Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Process Intensification by Membrane Reactors: High-Temperature Water Gas Shift Reaction as Single Stage for Syngas Upgrading

Identifieur interne : 000998 ( PascalFrancis/Curation ); précédent : 000997; suivant : 000999

Process Intensification by Membrane Reactors: High-Temperature Water Gas Shift Reaction as Single Stage for Syngas Upgrading

Auteurs : Adele Brunetti [Italie] ; Alessio Caravella [Italie, Japon] ; Enrico Drioli [Italie] ; Giuseppe Barbieri [Italie]

Source :

RBID : Pascal:12-0330320

Descripteurs français

English descriptors

Abstract

Pd-based membrane reactors (MRs) selectively removing hydrogen shift the equilibrium conversion of this new reactor type to values higher than those imposed by thermodynamics to traditional reactors. Thus, the equilibrium conversion of CO is significantly increased and can be very strongly depending on the hydrogen extracted also at a higher temperature. This property of the MRs offers important benefits also in terms of process intensification. In the typical high-temperature range for this reaction, i.e., 300-450 °C, the performance of an MR turned out to be so effective that the two reactors of a traditional process can be replaced by one MR of lower volume, too. The conversion of the MR is higher than the one of the whole traditional process which includes a heat exchanger in addition to two reactors. Consequently, less and smaller unit operations are required when an MR operates the water gas shift reaction pursuing the process intensification philosophy.
pA  
A01 01  1    @0 0930-7516
A02 01      @0 CETEER
A03   1    @0 Chem. eng. technol.
A05       @2 35
A06       @2 7
A08 01  1  ENG  @1 Process Intensification by Membrane Reactors: High-Temperature Water Gas Shift Reaction as Single Stage for Syngas Upgrading
A09 01  1  ENG  @1 Reactor Design & Process Intensification
A11 01  1    @1 BRUNETTI (Adele)
A11 02  1    @1 CARAVELLA (Alessio)
A11 03  1    @1 DRIOLI (Enrico)
A11 04  1    @1 BARBIERI (Giuseppe)
A12 01  1    @1 CHARPENTIER (Jean-Claude) @9 ed.
A14 01      @1 National Research Council, Institute for Membrane Technology (ITM-CNR) @2 Rende @3 ITA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut.
A14 02      @1 The University of Calabria, Department of Chemical Engineering and Materials @2 Rende @3 ITA @Z 3 aut.
A14 03      @1 Present address: National Institute of Advanced Industrial Science and Technology (AIST), Research Institute for Innovation in Sustainable Chemistry @2 Tsukuba (Ibaraki) @3 JPN @Z 2 aut.
A15 01      @1 Laboratoire Réactions et Génie des Procédés, CNRS/ENSIC Université de Lorraine @2 Nancy @3 FRA @Z 1 aut.
A20       @1 1238-1248
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 20728 @5 354000500864540110
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 39 ref.
A47 01  1    @0 12-0330320
A60       @1 P
A61       @0 A
A64 01  1    @0 Chemical engineering & technology
A66 01      @0 DEU
C01 01    ENG  @0 Pd-based membrane reactors (MRs) selectively removing hydrogen shift the equilibrium conversion of this new reactor type to values higher than those imposed by thermodynamics to traditional reactors. Thus, the equilibrium conversion of CO is significantly increased and can be very strongly depending on the hydrogen extracted also at a higher temperature. This property of the MRs offers important benefits also in terms of process intensification. In the typical high-temperature range for this reaction, i.e., 300-450 °C, the performance of an MR turned out to be so effective that the two reactors of a traditional process can be replaced by one MR of lower volume, too. The conversion of the MR is higher than the one of the whole traditional process which includes a heat exchanger in addition to two reactors. Consequently, less and smaller unit operations are required when an MR operates the water gas shift reaction pursuing the process intensification philosophy.
C02 01  X    @0 001D07H
C02 02  X    @0 001D07S
C03 01  X  FRE  @0 Réacteur membrane @5 01
C03 01  X  ENG  @0 Membrane reactor @5 01
C03 01  X  SPA  @0 Reactor membrana @5 01
C03 02  X  FRE  @0 Gaz à l'eau @5 02
C03 02  X  ENG  @0 Water gas @5 02
C03 02  X  SPA  @0 Gas con agua @5 02
C03 03  X  FRE  @0 Gaz synthèse @5 03
C03 03  X  ENG  @0 Synthesis gas @5 03
C03 03  X  SPA  @0 Gas síntesis @5 03
C03 04  X  FRE  @0 Valorisation @5 04
C03 04  X  ENG  @0 Upgrading @5 04
C03 04  X  SPA  @0 Valorización @5 04
C03 05  X  FRE  @0 Extrait @5 05
C03 05  X  ENG  @0 Extract @5 05
C03 05  X  SPA  @0 Extracto @5 05
C03 06  X  FRE  @0 Echangeur chaleur @5 06
C03 06  X  ENG  @0 Heat exchanger @5 06
C03 06  X  SPA  @0 Intercambiador calor @5 06
C03 07  X  FRE  @0 Opération unitaire @5 07
C03 07  X  ENG  @0 Unit operation @5 07
C03 07  X  SPA  @0 Operación unitaria @5 07
N21       @1 254
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0330320

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Process Intensification by Membrane Reactors: High-Temperature Water Gas Shift Reaction as Single Stage for Syngas Upgrading</title>
<author>
<name sortKey="Brunetti, Adele" sort="Brunetti, Adele" uniqKey="Brunetti A" first="Adele" last="Brunetti">Adele Brunetti</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Research Council, Institute for Membrane Technology (ITM-CNR)</s1>
<s2>Rende</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
<author>
<name sortKey="Caravella, Alessio" sort="Caravella, Alessio" uniqKey="Caravella A" first="Alessio" last="Caravella">Alessio Caravella</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Research Council, Institute for Membrane Technology (ITM-CNR)</s1>
<s2>Rende</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Present address: National Institute of Advanced Industrial Science and Technology (AIST), Research Institute for Innovation in Sustainable Chemistry</s1>
<s2>Tsukuba (Ibaraki)</s2>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Drioli, Enrico" sort="Drioli, Enrico" uniqKey="Drioli E" first="Enrico" last="Drioli">Enrico Drioli</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Research Council, Institute for Membrane Technology (ITM-CNR)</s1>
<s2>Rende</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>The University of Calabria, Department of Chemical Engineering and Materials</s1>
<s2>Rende</s2>
<s3>ITA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
<author>
<name sortKey="Barbieri, Giuseppe" sort="Barbieri, Giuseppe" uniqKey="Barbieri G" first="Giuseppe" last="Barbieri">Giuseppe Barbieri</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Research Council, Institute for Membrane Technology (ITM-CNR)</s1>
<s2>Rende</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0330320</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0330320 INIST</idno>
<idno type="RBID">Pascal:12-0330320</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000112</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000998</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Process Intensification by Membrane Reactors: High-Temperature Water Gas Shift Reaction as Single Stage for Syngas Upgrading</title>
<author>
<name sortKey="Brunetti, Adele" sort="Brunetti, Adele" uniqKey="Brunetti A" first="Adele" last="Brunetti">Adele Brunetti</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Research Council, Institute for Membrane Technology (ITM-CNR)</s1>
<s2>Rende</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
<author>
<name sortKey="Caravella, Alessio" sort="Caravella, Alessio" uniqKey="Caravella A" first="Alessio" last="Caravella">Alessio Caravella</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Research Council, Institute for Membrane Technology (ITM-CNR)</s1>
<s2>Rende</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Present address: National Institute of Advanced Industrial Science and Technology (AIST), Research Institute for Innovation in Sustainable Chemistry</s1>
<s2>Tsukuba (Ibaraki)</s2>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Drioli, Enrico" sort="Drioli, Enrico" uniqKey="Drioli E" first="Enrico" last="Drioli">Enrico Drioli</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Research Council, Institute for Membrane Technology (ITM-CNR)</s1>
<s2>Rende</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>The University of Calabria, Department of Chemical Engineering and Materials</s1>
<s2>Rende</s2>
<s3>ITA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
<author>
<name sortKey="Barbieri, Giuseppe" sort="Barbieri, Giuseppe" uniqKey="Barbieri G" first="Giuseppe" last="Barbieri">Giuseppe Barbieri</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Research Council, Institute for Membrane Technology (ITM-CNR)</s1>
<s2>Rende</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Chemical engineering & technology</title>
<title level="j" type="abbreviated">Chem. eng. technol.</title>
<idno type="ISSN">0930-7516</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Chemical engineering & technology</title>
<title level="j" type="abbreviated">Chem. eng. technol.</title>
<idno type="ISSN">0930-7516</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Extract</term>
<term>Heat exchanger</term>
<term>Membrane reactor</term>
<term>Synthesis gas</term>
<term>Unit operation</term>
<term>Upgrading</term>
<term>Water gas</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Réacteur membrane</term>
<term>Gaz à l'eau</term>
<term>Gaz synthèse</term>
<term>Valorisation</term>
<term>Extrait</term>
<term>Echangeur chaleur</term>
<term>Opération unitaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Pd-based membrane reactors (MRs) selectively removing hydrogen shift the equilibrium conversion of this new reactor type to values higher than those imposed by thermodynamics to traditional reactors. Thus, the equilibrium conversion of CO is significantly increased and can be very strongly depending on the hydrogen extracted also at a higher temperature. This property of the MRs offers important benefits also in terms of process intensification. In the typical high-temperature range for this reaction, i.e., 300-450 °C, the performance of an MR turned out to be so effective that the two reactors of a traditional process can be replaced by one MR of lower volume, too. The conversion of the MR is higher than the one of the whole traditional process which includes a heat exchanger in addition to two reactors. Consequently, less and smaller unit operations are required when an MR operates the water gas shift reaction pursuing the process intensification philosophy.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0930-7516</s0>
</fA01>
<fA02 i1="01">
<s0>CETEER</s0>
</fA02>
<fA03 i2="1">
<s0>Chem. eng. technol.</s0>
</fA03>
<fA05>
<s2>35</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Process Intensification by Membrane Reactors: High-Temperature Water Gas Shift Reaction as Single Stage for Syngas Upgrading</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Reactor Design & Process Intensification</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>BRUNETTI (Adele)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CARAVELLA (Alessio)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DRIOLI (Enrico)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BARBIERI (Giuseppe)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>CHARPENTIER (Jean-Claude)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>National Research Council, Institute for Membrane Technology (ITM-CNR)</s1>
<s2>Rende</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>The University of Calabria, Department of Chemical Engineering and Materials</s1>
<s2>Rende</s2>
<s3>ITA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Present address: National Institute of Advanced Industrial Science and Technology (AIST), Research Institute for Innovation in Sustainable Chemistry</s1>
<s2>Tsukuba (Ibaraki)</s2>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Laboratoire Réactions et Génie des Procédés, CNRS/ENSIC Université de Lorraine</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA20>
<s1>1238-1248</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>20728</s2>
<s5>354000500864540110</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>39 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0330320</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Chemical engineering & technology</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Pd-based membrane reactors (MRs) selectively removing hydrogen shift the equilibrium conversion of this new reactor type to values higher than those imposed by thermodynamics to traditional reactors. Thus, the equilibrium conversion of CO is significantly increased and can be very strongly depending on the hydrogen extracted also at a higher temperature. This property of the MRs offers important benefits also in terms of process intensification. In the typical high-temperature range for this reaction, i.e., 300-450 °C, the performance of an MR turned out to be so effective that the two reactors of a traditional process can be replaced by one MR of lower volume, too. The conversion of the MR is higher than the one of the whole traditional process which includes a heat exchanger in addition to two reactors. Consequently, less and smaller unit operations are required when an MR operates the water gas shift reaction pursuing the process intensification philosophy.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D07H</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D07S</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Réacteur membrane</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Membrane reactor</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Reactor membrana</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Gaz à l'eau</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Water gas</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Gas con agua</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Gaz synthèse</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Synthesis gas</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Gas síntesis</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Valorisation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Upgrading</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Valorización</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Extrait</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Extract</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Extracto</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Echangeur chaleur</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Heat exchanger</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Intercambiador calor</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Opération unitaire</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Unit operation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Operación unitaria</s0>
<s5>07</s5>
</fC03>
<fN21>
<s1>254</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000998 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000998 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:12-0330320
   |texte=   Process Intensification by Membrane Reactors: High-Temperature Water Gas Shift Reaction as Single Stage for Syngas Upgrading
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024