Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Spectral energy distribution modelling of southern candidate massive protostars using the Bayesian inference method

Identifieur interne : 000508 ( Istex/Corpus ); précédent : 000507; suivant : 000509

Spectral energy distribution modelling of southern candidate massive protostars using the Bayesian inference method

Auteurs : T. Hill ; C. Pinte ; V. Minier ; M. G. Burton ; M. R. Cunningham

Source :

RBID : ISTEX:1AC21634C54338E906E35A48A0AE8E5A5085CEC0

English descriptors

Abstract

Concatenating data from the millimetre regime to the infrared, we have performed spectral energy distribution (SED) modelling for 227 of the 405 millimetre continuum sources of Hill et al. which are thought to contain young massive stars in the earliest stages of their formation. Three main parameters are extracted from the fits: temperature, mass and luminosity. The method employed was the Bayesian inference, which allows a statistically probable range of suitable values for each parameter to be drawn for each individual protostellar candidate. This is the first application of this method to massive star formation. The cumulative distribution plots of the SED modelled parameters in this work indicate that collectively, the sources without methanol maser and/or radio continuum associations (MM‐only cores) display similar characteristics to those of high‐mass star formation regions. Attributing significance to the marginal distinctions between the MM‐only cores and the high‐mass star formation sample, we draw hypotheses regarding the nature of the MM‐only cores, including the possibility that the population itself comprises different types of source, and discuss their role in the formation scenarios of massive star formation. In addition, we discuss the usefulness and limitations of SED modelling and its application to the field. From this work, it is clear that within the valid parameter ranges, SEDs utilising current far‐infrared data cannot be used to determine the evolution of massive protostars or massive young stellar objects.

Url:
DOI: 10.1111/j.1365-2966.2008.14103.x

Links to Exploration step

ISTEX:1AC21634C54338E906E35A48A0AE8E5A5085CEC0

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Spectral energy distribution modelling of southern candidate massive protostars using the Bayesian inference method</title>
<author>
<name sortKey="Hill, T" sort="Hill, T" uniqKey="Hill T" first="T." last="Hill">T. Hill</name>
<affiliation>
<mods:affiliation>School of Physics, University of Exeter, Stocker Rd, EX4 4QL Exeter</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Leiden Observatory, Leiden University, PO BOX 9513, 2300 RA Leiden, the Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>School of Physics, University of New South Wales, Sydney 2052, NSW, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: thill@astro.ex.ac.uk</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pinte, C" sort="Pinte, C" uniqKey="Pinte C" first="C." last="Pinte">C. Pinte</name>
<affiliation>
<mods:affiliation>School of Physics, University of Exeter, Stocker Rd, EX4 4QL Exeter</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Minier, V" sort="Minier, V" uniqKey="Minier V" first="V." last="Minier">V. Minier</name>
<affiliation>
<mods:affiliation>CEA, DSM, IRFU, Service d'Astrophysique, 91191 Gif‐sur‐Yvette, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratoire AIM, CEA/DSM ‐ CNRS ‐ Université Paris Diderot, IRFU/Service d'Astrophysique, CEA‐Saclay, 91191 Gif‐sur‐Yvette, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Burton, M G" sort="Burton, M G" uniqKey="Burton M" first="M. G." last="Burton">M. G. Burton</name>
<affiliation>
<mods:affiliation>School of Physics, University of New South Wales, Sydney 2052, NSW, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cunningham, M R" sort="Cunningham, M R" uniqKey="Cunningham M" first="M. R." last="Cunningham">M. R. Cunningham</name>
<affiliation>
<mods:affiliation>School of Physics, University of New South Wales, Sydney 2052, NSW, Australia</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:1AC21634C54338E906E35A48A0AE8E5A5085CEC0</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1111/j.1365-2966.2008.14103.x</idno>
<idno type="url">https://api.istex.fr/document/1AC21634C54338E906E35A48A0AE8E5A5085CEC0/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000508</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000508</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Spectral energy distribution modelling of southern candidate massive protostars using the Bayesian inference method</title>
<author>
<name sortKey="Hill, T" sort="Hill, T" uniqKey="Hill T" first="T." last="Hill">T. Hill</name>
<affiliation>
<mods:affiliation>School of Physics, University of Exeter, Stocker Rd, EX4 4QL Exeter</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Leiden Observatory, Leiden University, PO BOX 9513, 2300 RA Leiden, the Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>School of Physics, University of New South Wales, Sydney 2052, NSW, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: thill@astro.ex.ac.uk</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pinte, C" sort="Pinte, C" uniqKey="Pinte C" first="C." last="Pinte">C. Pinte</name>
<affiliation>
<mods:affiliation>School of Physics, University of Exeter, Stocker Rd, EX4 4QL Exeter</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Minier, V" sort="Minier, V" uniqKey="Minier V" first="V." last="Minier">V. Minier</name>
<affiliation>
<mods:affiliation>CEA, DSM, IRFU, Service d'Astrophysique, 91191 Gif‐sur‐Yvette, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratoire AIM, CEA/DSM ‐ CNRS ‐ Université Paris Diderot, IRFU/Service d'Astrophysique, CEA‐Saclay, 91191 Gif‐sur‐Yvette, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Burton, M G" sort="Burton, M G" uniqKey="Burton M" first="M. G." last="Burton">M. G. Burton</name>
<affiliation>
<mods:affiliation>School of Physics, University of New South Wales, Sydney 2052, NSW, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cunningham, M R" sort="Cunningham, M R" uniqKey="Cunningham M" first="M. R." last="Cunningham">M. R. Cunningham</name>
<affiliation>
<mods:affiliation>School of Physics, University of New South Wales, Sydney 2052, NSW, Australia</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="alt">MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY</title>
<idno type="ISSN">0035-8711</idno>
<idno type="eISSN">1365-2966</idno>
<imprint>
<biblScope unit="vol">392</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="768">768</biblScope>
<biblScope unit="page" to="782">782</biblScope>
<biblScope unit="page-count">15</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2009-01-11">2009-01-11</date>
</imprint>
<idno type="ISSN">0035-8711</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0035-8711</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Angular resolution</term>
<term>Bayesian</term>
<term>Bayesian inference</term>
<term>Bayesian inference method</term>
<term>Bayesian probability</term>
<term>Best value</term>
<term>Bolometric luminosity</term>
<term>Bottom panels</term>
<term>Bottom right</term>
<term>Cent bayesian probability</term>
<term>Cent contour</term>
<term>Cold component</term>
<term>Continuum</term>
<term>Contour level</term>
<term>Contour levels</term>
<term>Cumulative distribution</term>
<term>Cumulative distribution plot</term>
<term>Cumulative distribution plots</term>
<term>Cumulative distributions</term>
<term>Cumulative fraction</term>
<term>Cumulative plot</term>
<term>Cumulative plots</term>
<term>Decimal places</term>
<term>Different classes</term>
<term>Different types</term>
<term>Direct association</term>
<term>Distance ambiguity</term>
<term>Distance value</term>
<term>Distinct classes</term>
<term>Earliest stages</term>
<term>Entire sample</term>
<term>Equatorial coordinates</term>
<term>Evolutionary status</term>
<term>Free parameters</term>
<term>Global temperature</term>
<term>Grid</term>
<term>Ident tracerc</term>
<term>Individual sources</term>
<term>Infrared data</term>
<term>Infrared regime</term>
<term>Integration range</term>
<term>Ira</term>
<term>Iras association</term>
<term>Iras data</term>
<term>Iras images</term>
<term>Journal compilation</term>
<term>Large number</term>
<term>Likely combination</term>
<term>Little difference</term>
<term>Luminosity</term>
<term>Luminosity estimates</term>
<term>Luminosity lmin lmax</term>
<term>Main parameters</term>
<term>Marginal distinctions</term>
<term>Maser</term>
<term>Maser mass</term>
<term>Maser radio</term>
<term>Maser sample</term>
<term>Mass diagram</term>
<term>Mass mmin</term>
<term>Mass parameter</term>
<term>Mass values</term>
<term>Massive star formation</term>
<term>Massive stars</term>
<term>Median</term>
<term>Median value</term>
<term>Median values</term>
<term>Methanol</term>
<term>Methanol maser</term>
<term>Methanol maser emission</term>
<term>Methanol maser radio continuum source</term>
<term>Methanol maser radio continuum sources</term>
<term>Methanol maser sites</term>
<term>Methanol maser sources</term>
<term>Methanol masers</term>
<term>Midcourse space experiment</term>
<term>Millimetre</term>
<term>Millimetre continuum emission</term>
<term>Millimetre sources</term>
<term>Millimetres continuum sources</term>
<term>Minier</term>
<term>Mnras</term>
<term>Modelling</term>
<term>Multiple components</term>
<term>Null hypothesis</term>
<term>Observational data</term>
<term>Parameter</term>
<term>Parameter space</term>
<term>Peak position</term>
<term>Probability curves</term>
<term>Probability plot</term>
<term>Protostars</term>
<term>Protostellar envelope mass</term>
<term>Radiative transfer modelling</term>
<term>Radiative transfer models</term>
<term>Radio continuum association</term>
<term>Radio continuum emission</term>
<term>Radio continuum source</term>
<term>Radio continuum sources</term>
<term>Resultant luminosity</term>
<term>Resultant parameters</term>
<term>Same parent distribution</term>
<term>Same population</term>
<term>Section table</term>
<term>Seds</term>
<term>Simba</term>
<term>Simba source</term>
<term>Simba source list</term>
<term>Simba sources</term>
<term>Simba survey</term>
<term>Simple model</term>
<term>Small distinction</term>
<term>Source class</term>
<term>Source names</term>
<term>Source size</term>
<term>Spectral energy distribution</term>
<term>Spitzer data</term>
<term>Star formation</term>
<term>Star formation activity</term>
<term>Star formation activity sample</term>
<term>Statistical studies</term>
<term>Submillimetre</term>
<term>Suitable values</term>
<term>Synthetic seds</term>
<term>Systematic sampling</term>
<term>Tcold</term>
<term>Temperature distribution</term>
<term>Temperature tcoldmin tcoldmax</term>
<term>Total number</term>
<term>Tting</term>
<term>Tting procedure</term>
<term>Upper limit</term>
<term>Upper limits</term>
<term>Upper values</term>
<term>Uxes</term>
<term>Whilst</term>
<term>Whole sample</term>
<term>Wide range</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Angular resolution</term>
<term>Bayesian</term>
<term>Bayesian inference</term>
<term>Bayesian inference method</term>
<term>Bayesian probability</term>
<term>Best value</term>
<term>Bolometric luminosity</term>
<term>Bottom panels</term>
<term>Bottom right</term>
<term>Cent bayesian probability</term>
<term>Cent contour</term>
<term>Cold component</term>
<term>Continuum</term>
<term>Contour level</term>
<term>Contour levels</term>
<term>Cumulative distribution</term>
<term>Cumulative distribution plot</term>
<term>Cumulative distribution plots</term>
<term>Cumulative distributions</term>
<term>Cumulative fraction</term>
<term>Cumulative plot</term>
<term>Cumulative plots</term>
<term>Decimal places</term>
<term>Different classes</term>
<term>Different types</term>
<term>Direct association</term>
<term>Distance ambiguity</term>
<term>Distance value</term>
<term>Distinct classes</term>
<term>Earliest stages</term>
<term>Entire sample</term>
<term>Equatorial coordinates</term>
<term>Evolutionary status</term>
<term>Free parameters</term>
<term>Global temperature</term>
<term>Grid</term>
<term>Ident tracerc</term>
<term>Individual sources</term>
<term>Infrared data</term>
<term>Infrared regime</term>
<term>Integration range</term>
<term>Ira</term>
<term>Iras association</term>
<term>Iras data</term>
<term>Iras images</term>
<term>Journal compilation</term>
<term>Large number</term>
<term>Likely combination</term>
<term>Little difference</term>
<term>Luminosity</term>
<term>Luminosity estimates</term>
<term>Luminosity lmin lmax</term>
<term>Main parameters</term>
<term>Marginal distinctions</term>
<term>Maser</term>
<term>Maser mass</term>
<term>Maser radio</term>
<term>Maser sample</term>
<term>Mass diagram</term>
<term>Mass mmin</term>
<term>Mass parameter</term>
<term>Mass values</term>
<term>Massive star formation</term>
<term>Massive stars</term>
<term>Median</term>
<term>Median value</term>
<term>Median values</term>
<term>Methanol</term>
<term>Methanol maser</term>
<term>Methanol maser emission</term>
<term>Methanol maser radio continuum source</term>
<term>Methanol maser radio continuum sources</term>
<term>Methanol maser sites</term>
<term>Methanol maser sources</term>
<term>Methanol masers</term>
<term>Midcourse space experiment</term>
<term>Millimetre</term>
<term>Millimetre continuum emission</term>
<term>Millimetre sources</term>
<term>Millimetres continuum sources</term>
<term>Minier</term>
<term>Mnras</term>
<term>Modelling</term>
<term>Multiple components</term>
<term>Null hypothesis</term>
<term>Observational data</term>
<term>Parameter</term>
<term>Parameter space</term>
<term>Peak position</term>
<term>Probability curves</term>
<term>Probability plot</term>
<term>Protostars</term>
<term>Protostellar envelope mass</term>
<term>Radiative transfer modelling</term>
<term>Radiative transfer models</term>
<term>Radio continuum association</term>
<term>Radio continuum emission</term>
<term>Radio continuum source</term>
<term>Radio continuum sources</term>
<term>Resultant luminosity</term>
<term>Resultant parameters</term>
<term>Same parent distribution</term>
<term>Same population</term>
<term>Section table</term>
<term>Seds</term>
<term>Simba</term>
<term>Simba source</term>
<term>Simba source list</term>
<term>Simba sources</term>
<term>Simba survey</term>
<term>Simple model</term>
<term>Small distinction</term>
<term>Source class</term>
<term>Source names</term>
<term>Source size</term>
<term>Spectral energy distribution</term>
<term>Spitzer data</term>
<term>Star formation</term>
<term>Star formation activity</term>
<term>Star formation activity sample</term>
<term>Statistical studies</term>
<term>Submillimetre</term>
<term>Suitable values</term>
<term>Synthetic seds</term>
<term>Systematic sampling</term>
<term>Tcold</term>
<term>Temperature distribution</term>
<term>Temperature tcoldmin tcoldmax</term>
<term>Total number</term>
<term>Tting</term>
<term>Tting procedure</term>
<term>Upper limit</term>
<term>Upper limits</term>
<term>Upper values</term>
<term>Uxes</term>
<term>Whilst</term>
<term>Whole sample</term>
<term>Wide range</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Concatenating data from the millimetre regime to the infrared, we have performed spectral energy distribution (SED) modelling for 227 of the 405 millimetre continuum sources of Hill et al. which are thought to contain young massive stars in the earliest stages of their formation. Three main parameters are extracted from the fits: temperature, mass and luminosity. The method employed was the Bayesian inference, which allows a statistically probable range of suitable values for each parameter to be drawn for each individual protostellar candidate. This is the first application of this method to massive star formation. The cumulative distribution plots of the SED modelled parameters in this work indicate that collectively, the sources without methanol maser and/or radio continuum associations (MM‐only cores) display similar characteristics to those of high‐mass star formation regions. Attributing significance to the marginal distinctions between the MM‐only cores and the high‐mass star formation sample, we draw hypotheses regarding the nature of the MM‐only cores, including the possibility that the population itself comprises different types of source, and discuss their role in the formation scenarios of massive star formation. In addition, we discuss the usefulness and limitations of SED modelling and its application to the field. From this work, it is clear that within the valid parameter ranges, SEDs utilising current far‐infrared data cannot be used to determine the evolution of massive protostars or massive young stellar objects.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>modelling</json:string>
<json:string>methanol</json:string>
<json:string>luminosity</json:string>
<json:string>maser</json:string>
<json:string>mnras</json:string>
<json:string>bayesian</json:string>
<json:string>massive star formation</json:string>
<json:string>simba</json:string>
<json:string>seds</json:string>
<json:string>minier</json:string>
<json:string>millimetre</json:string>
<json:string>protostars</json:string>
<json:string>journal compilation</json:string>
<json:string>uxes</json:string>
<json:string>methanol maser</json:string>
<json:string>submillimetre</json:string>
<json:string>whilst</json:string>
<json:string>ira</json:string>
<json:string>tting</json:string>
<json:string>cold component</json:string>
<json:string>different classes</json:string>
<json:string>cumulative distributions</json:string>
<json:string>earliest stages</json:string>
<json:string>bayesian inference method</json:string>
<json:string>individual sources</json:string>
<json:string>star formation</json:string>
<json:string>tcold</json:string>
<json:string>grid</json:string>
<json:string>massive stars</json:string>
<json:string>simba sources</json:string>
<json:string>cumulative distribution plots</json:string>
<json:string>free parameters</json:string>
<json:string>parameter space</json:string>
<json:string>median</json:string>
<json:string>parameter</json:string>
<json:string>distance ambiguity</json:string>
<json:string>simba source</json:string>
<json:string>radio continuum emission</json:string>
<json:string>radio continuum sources</json:string>
<json:string>star formation activity</json:string>
<json:string>median values</json:string>
<json:string>upper limit</json:string>
<json:string>cumulative distribution</json:string>
<json:string>methanol masers</json:string>
<json:string>peak position</json:string>
<json:string>ident tracerc</json:string>
<json:string>temperature tcoldmin tcoldmax</json:string>
<json:string>mass mmin</json:string>
<json:string>tting procedure</json:string>
<json:string>iras association</json:string>
<json:string>large number</json:string>
<json:string>simba survey</json:string>
<json:string>entire sample</json:string>
<json:string>source class</json:string>
<json:string>luminosity lmin lmax</json:string>
<json:string>probability curves</json:string>
<json:string>methanol maser sites</json:string>
<json:string>cent contour</json:string>
<json:string>spectral energy distribution</json:string>
<json:string>simba source list</json:string>
<json:string>suitable values</json:string>
<json:string>bayesian inference</json:string>
<json:string>infrared data</json:string>
<json:string>main parameters</json:string>
<json:string>radio continuum source</json:string>
<json:string>methanol maser sources</json:string>
<json:string>different types</json:string>
<json:string>synthetic seds</json:string>
<json:string>iras data</json:string>
<json:string>millimetre sources</json:string>
<json:string>best value</json:string>
<json:string>maser sample</json:string>
<json:string>same parent distribution</json:string>
<json:string>cumulative distribution plot</json:string>
<json:string>radio continuum association</json:string>
<json:string>continuum</json:string>
<json:string>upper limits</json:string>
<json:string>direct association</json:string>
<json:string>distinct classes</json:string>
<json:string>methanol maser radio continuum source</json:string>
<json:string>total number</json:string>
<json:string>section table</json:string>
<json:string>millimetre continuum emission</json:string>
<json:string>midcourse space experiment</json:string>
<json:string>upper values</json:string>
<json:string>iras images</json:string>
<json:string>methanol maser emission</json:string>
<json:string>spitzer data</json:string>
<json:string>multiple components</json:string>
<json:string>marginal distinctions</json:string>
<json:string>equatorial coordinates</json:string>
<json:string>decimal places</json:string>
<json:string>source names</json:string>
<json:string>contour levels</json:string>
<json:string>statistical studies</json:string>
<json:string>bayesian probability</json:string>
<json:string>cumulative plots</json:string>
<json:string>source size</json:string>
<json:string>star formation activity sample</json:string>
<json:string>simple model</json:string>
<json:string>contour level</json:string>
<json:string>resultant parameters</json:string>
<json:string>little difference</json:string>
<json:string>methanol maser radio continuum sources</json:string>
<json:string>maser radio</json:string>
<json:string>bottom panels</json:string>
<json:string>cumulative fraction</json:string>
<json:string>bottom right</json:string>
<json:string>whole sample</json:string>
<json:string>cumulative plot</json:string>
<json:string>millimetres continuum sources</json:string>
<json:string>temperature distribution</json:string>
<json:string>infrared regime</json:string>
<json:string>global temperature</json:string>
<json:string>angular resolution</json:string>
<json:string>same population</json:string>
<json:string>maser mass</json:string>
<json:string>resultant luminosity</json:string>
<json:string>null hypothesis</json:string>
<json:string>mass parameter</json:string>
<json:string>bolometric luminosity</json:string>
<json:string>integration range</json:string>
<json:string>probability plot</json:string>
<json:string>likely combination</json:string>
<json:string>mass values</json:string>
<json:string>wide range</json:string>
<json:string>observational data</json:string>
<json:string>radiative transfer models</json:string>
<json:string>luminosity estimates</json:string>
<json:string>evolutionary status</json:string>
<json:string>radiative transfer modelling</json:string>
<json:string>systematic sampling</json:string>
<json:string>median value</json:string>
<json:string>small distinction</json:string>
<json:string>mass diagram</json:string>
<json:string>protostellar envelope mass</json:string>
<json:string>cent bayesian probability</json:string>
<json:string>distance value</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>T. Hill</name>
<affiliations>
<json:string>School of Physics, University of Exeter, Stocker Rd, EX4 4QL Exeter</json:string>
<json:string>Leiden Observatory, Leiden University, PO BOX 9513, 2300 RA Leiden, the Netherlands</json:string>
<json:string>School of Physics, University of New South Wales, Sydney 2052, NSW, Australia</json:string>
<json:string>E-mail: thill@astro.ex.ac.uk</json:string>
</affiliations>
</json:item>
<json:item>
<name>C. Pinte</name>
<affiliations>
<json:string>School of Physics, University of Exeter, Stocker Rd, EX4 4QL Exeter</json:string>
</affiliations>
</json:item>
<json:item>
<name>V. Minier</name>
<affiliations>
<json:string>CEA, DSM, IRFU, Service d'Astrophysique, 91191 Gif‐sur‐Yvette, France</json:string>
<json:string>Laboratoire AIM, CEA/DSM ‐ CNRS ‐ Université Paris Diderot, IRFU/Service d'Astrophysique, CEA‐Saclay, 91191 Gif‐sur‐Yvette, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>M. G. Burton</name>
<affiliations>
<json:string>School of Physics, University of New South Wales, Sydney 2052, NSW, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>M. R. Cunningham</name>
<affiliations>
<json:string>School of Physics, University of New South Wales, Sydney 2052, NSW, Australia</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>masers</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>stars: early‐type</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>stars: formation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>stars: fundamental parameters</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>H ii regions</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>submillimetre</value>
</json:item>
</subject>
<articleId>
<json:string>MNR14103</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-WV39FZQM-9</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Concatenating data from the millimetre regime to the infrared, we have performed spectral energy distribution (SED) modelling for 227 of the 405 millimetre continuum sources of Hill et al. which are thought to contain young massive stars in the earliest stages of their formation. Three main parameters are extracted from the fits: temperature, mass and luminosity. The method employed was the Bayesian inference, which allows a statistically probable range of suitable values for each parameter to be drawn for each individual protostellar candidate. This is the first application of this method to massive star formation. The cumulative distribution plots of the SED modelled parameters in this work indicate that collectively, the sources without methanol maser and/or radio continuum associations (MM‐only cores) display similar characteristics to those of high‐mass star formation regions. Attributing significance to the marginal distinctions between the MM‐only cores and the high‐mass star formation sample, we draw hypotheses regarding the nature of the MM‐only cores, including the possibility that the population itself comprises different types of source, and discuss their role in the formation scenarios of massive star formation. In addition, we discuss the usefulness and limitations of SED modelling and its application to the field. From this work, it is clear that within the valid parameter ranges, SEDs utilising current far‐infrared data cannot be used to determine the evolution of massive protostars or massive young stellar objects.</abstract>
<qualityIndicators>
<score>9.76</score>
<pdfWordCount>10851</pdfWordCount>
<pdfCharCount>71812</pdfCharCount>
<pdfVersion>1.4</pdfVersion>
<pdfPageCount>15</pdfPageCount>
<pdfPageSize>595.274 x 782.286 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>230</abstractWordCount>
<abstractCharCount>1557</abstractCharCount>
<keywordCount>6</keywordCount>
</qualityIndicators>
<title>Spectral energy distribution modelling of southern candidate massive protostars using the Bayesian inference method</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Monthly Notices of the Royal Astronomical Society</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1365-2966</json:string>
</doi>
<issn>
<json:string>0035-8711</json:string>
</issn>
<eissn>
<json:string>1365-2966</json:string>
</eissn>
<publisherId>
<json:string>MNR</json:string>
</publisherId>
<volume>392</volume>
<issue>2</issue>
<pages>
<first>768</first>
<last>782</last>
<total>15</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2009</json:string>
<json:string>1983</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>United Kingdom, the Netherlands</json:string>
<json:string>Ballistic Missile Defence Organisation</json:string>
<json:string>University of New South Wales</json:string>
<json:string>European Commission</json:string>
<json:string>Jet Propulsion Laboratory, California Institute of Technology</json:string>
<json:string>Leiden University</json:string>
<json:string>National Aeronautics and Space</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>P. Jones</json:string>
<json:string>H. J. van Langevelde</json:string>
<json:string>Paris Diderot</json:string>
<json:string>Marie Curie</json:string>
<json:string>C. Pinte</json:string>
<json:string>C. Purcell</json:string>
<json:string>M. R. Cunningham</json:string>
<json:string>T. Hill</json:string>
<json:string>S. Lumsden</json:string>
<json:string>S. Longmore</json:string>
<json:string>G. Burton</json:string>
</persName>
<placeName>
<json:string>Leiden</json:string>
<json:string>United States</json:string>
<json:string>Australia</json:string>
<json:string>Gif-sur-Yvette</json:string>
<json:string>France</json:string>
<json:string>Netherlands</json:string>
</placeName>
<ref_url>
<json:string>http://www.atnf.csiro.au/computing/software/karma/</json:string>
<json:string>http://irsa.ipac.caltech.edu/IRASdocs/iras.html</json:string>
</ref_url>
<ref_bibl>
<json:string>Walsh et al. (1998)</json:string>
<json:string>Pestalozzi, Minier & Booth 2005</json:string>
<json:string>Longmore et al. (2006)</json:string>
<json:string>Molinari et al. (2008)</json:string>
<json:string>Batrla et al. 1987</json:string>
<json:string>Robitaille 2008</json:string>
<json:string>Minier et al. (2005)</json:string>
<json:string>Beichman et al. (1988)</json:string>
<json:string>Whitney et al. (2003)</json:string>
<json:string>Caswell et al. 1995</json:string>
<json:string>Beuther et al. 2002</json:string>
<json:string>Walsh et al. 2003</json:string>
<json:string>Hill et al. 2006</json:string>
<json:string>Minier et al. (2001)</json:string>
<json:string>Minier et al. 2001</json:string>
<json:string>Hill et al. 2005</json:string>
<json:string>Pierce-Price et al. 2000</json:string>
<json:string>T. Hill et al.</json:string>
<json:string>Lay, Carlstrom & Hills 1997</json:string>
<json:string>Wood & Churchwell 1989</json:string>
<json:string>Hill et al.</json:string>
<json:string>Thompson et al. (2006)</json:string>
<json:string>Burton et al. 2004</json:string>
<json:string>Olmi et al. 1996</json:string>
<json:string>Minier et al. 2005</json:string>
<json:string>Walsh et al. 1998</json:string>
<json:string>Thompson et al. 2006</json:string>
<json:string>Price et al. (2001)</json:string>
<json:string>Lumsden et al. 2002</json:string>
<json:string>Robitaille et al. (2006)</json:string>
<json:string>Semadeni et al. (2005)</json:string>
<json:string>Longmore et al. 2006, 2007</json:string>
<json:string>Williams et al. 2004</json:string>
<json:string>Press et al. 1992</json:string>
<json:string>Pinte et al. 2007, 2008</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-WV39FZQM-9</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - astronomy & astrophysics</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - physics & astronomy</json:string>
<json:string>3 - astronomy & astrophysics</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Space and Planetary Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Physics and Astronomy</json:string>
<json:string>3 - Astronomy and Astrophysics</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2009</publicationDate>
<copyrightDate>2009</copyrightDate>
<doi>
<json:string>10.1111/j.1365-2966.2008.14103.x</json:string>
</doi>
<id>1AC21634C54338E906E35A48A0AE8E5A5085CEC0</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/1AC21634C54338E906E35A48A0AE8E5A5085CEC0/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/1AC21634C54338E906E35A48A0AE8E5A5085CEC0/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/1AC21634C54338E906E35A48A0AE8E5A5085CEC0/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Spectral energy distribution modelling of southern candidate massive protostars using the Bayesian inference method</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<licence>© 2008 The Authors. Journal compilation © 2008 RAS</licence>
</availability>
<date type="published" when="2009-01-11"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Spectral energy distribution modelling of southern candidate massive protostars using the Bayesian inference method</title>
<title level="a" type="short">SED modelling of candidate massive protostars</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">T.</forename>
<surname>Hill</surname>
</persName>
<affiliation>School of Physics, University of Exeter, Stocker Rd, EX4 4QL Exeter</affiliation>
<affiliation>Leiden Observatory, Leiden University, PO BOX 9513, 2300 RA Leiden, the Netherlands
<address>
<country key="NL"></country>
</address>
</affiliation>
<affiliation>School of Physics, University of New South Wales, Sydney 2052, NSW, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
<affiliation>E‐mail: thill@astro.ex.ac.uk</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">C.</forename>
<surname>Pinte</surname>
</persName>
<affiliation>School of Physics, University of Exeter, Stocker Rd, EX4 4QL Exeter</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">V.</forename>
<surname>Minier</surname>
</persName>
<affiliation>CEA, DSM, IRFU, Service d'Astrophysique, 91191 Gif‐sur‐Yvette, France
<address>
<country key="FR"></country>
</address>
</affiliation>
<affiliation>Laboratoire AIM, CEA/DSM ‐ CNRS ‐ Université Paris Diderot, IRFU/Service d'Astrophysique, CEA‐Saclay, 91191 Gif‐sur‐Yvette, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">M. G.</forename>
<surname>Burton</surname>
</persName>
<affiliation>School of Physics, University of New South Wales, Sydney 2052, NSW, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">M. R.</forename>
<surname>Cunningham</surname>
</persName>
<affiliation>School of Physics, University of New South Wales, Sydney 2052, NSW, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
</author>
<idno type="istex">1AC21634C54338E906E35A48A0AE8E5A5085CEC0</idno>
<idno type="ark">ark:/67375/WNG-WV39FZQM-9</idno>
<idno type="DOI">10.1111/j.1365-2966.2008.14103.x</idno>
<idno type="unit">MNR14103</idno>
<idno type="toTypesetVersion">file:MNR.MNR14103.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="alt">MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY</title>
<idno type="pISSN">0035-8711</idno>
<idno type="eISSN">1365-2966</idno>
<idno type="book-DOI">10.1111/(ISSN)1365-2966</idno>
<idno type="book-part-DOI">10.1111/mnr.2008.392.issue-2</idno>
<idno type="product">MNR</idno>
<idno type="publisherDivision">ST</idno>
<imprint>
<biblScope unit="vol">392</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="768">768</biblScope>
<biblScope unit="page" to="782">782</biblScope>
<biblScope unit="page-count">15</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2009-01-11"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>ABSTRACT</head>
<p>Concatenating data from the millimetre regime to the infrared, we have performed spectral energy distribution (SED) modelling for 227 of the 405 millimetre continuum sources of Hill et al. which are thought to contain young massive stars in the earliest stages of their formation. Three main parameters are extracted from the fits: temperature, mass and luminosity. The method employed was the Bayesian inference, which allows a statistically probable range of suitable values for each parameter to be drawn for each individual protostellar candidate. This is the first application of this method to massive star formation.</p>
<p>The cumulative distribution plots of the SED modelled parameters in this work indicate that collectively, the sources without methanol maser and/or radio continuum associations (MM‐only cores) display similar characteristics to those of high‐mass star formation regions. Attributing significance to the marginal distinctions between the MM‐only cores and the high‐mass star formation sample, we draw hypotheses regarding the nature of the MM‐only cores, including the possibility that the population itself comprises different types of source, and discuss their role in the formation scenarios of massive star formation. In addition, we discuss the usefulness and limitations of SED modelling and its application to the field. From this work, it is clear that within the valid parameter ranges, SEDs utilising current far‐infrared data cannot be used to determine the evolution of massive protostars or massive young stellar objects.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="k1">masers</term>
<term xml:id="k2">stars: early‐type</term>
<term xml:id="k3">stars: formation</term>
<term xml:id="k4">stars: fundamental parameters</term>
<term xml:id="k5">H 
<hi rend="smallCaps">ii</hi>
regions</term>
<term xml:id="k6">submillimetre</term>
</keywords>
<keywords rend="tocHeading1">
<term>Papers</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/1AC21634C54338E906E35A48A0AE8E5A5085CEC0/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1365-2966</doi>
<issn type="print">0035-8711</issn>
<issn type="electronic">1365-2966</issn>
<idGroup>
<id type="product" value="MNR"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY">Monthly Notices of the Royal Astronomical Society</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="01002">
<doi origin="wiley">10.1111/mnr.2008.392.issue-2</doi>
<numberingGroup>
<numbering type="journalVolume" number="392">392</numbering>
<numbering type="journalIssue" number="2">2</numbering>
</numberingGroup>
<coverDate startDate="2009-01-11">January 2009</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="20" status="forIssue">
<doi origin="wiley">10.1111/j.1365-2966.2008.14103.x</doi>
<idGroup>
<id type="unit" value="MNR14103"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="15"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Papers</title>
</titleGroup>
<copyright>© 2008 The Authors. Journal compilation © 2008 RAS</copyright>
<eventGroup>
<event type="firstOnline" date="2008-12-03"></event>
<event type="publishedOnlineFinalForm" date="2008-12-23"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.6 mode:FullText source:FullText result:FullText" date="2010-04-21"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-02"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-31"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="768">768</numbering>
<numbering type="pageLast" number="782">782</numbering>
</numberingGroup>
<correspondenceTo> E‐mail:
<email>thill@astro.ex.ac.uk</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:MNR.MNR14103.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Accepted 2008 October 16. Received 2008 October 15; in original form 2008 September 11</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="3"></count>
<count type="tableTotal" number="5"></count>
<count type="formulaTotal" number="163"></count>
<count type="referenceTotal" number="37"></count>
<count type="linksCrossRef" number="118"></count>
</countGroup>
<titleGroup>
<title type="main">Spectral energy distribution modelling of southern candidate massive protostars using the Bayesian inference method</title>
<title type="shortAuthors">
<i>T. Hill et al.</i>
</title>
<title type="short">
<i>SED modelling of candidate massive protostars</i>
</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1 #a2 #a3" corresponding="yes">
<personName>
<givenNames>T.</givenNames>
<familyName>Hill</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a1">
<personName>
<givenNames>C.</givenNames>
<familyName>Pinte</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a4 #a5">
<personName>
<givenNames>V.</givenNames>
<familyName>Minier</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4" affiliationRef="#a3">
<personName>
<givenNames>M. G.</givenNames>
<familyName>Burton</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr5" affiliationRef="#a3">
<personName>
<givenNames>M. R.</givenNames>
<familyName>Cunningham</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1">
<unparsedAffiliation>School of Physics, University of Exeter, Stocker Rd, EX4 4QL Exeter</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="NL">
<unparsedAffiliation>Leiden Observatory, Leiden University, PO BOX 9513, 2300 RA Leiden, the Netherlands</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3" countryCode="AU">
<unparsedAffiliation>School of Physics, University of New South Wales, Sydney 2052, NSW, Australia</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a4" countryCode="FR">
<unparsedAffiliation>CEA, DSM, IRFU, Service d'Astrophysique, 91191 Gif‐sur‐Yvette, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a5" countryCode="FR">
<unparsedAffiliation>Laboratoire AIM, CEA/DSM ‐ CNRS ‐ Université Paris Diderot, IRFU/Service d'Astrophysique, CEA‐Saclay, 91191 Gif‐sur‐Yvette, France</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">masers</keyword>
<keyword xml:id="k2">stars: early‐type</keyword>
<keyword xml:id="k3">stars: formation</keyword>
<keyword xml:id="k4">stars: fundamental parameters</keyword>
<keyword xml:id="k5">H 
<sc>ii</sc>
regions</keyword>
<keyword xml:id="k6">submillimetre</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">ABSTRACT</title>
<p>Concatenating data from the millimetre regime to the infrared, we have performed spectral energy distribution (SED) modelling for 227 of the 405 millimetre continuum sources of Hill et al. which are thought to contain young massive stars in the earliest stages of their formation. Three main parameters are extracted from the fits: temperature, mass and luminosity. The method employed was the Bayesian inference, which allows a statistically probable range of suitable values for each parameter to be drawn for each individual protostellar candidate. This is the first application of this method to massive star formation.</p>
<p>The cumulative distribution plots of the SED modelled parameters in this work indicate that collectively, the sources without methanol maser and/or radio continuum associations (MM‐only cores) display similar characteristics to those of high‐mass star formation regions. Attributing significance to the marginal distinctions between the MM‐only cores and the high‐mass star formation sample, we draw hypotheses regarding the nature of the MM‐only cores, including the possibility that the population itself comprises different types of source, and discuss their role in the formation scenarios of massive star formation. In addition, we discuss the usefulness and limitations of SED modelling and its application to the field. From this work, it is clear that within the valid parameter ranges, SEDs utilising current far‐infrared data cannot be used to determine the evolution of massive protostars or massive young stellar objects.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Spectral energy distribution modelling of southern candidate massive protostars using the Bayesian inference method</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>SED modelling of candidate massive protostars</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Spectral energy distribution modelling of southern candidate massive protostars using the Bayesian inference method</title>
</titleInfo>
<name type="personal">
<namePart type="given">T.</namePart>
<namePart type="family">Hill</namePart>
<affiliation>School of Physics, University of Exeter, Stocker Rd, EX4 4QL Exeter</affiliation>
<affiliation>Leiden Observatory, Leiden University, PO BOX 9513, 2300 RA Leiden, the Netherlands</affiliation>
<affiliation>School of Physics, University of New South Wales, Sydney 2052, NSW, Australia</affiliation>
<affiliation>E-mail: thill@astro.ex.ac.uk</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C.</namePart>
<namePart type="family">Pinte</namePart>
<affiliation>School of Physics, University of Exeter, Stocker Rd, EX4 4QL Exeter</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">V.</namePart>
<namePart type="family">Minier</namePart>
<affiliation>CEA, DSM, IRFU, Service d'Astrophysique, 91191 Gif‐sur‐Yvette, France</affiliation>
<affiliation>Laboratoire AIM, CEA/DSM ‐ CNRS ‐ Université Paris Diderot, IRFU/Service d'Astrophysique, CEA‐Saclay, 91191 Gif‐sur‐Yvette, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M. G.</namePart>
<namePart type="family">Burton</namePart>
<affiliation>School of Physics, University of New South Wales, Sydney 2052, NSW, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M. R.</namePart>
<namePart type="family">Cunningham</namePart>
<affiliation>School of Physics, University of New South Wales, Sydney 2052, NSW, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2009-01-11</dateIssued>
<edition>Accepted 2008 October 16. Received 2008 October 15; in original form 2008 September 11</edition>
<copyrightDate encoding="w3cdtf">2009</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">3</extent>
<extent unit="tables">5</extent>
<extent unit="formulas">163</extent>
<extent unit="references">37</extent>
<extent unit="linksCrossRef">118</extent>
</physicalDescription>
<abstract lang="en">Concatenating data from the millimetre regime to the infrared, we have performed spectral energy distribution (SED) modelling for 227 of the 405 millimetre continuum sources of Hill et al. which are thought to contain young massive stars in the earliest stages of their formation. Three main parameters are extracted from the fits: temperature, mass and luminosity. The method employed was the Bayesian inference, which allows a statistically probable range of suitable values for each parameter to be drawn for each individual protostellar candidate. This is the first application of this method to massive star formation. The cumulative distribution plots of the SED modelled parameters in this work indicate that collectively, the sources without methanol maser and/or radio continuum associations (MM‐only cores) display similar characteristics to those of high‐mass star formation regions. Attributing significance to the marginal distinctions between the MM‐only cores and the high‐mass star formation sample, we draw hypotheses regarding the nature of the MM‐only cores, including the possibility that the population itself comprises different types of source, and discuss their role in the formation scenarios of massive star formation. In addition, we discuss the usefulness and limitations of SED modelling and its application to the field. From this work, it is clear that within the valid parameter ranges, SEDs utilising current far‐infrared data cannot be used to determine the evolution of massive protostars or massive young stellar objects.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>masers</topic>
<topic>stars: early‐type</topic>
<topic>stars: formation</topic>
<topic>stars: fundamental parameters</topic>
<topic>H ii regions</topic>
<topic>submillimetre</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Monthly Notices of the Royal Astronomical Society</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0035-8711</identifier>
<identifier type="eISSN">1365-2966</identifier>
<identifier type="DOI">10.1111/(ISSN)1365-2966</identifier>
<identifier type="PublisherID">MNR</identifier>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>392</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>768</start>
<end>782</end>
<total>15</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">1AC21634C54338E906E35A48A0AE8E5A5085CEC0</identifier>
<identifier type="ark">ark:/67375/WNG-WV39FZQM-9</identifier>
<identifier type="DOI">10.1111/j.1365-2966.2008.14103.x</identifier>
<identifier type="ArticleID">MNR14103</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2008 The Authors. Journal compilation © 2008 RAS</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/1AC21634C54338E906E35A48A0AE8E5A5085CEC0/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000508 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000508 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:1AC21634C54338E906E35A48A0AE8E5A5085CEC0
   |texte=   Spectral energy distribution modelling of southern candidate massive protostars using the Bayesian inference method
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024