<biblScope unit="page-count">10</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2010-05"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>Haplotype‐based association studies have been proposed as a powerful comprehensive approach to identify causal genetic variation underlying complex diseases. Data comparisons within families offer the additional advantage of dealing naturally with complex sources of noise, confounding and population stratification. Two problems encountered when investigating associations between haplotypes and a continuous trait using data from sibships are (i) the need to define within‐sibship comparisons for sibships of size greater than two and (ii) the difficulty of resolving the joint distribution of haplotype pairs within sibships in the absence of parental genotypes. We therefore propose first a method of orthogonal transformation of both outcomes and exposures that allow the decomposition of between‐ and within‐sibship regression effects when sibship size is greater than two. We conducted a simulation study, which confirmed analysis using all members of a sibship is statistically more powerful than methods based on cross‐sectional analysis or using subsets of sib‐pairs. Second, we propose a simple permutation approach to avoid errors of inference due to the within‐sibship correlation of any errors in haplotype assignment. These methods were applied to investigate the association between mammographic density (MD), a continuously distributed and heritable risk factor for breast cancer, and single nucleotide polymorphisms (SNPs) and haplotypes from the
<hi rend="italic">VDR</hi>
gene using data from a study of 430 twins and sisters. We found evidence of association between MD and a 4‐SNP
<hi rend="italic">VDR</hi>
haplotype. In conclusion, our proposed method retains the benefits of the between‐ and within‐pair analysis for pairs of siblings and can be implemented in standard software.
<hi rend="italic">Genet. Epidemiol</hi>
. 34: 309–318, 2010.  © 2009 Wiley‐Liss, Inc.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">family studies</term>
<term xml:id="kwd2">regression modelling</term>
<term xml:id="kwd3">simulation study</term>
<term xml:id="kwd4">
<hi rend="italic">VDR</hi>
gene</term>
</keywords>
<keywords rend="articleCategory">
<term>Original Article</term>
</keywords>
<keywords rend="tocHeading1">
<term>Original Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/818BF96E999B268CC244202129409325489377EE/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1098-2272</doi>
<issn type="print">0741-0395</issn>
<issn type="electronic">1098-2272</issn>
<idGroup>
<id type="product" value="GEPI"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="GENETIC EPIDEMIOLOGY">Genetic Epidemiology</title>
<title type="short">Genet. Epidemiol.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="40">
<doi origin="wiley" registered="yes">10.1002/gepi.v34:4</doi>
<numberingGroup>
<numbering type="journalVolume" number="34">34</numbering>
<numbering type="journalIssue">4</numbering>
</numberingGroup>
<coverDate startDate="2010-05">May 2010</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="3" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/gepi.20462</doi>
<idGroup>
<id type="unit" value="GEPI20462"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="10"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Original Article</title>
<title type="tocHeading1">Original Articles</title>
</titleGroup>
<copyright ownership="publisher">© 2009 Wiley‐Liss, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2009-04-20"></event>
<event type="manuscriptRevised" date="2009-08-31"></event>
<event type="manuscriptAccepted" date="2009-09-12"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2009-11-13"></event>
<event type="firstOnline" date="2009-11-13"></event>
<event type="publishedOnlineFinalForm" date="2010-04-20"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.21 mode:FullText" date="2010-09-27"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-12"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-17"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">309</numbering>
<numbering type="pageLast">318</numbering>
</numberingGroup>
<correspondenceTo>Epidemiology Methods and Support Group, International Agency for Research on Cancer, 150 cours Albert Thomas 69372 Lyon, cedex 08, France===</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:GEPI.GEPI20462.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="1"></count>
<count type="tableTotal" number="5"></count>
<count type="referenceTotal" number="22"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Sibship analysis of associations between SNP haplotypes and a continuous trait with application to mammographic density</title>
<title type="short" xml:lang="en">Sibling Haplotypes and a Continuous Trait</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>J.</givenNames>
<familyName>Stone</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>L. C.</givenNames>
<familyName>Gurrin</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>V. M.</givenNames>
<familyName>Hayes</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>M. C.</givenNames>
<familyName>Southey</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>J. L.</givenNames>
<familyName>Hopper</familyName>
</personName>
</creator>
<creator xml:id="au6" creatorRole="author" affiliationRef="#af4" corresponding="yes">
<personName>
<givenNames>G. B.</givenNames>
<familyName>Byrnes</familyName>
</personName>
<contactDetails>
<email>byrnesg@iarc.fr</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="AU" type="organization">
<unparsedAffiliation>Centre for Molecular, Environmental, Genetic, and Analytic (MEGA) Epidemiology, University of Melbourne, Melbourne, Australia</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="AU" type="organization">
<unparsedAffiliation>Cancer Genetics Group, Children's Cancer Institute Australia for Medical Research, Sydney Children's Hospital, Randwick, NSW, Australia</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="AU" type="organization">
<unparsedAffiliation>Department of Pathology, University of Melbourne, Melbourne, Australia</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af4" countryCode="FR" type="organization">
<unparsedAffiliation>Biostatistics Group, International Agency for Research on Cancer, Lyon, France</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">family studies</keyword>
<keyword xml:id="kwd2">regression modelling</keyword>
<keyword xml:id="kwd3">simulation study</keyword>
<keyword xml:id="kwd4">
<i>VDR</i>
gene</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Haplotype‐based association studies have been proposed as a powerful comprehensive approach to identify causal genetic variation underlying complex diseases. Data comparisons within families offer the additional advantage of dealing naturally with complex sources of noise, confounding and population stratification. Two problems encountered when investigating associations between haplotypes and a continuous trait using data from sibships are (i) the need to define within‐sibship comparisons for sibships of size greater than two and (ii) the difficulty of resolving the joint distribution of haplotype pairs within sibships in the absence of parental genotypes. We therefore propose first a method of orthogonal transformation of both outcomes and exposures that allow the decomposition of between‐ and within‐sibship regression effects when sibship size is greater than two. We conducted a simulation study, which confirmed analysis using all members of a sibship is statistically more powerful than methods based on cross‐sectional analysis or using subsets of sib‐pairs. Second, we propose a simple permutation approach to avoid errors of inference due to the within‐sibship correlation of any errors in haplotype assignment. These methods were applied to investigate the association between mammographic density (MD), a continuously distributed and heritable risk factor for breast cancer, and single nucleotide polymorphisms (SNPs) and haplotypes from the
<i>VDR</i>
gene using data from a study of 430 twins and sisters. We found evidence of association between MD and a 4‐SNP
<i>VDR</i>
haplotype. In conclusion, our proposed method retains the benefits of the between‐ and within‐pair analysis for pairs of siblings and can be implemented in standard software.
<i>Genet. Epidemiol</i>
. 34: 309–318, 2010.  © 2009 Wiley‐Liss, Inc.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Sibship analysis of associations between SNP haplotypes and a continuous trait with application to mammographic density</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Sibling Haplotypes and a Continuous Trait</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Sibship analysis of associations between SNP haplotypes and a continuous trait with application to mammographic density</title>
</titleInfo>
<name type="personal">
<namePart type="given">J.</namePart>
<namePart type="family">Stone</namePart>
<affiliation>Centre for Molecular, Environmental, Genetic, and Analytic (MEGA) Epidemiology, University of Melbourne, Melbourne, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">L. C.</namePart>
<namePart type="family">Gurrin</namePart>
<affiliation>Centre for Molecular, Environmental, Genetic, and Analytic (MEGA) Epidemiology, University of Melbourne, Melbourne, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">V. M.</namePart>
<namePart type="family">Hayes</namePart>
<affiliation>Cancer Genetics Group, Children's Cancer Institute Australia for Medical Research, Sydney Children's Hospital, Randwick, NSW, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M. C.</namePart>
<namePart type="family">Southey</namePart>
<affiliation>Department of Pathology, University of Melbourne, Melbourne, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J. L.</namePart>
<namePart type="family">Hopper</namePart>
<affiliation>Centre for Molecular, Environmental, Genetic, and Analytic (MEGA) Epidemiology, University of Melbourne, Melbourne, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G. B.</namePart>
<namePart type="family">Byrnes</namePart>
<affiliation>Biostatistics Group, International Agency for Research on Cancer, Lyon, France</affiliation>
<affiliation>E-mail: byrnesg@iarc.fr</affiliation>
<affiliation>Correspondence address: Epidemiology Methods and Support Group, International Agency for Research on Cancer, 150 cours Albert Thomas 69372 Lyon, cedex 08, France===</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2010-05</dateIssued>
<dateCaptured encoding="w3cdtf">2009-04-20</dateCaptured>
<dateValid encoding="w3cdtf">2009-09-12</dateValid>
<copyrightDate encoding="w3cdtf">2010</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">1</extent>
<extent unit="tables">5</extent>
<extent unit="references">22</extent>
</physicalDescription>
<abstract lang="en">Haplotype‐based association studies have been proposed as a powerful comprehensive approach to identify causal genetic variation underlying complex diseases. Data comparisons within families offer the additional advantage of dealing naturally with complex sources of noise, confounding and population stratification. Two problems encountered when investigating associations between haplotypes and a continuous trait using data from sibships are (i) the need to define within‐sibship comparisons for sibships of size greater than two and (ii) the difficulty of resolving the joint distribution of haplotype pairs within sibships in the absence of parental genotypes. We therefore propose first a method of orthogonal transformation of both outcomes and exposures that allow the decomposition of between‐ and within‐sibship regression effects when sibship size is greater than two. We conducted a simulation study, which confirmed analysis using all members of a sibship is statistically more powerful than methods based on cross‐sectional analysis or using subsets of sib‐pairs. Second, we propose a simple permutation approach to avoid errors of inference due to the within‐sibship correlation of any errors in haplotype assignment. These methods were applied to investigate the association between mammographic density (MD), a continuously distributed and heritable risk factor for breast cancer, and single nucleotide polymorphisms (SNPs) and haplotypes from the VDR gene using data from a study of 430 twins and sisters. We found evidence of association between MD and a 4‐SNP VDR haplotype. In conclusion, our proposed method retains the benefits of the between‐ and within‐pair analysis for pairs of siblings and can be implemented in standard software. Genet. Epidemiol. 34: 309–318, 2010.  © 2009 Wiley‐Liss, Inc.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>family studies</topic>
<topic>regression modelling</topic>
<topic>simulation study</topic>
<topic>VDR gene</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Genetic Epidemiology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Genet. Epidemiol.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Original Article</topic>
</subject>
<identifier type="ISSN">0741-0395</identifier>
<identifier type="eISSN">1098-2272</identifier>
<identifier type="DOI">10.1002/(ISSN)1098-2272</identifier>
<identifier type="PublisherID">GEPI</identifier>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>34</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>309</start>
<end>318</end>
<total>10</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">818BF96E999B268CC244202129409325489377EE</identifier>
<identifier type="ark">ark:/67375/WNG-FJQVXVJ6-P</identifier>
<identifier type="DOI">10.1002/gepi.20462</identifier>
<identifier type="ArticleID">GEPI20462</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2009 Wiley‐Liss, Inc.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/818BF96E999B268CC244202129409325489377EE/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001848 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001848 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:818BF96E999B268CC244202129409325489377EE
   |texte=   Sibship analysis of associations between SNP haplotypes and a continuous trait with application to mammographic density
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024