Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modelling of a moving bed furnace for the production of uranium tetrafluoride. Part 2: Application of the model

Identifieur interne : 000800 ( PascalFrancis/Corpus ); précédent : 000799; suivant : 000801

Modelling of a moving bed furnace for the production of uranium tetrafluoride. Part 2: Application of the model

Auteurs : B. Dussoubs ; J. Jourde ; F. Patisson ; J.-L. Houzelot ; D. Ablitzer

Source :

RBID : Pascal:03-0414333

Abstract

The French nuclear fuel making route uses, prior to enrichment, uranium tetrafluoride UF4 obtained from the reduction, followed by hydrofluorination of uranium trioxide UO3. These two steps are carried out in a specific reactor known as a moving bed furnace. We developed a steady-state numerical model of the moving bed furnace, described in Part 1. In the Part 2, calculation results for a reference set of operating parameters of the furnace are presented in term of temperature, reaction rates, solid and gas compositions. Results analysis enlightens the detail of the furnace behaviour in its different zones. Unknown features have been revealed, such as thermodynamic limitation of the hydrofluorination reaction in the hot core of the moving bed. A sensibility study of various operating parameters shows how some can influence the UF4 quality and underlines the strong coupling between the different zones of the furnace. Finally, the model is applied to define an optimal temperature progression in the furnace and suggests geometrical modifications. Besides, the validity of using the law of additive reaction times for calculating the reaction rates in such a reactor model has been checked for the first time against a numerical grain model.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0009-2509
A02 01      @0 CESCAC
A03   1    @0 Chem. eng. sci.
A05       @2 58
A06       @2 12
A08 01  1  ENG  @1 Modelling of a moving bed furnace for the production of uranium tetrafluoride. Part 2: Application of the model
A11 01  1    @1 DUSSOUBS (B.)
A11 02  1    @1 JOURDE (J.)
A11 03  1    @1 PATISSON (F.)
A11 04  1    @1 HOUZELOT (J.-L.)
A11 05  1    @1 ABLITZER (D.)
A14 01      @1 Laboratoire de Science et Génie des Matériaux et de Métallurgie, Ecole des Mines, Parc de Saurupt, UMR CNRS 7584 @2 54042 Nancy @3 FRA @Z 1 aut. @Z 3 aut. @Z 5 aut.
A14 02      @1 Comurhex, Usine de Malvési, B.P. 222 @2 11102 Narbonne @3 FRA @Z 2 aut.
A14 03      @1 Laboratoire des Sciences du Génie Chimique, ENSIC, 47, rue Henri Déglin @2 54001 Nancy @3 FRA @Z 4 aut.
A20       @1 2629-2642
A21       @1 2003
A23 01      @0 ENG
A43 01      @1 INIST @2 7538 @5 354000111261830130
A44       @0 0000 @1 © 2003 INIST-CNRS. All rights reserved.
A45       @0 6 ref.
A47 01  1    @0 03-0414333
A60       @1 P
A61       @0 A
A64 01  1    @0 Chemical engineering science
A66 01      @0 GBR
C01 01    ENG  @0 The French nuclear fuel making route uses, prior to enrichment, uranium tetrafluoride UF4 obtained from the reduction, followed by hydrofluorination of uranium trioxide UO3. These two steps are carried out in a specific reactor known as a moving bed furnace. We developed a steady-state numerical model of the moving bed furnace, described in Part 1. In the Part 2, calculation results for a reference set of operating parameters of the furnace are presented in term of temperature, reaction rates, solid and gas compositions. Results analysis enlightens the detail of the furnace behaviour in its different zones. Unknown features have been revealed, such as thermodynamic limitation of the hydrofluorination reaction in the hot core of the moving bed. A sensibility study of various operating parameters shows how some can influence the UF4 quality and underlines the strong coupling between the different zones of the furnace. Finally, the model is applied to define an optimal temperature progression in the furnace and suggests geometrical modifications. Besides, the validity of using the law of additive reaction times for calculating the reaction rates in such a reactor model has been checked for the first time against a numerical grain model.
C02 01  X    @0 001D06B04C
C02 02  X    @0 230
N21       @1 286
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 03-0414333 INIST
ET : Modelling of a moving bed furnace for the production of uranium tetrafluoride. Part 2: Application of the model
AU : DUSSOUBS (B.); JOURDE (J.); PATISSON (F.); HOUZELOT (J.-L.); ABLITZER (D.)
AF : Laboratoire de Science et Génie des Matériaux et de Métallurgie, Ecole des Mines, Parc de Saurupt, UMR CNRS 7584/54042 Nancy/France (1 aut., 3 aut., 5 aut.); Comurhex, Usine de Malvési, B.P. 222/11102 Narbonne/France (2 aut.); Laboratoire des Sciences du Génie Chimique, ENSIC, 47, rue Henri Déglin/54001 Nancy/France (4 aut.)
DT : Publication en série; Niveau analytique
SO : Chemical engineering science; ISSN 0009-2509; Coden CESCAC; Royaume-Uni; Da. 2003; Vol. 58; No. 12; Pp. 2629-2642; Bibl. 6 ref.
LA : Anglais
EA : The French nuclear fuel making route uses, prior to enrichment, uranium tetrafluoride UF4 obtained from the reduction, followed by hydrofluorination of uranium trioxide UO3. These two steps are carried out in a specific reactor known as a moving bed furnace. We developed a steady-state numerical model of the moving bed furnace, described in Part 1. In the Part 2, calculation results for a reference set of operating parameters of the furnace are presented in term of temperature, reaction rates, solid and gas compositions. Results analysis enlightens the detail of the furnace behaviour in its different zones. Unknown features have been revealed, such as thermodynamic limitation of the hydrofluorination reaction in the hot core of the moving bed. A sensibility study of various operating parameters shows how some can influence the UF4 quality and underlines the strong coupling between the different zones of the furnace. Finally, the model is applied to define an optimal temperature progression in the furnace and suggests geometrical modifications. Besides, the validity of using the law of additive reaction times for calculating the reaction rates in such a reactor model has been checked for the first time against a numerical grain model.
CC : 001D06B04C; 230
LO : INIST-7538.354000111261830130
ID : 03-0414333

Links to Exploration step

Pascal:03-0414333

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Modelling of a moving bed furnace for the production of uranium tetrafluoride. Part 2: Application of the model</title>
<author>
<name sortKey="Dussoubs, B" sort="Dussoubs, B" uniqKey="Dussoubs B" first="B." last="Dussoubs">B. Dussoubs</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Science et Génie des Matériaux et de Métallurgie, Ecole des Mines, Parc de Saurupt, UMR CNRS 7584</s1>
<s2>54042 Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jourde, J" sort="Jourde, J" uniqKey="Jourde J" first="J." last="Jourde">J. Jourde</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Comurhex, Usine de Malvési, B.P. 222</s1>
<s2>11102 Narbonne</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Patisson, F" sort="Patisson, F" uniqKey="Patisson F" first="F." last="Patisson">F. Patisson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Science et Génie des Matériaux et de Métallurgie, Ecole des Mines, Parc de Saurupt, UMR CNRS 7584</s1>
<s2>54042 Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Houzelot, J L" sort="Houzelot, J L" uniqKey="Houzelot J" first="J.-L." last="Houzelot">J.-L. Houzelot</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Laboratoire des Sciences du Génie Chimique, ENSIC, 47, rue Henri Déglin</s1>
<s2>54001 Nancy</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ablitzer, D" sort="Ablitzer, D" uniqKey="Ablitzer D" first="D." last="Ablitzer">D. Ablitzer</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Science et Génie des Matériaux et de Métallurgie, Ecole des Mines, Parc de Saurupt, UMR CNRS 7584</s1>
<s2>54042 Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">03-0414333</idno>
<date when="2003">2003</date>
<idno type="stanalyst">PASCAL 03-0414333 INIST</idno>
<idno type="RBID">Pascal:03-0414333</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000800</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Modelling of a moving bed furnace for the production of uranium tetrafluoride. Part 2: Application of the model</title>
<author>
<name sortKey="Dussoubs, B" sort="Dussoubs, B" uniqKey="Dussoubs B" first="B." last="Dussoubs">B. Dussoubs</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Science et Génie des Matériaux et de Métallurgie, Ecole des Mines, Parc de Saurupt, UMR CNRS 7584</s1>
<s2>54042 Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jourde, J" sort="Jourde, J" uniqKey="Jourde J" first="J." last="Jourde">J. Jourde</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Comurhex, Usine de Malvési, B.P. 222</s1>
<s2>11102 Narbonne</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Patisson, F" sort="Patisson, F" uniqKey="Patisson F" first="F." last="Patisson">F. Patisson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Science et Génie des Matériaux et de Métallurgie, Ecole des Mines, Parc de Saurupt, UMR CNRS 7584</s1>
<s2>54042 Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Houzelot, J L" sort="Houzelot, J L" uniqKey="Houzelot J" first="J.-L." last="Houzelot">J.-L. Houzelot</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Laboratoire des Sciences du Génie Chimique, ENSIC, 47, rue Henri Déglin</s1>
<s2>54001 Nancy</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ablitzer, D" sort="Ablitzer, D" uniqKey="Ablitzer D" first="D." last="Ablitzer">D. Ablitzer</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Science et Génie des Matériaux et de Métallurgie, Ecole des Mines, Parc de Saurupt, UMR CNRS 7584</s1>
<s2>54042 Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Chemical engineering science</title>
<title level="j" type="abbreviated">Chem. eng. sci.</title>
<idno type="ISSN">0009-2509</idno>
<imprint>
<date when="2003">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Chemical engineering science</title>
<title level="j" type="abbreviated">Chem. eng. sci.</title>
<idno type="ISSN">0009-2509</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The French nuclear fuel making route uses, prior to enrichment, uranium tetrafluoride UF
<sub>4</sub>
obtained from the reduction, followed by hydrofluorination of uranium trioxide UO
<sub>3</sub>
. These two steps are carried out in a specific reactor known as a moving bed furnace. We developed a steady-state numerical model of the moving bed furnace, described in Part 1. In the Part 2, calculation results for a reference set of operating parameters of the furnace are presented in term of temperature, reaction rates, solid and gas compositions. Results analysis enlightens the detail of the furnace behaviour in its different zones. Unknown features have been revealed, such as thermodynamic limitation of the hydrofluorination reaction in the hot core of the moving bed. A sensibility study of various operating parameters shows how some can influence the UF
<sub>4</sub>
quality and underlines the strong coupling between the different zones of the furnace. Finally, the model is applied to define an optimal temperature progression in the furnace and suggests geometrical modifications. Besides, the validity of using the law of additive reaction times for calculating the reaction rates in such a reactor model has been checked for the first time against a numerical grain model.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0009-2509</s0>
</fA01>
<fA02 i1="01">
<s0>CESCAC</s0>
</fA02>
<fA03 i2="1">
<s0>Chem. eng. sci.</s0>
</fA03>
<fA05>
<s2>58</s2>
</fA05>
<fA06>
<s2>12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Modelling of a moving bed furnace for the production of uranium tetrafluoride. Part 2: Application of the model</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>DUSSOUBS (B.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JOURDE (J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PATISSON (F.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HOUZELOT (J.-L.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ABLITZER (D.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratoire de Science et Génie des Matériaux et de Métallurgie, Ecole des Mines, Parc de Saurupt, UMR CNRS 7584</s1>
<s2>54042 Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Comurhex, Usine de Malvési, B.P. 222</s1>
<s2>11102 Narbonne</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Laboratoire des Sciences du Génie Chimique, ENSIC, 47, rue Henri Déglin</s1>
<s2>54001 Nancy</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>2629-2642</s1>
</fA20>
<fA21>
<s1>2003</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>7538</s2>
<s5>354000111261830130</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2003 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>6 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>03-0414333</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Chemical engineering science</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The French nuclear fuel making route uses, prior to enrichment, uranium tetrafluoride UF
<sub>4</sub>
obtained from the reduction, followed by hydrofluorination of uranium trioxide UO
<sub>3</sub>
. These two steps are carried out in a specific reactor known as a moving bed furnace. We developed a steady-state numerical model of the moving bed furnace, described in Part 1. In the Part 2, calculation results for a reference set of operating parameters of the furnace are presented in term of temperature, reaction rates, solid and gas compositions. Results analysis enlightens the detail of the furnace behaviour in its different zones. Unknown features have been revealed, such as thermodynamic limitation of the hydrofluorination reaction in the hot core of the moving bed. A sensibility study of various operating parameters shows how some can influence the UF
<sub>4</sub>
quality and underlines the strong coupling between the different zones of the furnace. Finally, the model is applied to define an optimal temperature progression in the furnace and suggests geometrical modifications. Besides, the validity of using the law of additive reaction times for calculating the reaction rates in such a reactor model has been checked for the first time against a numerical grain model.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06B04C</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fN21>
<s1>286</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 03-0414333 INIST</NO>
<ET>Modelling of a moving bed furnace for the production of uranium tetrafluoride. Part 2: Application of the model</ET>
<AU>DUSSOUBS (B.); JOURDE (J.); PATISSON (F.); HOUZELOT (J.-L.); ABLITZER (D.)</AU>
<AF>Laboratoire de Science et Génie des Matériaux et de Métallurgie, Ecole des Mines, Parc de Saurupt, UMR CNRS 7584/54042 Nancy/France (1 aut., 3 aut., 5 aut.); Comurhex, Usine de Malvési, B.P. 222/11102 Narbonne/France (2 aut.); Laboratoire des Sciences du Génie Chimique, ENSIC, 47, rue Henri Déglin/54001 Nancy/France (4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Chemical engineering science; ISSN 0009-2509; Coden CESCAC; Royaume-Uni; Da. 2003; Vol. 58; No. 12; Pp. 2629-2642; Bibl. 6 ref.</SO>
<LA>Anglais</LA>
<EA>The French nuclear fuel making route uses, prior to enrichment, uranium tetrafluoride UF
<sub>4</sub>
obtained from the reduction, followed by hydrofluorination of uranium trioxide UO
<sub>3</sub>
. These two steps are carried out in a specific reactor known as a moving bed furnace. We developed a steady-state numerical model of the moving bed furnace, described in Part 1. In the Part 2, calculation results for a reference set of operating parameters of the furnace are presented in term of temperature, reaction rates, solid and gas compositions. Results analysis enlightens the detail of the furnace behaviour in its different zones. Unknown features have been revealed, such as thermodynamic limitation of the hydrofluorination reaction in the hot core of the moving bed. A sensibility study of various operating parameters shows how some can influence the UF
<sub>4</sub>
quality and underlines the strong coupling between the different zones of the furnace. Finally, the model is applied to define an optimal temperature progression in the furnace and suggests geometrical modifications. Besides, the validity of using the law of additive reaction times for calculating the reaction rates in such a reactor model has been checked for the first time against a numerical grain model.</EA>
<CC>001D06B04C; 230</CC>
<LO>INIST-7538.354000111261830130</LO>
<ID>03-0414333</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000800 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000800 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:03-0414333
   |texte=   Modelling of a moving bed furnace for the production of uranium tetrafluoride. Part 2: Application of the model
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024