Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Numerical study of evaporation in a vertical annulus heated at the inner wall

Identifieur interne : 000937 ( PascalFrancis/Curation ); précédent : 000936; suivant : 000938

Numerical study of evaporation in a vertical annulus heated at the inner wall

Auteurs : R. Ben Radhia [Tunisie] ; J. P. Corriou [France] ; S. Harmand [France] ; S. Ben Jabrallah [Tunisie]

Source :

RBID : Pascal:11-0459437

Descripteurs français

English descriptors

Abstract

Mixed convection during evaporation of a water falling film in a vertical concentric annulus was studied numerically. The water thin film falls on the inner tube and is subjected to a constant heat flux density, whereas the outer cylinder is assumed to be insulated and dry. An imposed air flow circulates within the gap between the two concentric tubes. The objective of this work is to understand the evaporation phenomenon in order to improve the average evaporated mass flux density and heat and mass transfer. Conservative equations governing the gas phase are solved numerically using the finite volume method. In the liquid phase, a method based on local heat and mass balances on each level is used. Thus, the following liquid film parameters, feed water mass flow, feed temperature and heat flux density, are taken into account. The obtained results are analyzed to emphasize and evaluate the influence of the previous operating parameters and the annulus curvature on the effective evaporation surface and on the mass flux density of evaporated water.
pA  
A01 01  1    @0 1290-0729
A03   1    @0 Int. j. therm. sci.
A05       @2 50
A06       @2 10
A08 01  1  ENG  @1 Numerical study of evaporation in a vertical annulus heated at the inner wall
A11 01  1    @1 BEN RADHIA (R.)
A11 02  1    @1 CORRIOU (J. P.)
A11 03  1    @1 HARMAND (S.)
A11 04  1    @1 BEN JABRALLAH (S.)
A14 01      @1 Laboratoire d'Energétique et des Transferts Thermique et Massique, Faculté des Sciences de Tunis, Université Tunis El Manar @2 1060 Tunis @3 TUN @Z 1 aut. @Z 4 aut.
A14 02      @1 Faculté des sciences de Bizerte, Universite du 7 Novembreá Carthage @2 7021 Bizerte @3 TUN @Z 4 aut.
A14 03      @1 LRGP, Nancy Université, CNRS-ENSIC-INPL, 1 rue Grandville, BP 20451 @2 54001 Nancy @3 FRA @Z 2 aut.
A14 04      @1 Université de Lille Nord de France, F-59000 Lille UVHC/TEMPO @2 59313 Valenciennes @3 FRA @Z 3 aut.
A20       @1 1996-2005
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 5065 @5 354000500129630200
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 25 ref.
A47 01  1    @0 11-0459437
A60       @1 P
A61       @0 A
A64 01  1    @0 International journal of thermal sciences
A66 01      @0 GBR
C01 01    ENG  @0 Mixed convection during evaporation of a water falling film in a vertical concentric annulus was studied numerically. The water thin film falls on the inner tube and is subjected to a constant heat flux density, whereas the outer cylinder is assumed to be insulated and dry. An imposed air flow circulates within the gap between the two concentric tubes. The objective of this work is to understand the evaporation phenomenon in order to improve the average evaporated mass flux density and heat and mass transfer. Conservative equations governing the gas phase are solved numerically using the finite volume method. In the liquid phase, a method based on local heat and mass balances on each level is used. Thus, the following liquid film parameters, feed water mass flow, feed temperature and heat flux density, are taken into account. The obtained results are analyzed to emphasize and evaluate the influence of the previous operating parameters and the annulus curvature on the effective evaporation surface and on the mass flux density of evaporated water.
C02 01  X    @0 001D06D02B
C02 02  X    @0 230
C03 01  X  FRE  @0 Convection mixte @5 02
C03 01  X  ENG  @0 Combined convection @5 02
C03 01  X  SPA  @0 Convección mixta @5 02
C03 02  X  FRE  @0 Eau @5 06
C03 02  X  ENG  @0 Water @5 06
C03 02  X  SPA  @0 Agua @5 06
C03 03  X  FRE  @0 Film tombant @5 08
C03 03  X  ENG  @0 Falling film @5 08
C03 03  X  SPA  @0 Película caediza @5 08
C03 04  X  FRE  @0 Cylindre vertical @5 09
C03 04  X  ENG  @0 Vertical cylinder @5 09
C03 04  X  SPA  @0 Cilindro vertical @5 09
C03 05  X  FRE  @0 Espace annulaire @5 10
C03 05  X  ENG  @0 Annular space @5 10
C03 05  X  SPA  @0 Espacio anular @5 10
C03 06  X  FRE  @0 Méthode volume fini @5 12
C03 06  X  ENG  @0 Finite volume method @5 12
C03 06  X  SPA  @0 Método volumen finito @5 12
C03 07  X  FRE  @0 Modélisation @5 15
C03 07  X  ENG  @0 Modeling @5 15
C03 07  X  SPA  @0 Modelización @5 15
C03 08  X  FRE  @0 Simulation numérique @5 16
C03 08  X  ENG  @0 Numerical simulation @5 16
C03 08  X  SPA  @0 Simulación numérica @5 16
C03 09  X  FRE  @0 Evaporation @5 23
C03 09  X  ENG  @0 Evaporation @5 23
C03 09  X  SPA  @0 Evaporación @5 23
C03 10  X  FRE  @0 Transfert chaleur masse @5 24
C03 10  X  ENG  @0 Heat mass transfer @5 24
C03 10  X  SPA  @0 Transferencia calor masa @5 24
C03 11  X  FRE  @0 Nombre Nusselt @5 25
C03 11  X  ENG  @0 Nusselt number @5 25
C03 11  X  SPA  @0 Número Nusselt @5 25
C03 12  X  FRE  @0 Cylindre coaxial @5 29
C03 12  X  ENG  @0 Coaxial cylinders @5 29
C03 12  X  SPA  @0 Cilindro coaxial @5 29
C03 13  X  FRE  @0 Refroidissement évaporation @5 30
C03 13  X  ENG  @0 Evaporative cooling @5 30
C03 13  X  SPA  @0 Enfriamiento evaporación @5 30
N21       @1 319

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0459437

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Numerical study of evaporation in a vertical annulus heated at the inner wall</title>
<author>
<name sortKey="Ben Radhia, R" sort="Ben Radhia, R" uniqKey="Ben Radhia R" first="R." last="Ben Radhia">R. Ben Radhia</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire d'Energétique et des Transferts Thermique et Massique, Faculté des Sciences de Tunis, Université Tunis El Manar</s1>
<s2>1060 Tunis</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
</affiliation>
</author>
<author>
<name sortKey="Corriou, J P" sort="Corriou, J P" uniqKey="Corriou J" first="J. P." last="Corriou">J. P. Corriou</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>LRGP, Nancy Université, CNRS-ENSIC-INPL, 1 rue Grandville, BP 20451</s1>
<s2>54001 Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Harmand, S" sort="Harmand, S" uniqKey="Harmand S" first="S." last="Harmand">S. Harmand</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Université de Lille Nord de France, F-59000 Lille UVHC/TEMPO</s1>
<s2>59313 Valenciennes</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Ben Jabrallah, S" sort="Ben Jabrallah, S" uniqKey="Ben Jabrallah S" first="S." last="Ben Jabrallah">S. Ben Jabrallah</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire d'Energétique et des Transferts Thermique et Massique, Faculté des Sciences de Tunis, Université Tunis El Manar</s1>
<s2>1060 Tunis</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Faculté des sciences de Bizerte, Universite du 7 Novembreá Carthage</s1>
<s2>7021 Bizerte</s2>
<s3>TUN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0459437</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0459437 INIST</idno>
<idno type="RBID">Pascal:11-0459437</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000174</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000937</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Numerical study of evaporation in a vertical annulus heated at the inner wall</title>
<author>
<name sortKey="Ben Radhia, R" sort="Ben Radhia, R" uniqKey="Ben Radhia R" first="R." last="Ben Radhia">R. Ben Radhia</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire d'Energétique et des Transferts Thermique et Massique, Faculté des Sciences de Tunis, Université Tunis El Manar</s1>
<s2>1060 Tunis</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
</affiliation>
</author>
<author>
<name sortKey="Corriou, J P" sort="Corriou, J P" uniqKey="Corriou J" first="J. P." last="Corriou">J. P. Corriou</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>LRGP, Nancy Université, CNRS-ENSIC-INPL, 1 rue Grandville, BP 20451</s1>
<s2>54001 Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Harmand, S" sort="Harmand, S" uniqKey="Harmand S" first="S." last="Harmand">S. Harmand</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Université de Lille Nord de France, F-59000 Lille UVHC/TEMPO</s1>
<s2>59313 Valenciennes</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Ben Jabrallah, S" sort="Ben Jabrallah, S" uniqKey="Ben Jabrallah S" first="S." last="Ben Jabrallah">S. Ben Jabrallah</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire d'Energétique et des Transferts Thermique et Massique, Faculté des Sciences de Tunis, Université Tunis El Manar</s1>
<s2>1060 Tunis</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Faculté des sciences de Bizerte, Universite du 7 Novembreá Carthage</s1>
<s2>7021 Bizerte</s2>
<s3>TUN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">International journal of thermal sciences</title>
<title level="j" type="abbreviated">Int. j. therm. sci.</title>
<idno type="ISSN">1290-0729</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">International journal of thermal sciences</title>
<title level="j" type="abbreviated">Int. j. therm. sci.</title>
<idno type="ISSN">1290-0729</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annular space</term>
<term>Coaxial cylinders</term>
<term>Combined convection</term>
<term>Evaporation</term>
<term>Evaporative cooling</term>
<term>Falling film</term>
<term>Finite volume method</term>
<term>Heat mass transfer</term>
<term>Modeling</term>
<term>Numerical simulation</term>
<term>Nusselt number</term>
<term>Vertical cylinder</term>
<term>Water</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Convection mixte</term>
<term>Eau</term>
<term>Film tombant</term>
<term>Cylindre vertical</term>
<term>Espace annulaire</term>
<term>Méthode volume fini</term>
<term>Modélisation</term>
<term>Simulation numérique</term>
<term>Evaporation</term>
<term>Transfert chaleur masse</term>
<term>Nombre Nusselt</term>
<term>Cylindre coaxial</term>
<term>Refroidissement évaporation</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Eau</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mixed convection during evaporation of a water falling film in a vertical concentric annulus was studied numerically. The water thin film falls on the inner tube and is subjected to a constant heat flux density, whereas the outer cylinder is assumed to be insulated and dry. An imposed air flow circulates within the gap between the two concentric tubes. The objective of this work is to understand the evaporation phenomenon in order to improve the average evaporated mass flux density and heat and mass transfer. Conservative equations governing the gas phase are solved numerically using the finite volume method. In the liquid phase, a method based on local heat and mass balances on each level is used. Thus, the following liquid film parameters, feed water mass flow, feed temperature and heat flux density, are taken into account. The obtained results are analyzed to emphasize and evaluate the influence of the previous operating parameters and the annulus curvature on the effective evaporation surface and on the mass flux density of evaporated water.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1290-0729</s0>
</fA01>
<fA03 i2="1">
<s0>Int. j. therm. sci.</s0>
</fA03>
<fA05>
<s2>50</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Numerical study of evaporation in a vertical annulus heated at the inner wall</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BEN RADHIA (R.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CORRIOU (J. P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HARMAND (S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BEN JABRALLAH (S.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratoire d'Energétique et des Transferts Thermique et Massique, Faculté des Sciences de Tunis, Université Tunis El Manar</s1>
<s2>1060 Tunis</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Faculté des sciences de Bizerte, Universite du 7 Novembreá Carthage</s1>
<s2>7021 Bizerte</s2>
<s3>TUN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>LRGP, Nancy Université, CNRS-ENSIC-INPL, 1 rue Grandville, BP 20451</s1>
<s2>54001 Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Université de Lille Nord de France, F-59000 Lille UVHC/TEMPO</s1>
<s2>59313 Valenciennes</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>1996-2005</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>5065</s2>
<s5>354000500129630200</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>25 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0459437</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>International journal of thermal sciences</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Mixed convection during evaporation of a water falling film in a vertical concentric annulus was studied numerically. The water thin film falls on the inner tube and is subjected to a constant heat flux density, whereas the outer cylinder is assumed to be insulated and dry. An imposed air flow circulates within the gap between the two concentric tubes. The objective of this work is to understand the evaporation phenomenon in order to improve the average evaporated mass flux density and heat and mass transfer. Conservative equations governing the gas phase are solved numerically using the finite volume method. In the liquid phase, a method based on local heat and mass balances on each level is used. Thus, the following liquid film parameters, feed water mass flow, feed temperature and heat flux density, are taken into account. The obtained results are analyzed to emphasize and evaluate the influence of the previous operating parameters and the annulus curvature on the effective evaporation surface and on the mass flux density of evaporated water.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06D02B</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Convection mixte</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Combined convection</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Convección mixta</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Eau</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Water</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Agua</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Film tombant</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Falling film</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Película caediza</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Cylindre vertical</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Vertical cylinder</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Cilindro vertical</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Espace annulaire</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Annular space</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Espacio anular</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Méthode volume fini</s0>
<s5>12</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Finite volume method</s0>
<s5>12</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Método volumen finito</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>15</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Simulation numérique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Numerical simulation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Simulación numérica</s0>
<s5>16</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Evaporation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Evaporation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Evaporación</s0>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Transfert chaleur masse</s0>
<s5>24</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Heat mass transfer</s0>
<s5>24</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Transferencia calor masa</s0>
<s5>24</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Nombre Nusselt</s0>
<s5>25</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Nusselt number</s0>
<s5>25</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Número Nusselt</s0>
<s5>25</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Cylindre coaxial</s0>
<s5>29</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Coaxial cylinders</s0>
<s5>29</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Cilindro coaxial</s0>
<s5>29</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Refroidissement évaporation</s0>
<s5>30</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Evaporative cooling</s0>
<s5>30</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Enfriamiento evaporación</s0>
<s5>30</s5>
</fC03>
<fN21>
<s1>319</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000937 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000937 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:11-0459437
   |texte=   Numerical study of evaporation in a vertical annulus heated at the inner wall
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024