Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanistic modeling of the thermal cracking of decylbenzene. Application to the prediction of its thermal stability at geological temperatures

Identifieur interne : 000766 ( PascalFrancis/Corpus ); précédent : 000765; suivant : 000767

Mechanistic modeling of the thermal cracking of decylbenzene. Application to the prediction of its thermal stability at geological temperatures

Auteurs : Valérie Burkle-Vitzthum ; Raymond Michels ; Gérard Scacchi ; Paul-Marie Marquaire

Source :

RBID : Pascal:04-0221845

Descripteurs français

English descriptors

Abstract

Thermal cracking of decylbenzene is experimentally studied at 330 °C under 70 MPa for 10 h to 1 month, that is, up to 20% of conversion. A detailed kinetic model consisting of 946 free-radical reactions and 1 molecular reaction is developed to describe the results. The formation of main products, namely, toluene, ethylbenzene, nonene, nonane, and octane, is correctly described by the model. The global activation energy is equal to 66 kcal.mol-1. The molecular reaction, that is, the retroen reaction, is of great importance: it explains the major part of toluene and nonene formation at 330 °C. At 400 °C this reaction becomes negligible but at 200 °C it is predominant. Its activation energy is about 54 kcal.mol-1 and is confirmed by experimental measurements. The mechanistic kinetic model is applied to the prediction of the thermal stability of decylbenzene at temperatures usually encountered in petroleum sedimentary basins (T < 250 °C). At such temperatures, the main reactive pathway, controlled by the retroen reaction, leads to the formation of toluene. Such conclusion is not intuitive in the geochemistry field and suggests that long-chain alkylbenzenes may inhibit rather than accelerate the cracking of alkanes in natural hydrocarbon mixtures.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0888-5885
A02 01      @0 IECRED
A03   1    @0 Ind. eng. chem. res.
A05       @2 42
A06       @2 23
A08 01  1  ENG  @1 Mechanistic modeling of the thermal cracking of decylbenzene. Application to the prediction of its thermal stability at geological temperatures
A11 01  1    @1 BURKLE-VITZTHUM (Valérie)
A11 02  1    @1 MICHELS (Raymond)
A11 03  1    @1 SCACCHI (Gérard)
A11 04  1    @1 MARQUAIRE (Paul-Marie)
A14 01      @1 CNRS-UMR 7566 G2R, Faculté des Sciences, BP 236 @2 54501 Vandoeuvre Les Nancy @3 FRA @Z 1 aut. @Z 2 aut.
A14 02      @1 Département de Chimie Physique des Réactions, CNRS-UMR 7630, ENSIC-INPL, 1 rue Grandville, BP 451 @2 54001 Nancy @3 FRA @Z 3 aut. @Z 4 aut.
A20       @1 5791-5808
A21       @1 2003
A23 01      @0 ENG
A43 01      @1 INIST @2 120F @5 354000118744360110
A44       @0 0000 @1 © 2004 INIST-CNRS. All rights reserved.
A45       @0 47 ref.
A47 01  1    @0 04-0221845
A60       @1 P
A61       @0 A
A64 01  1    @0 Industrial & engineering chemistry research
A66 01      @0 USA
C01 01    ENG  @0 Thermal cracking of decylbenzene is experimentally studied at 330 °C under 70 MPa for 10 h to 1 month, that is, up to 20% of conversion. A detailed kinetic model consisting of 946 free-radical reactions and 1 molecular reaction is developed to describe the results. The formation of main products, namely, toluene, ethylbenzene, nonene, nonane, and octane, is correctly described by the model. The global activation energy is equal to 66 kcal.mol-1. The molecular reaction, that is, the retroen reaction, is of great importance: it explains the major part of toluene and nonene formation at 330 °C. At 400 °C this reaction becomes negligible but at 200 °C it is predominant. Its activation energy is about 54 kcal.mol-1 and is confirmed by experimental measurements. The mechanistic kinetic model is applied to the prediction of the thermal stability of decylbenzene at temperatures usually encountered in petroleum sedimentary basins (T < 250 °C). At such temperatures, the main reactive pathway, controlled by the retroen reaction, leads to the formation of toluene. Such conclusion is not intuitive in the geochemistry field and suggests that long-chain alkylbenzenes may inhibit rather than accelerate the cracking of alkanes in natural hydrocarbon mixtures.
C02 01  X    @0 001C03B02
C03 01  X  FRE  @0 Modélisation @5 01
C03 01  X  ENG  @0 Modeling @5 01
C03 01  X  SPA  @0 Modelización @5 01
C03 02  X  FRE  @0 Stabilité thermique @5 03
C03 02  X  ENG  @0 Thermal stability @5 03
C03 02  X  SPA  @0 Estabilidad térmica @5 03
C03 03  X  FRE  @0 Modèle cinétique @5 04
C03 03  X  ENG  @0 Kinetic model @5 04
C03 03  X  SPA  @0 Modelo cinético @5 04
C03 04  X  FRE  @0 Radical libre @2 FX @5 05
C03 04  X  ENG  @0 Free radical @2 FX @5 05
C03 04  X  SPA  @0 Radical libre @2 FX @5 05
C03 05  X  FRE  @0 Energie activation @5 06
C03 05  X  ENG  @0 Activation energy @5 06
C03 05  X  SPA  @0 Energía activación @5 06
C03 06  X  FRE  @0 Modèle prévision @5 07
C03 06  X  ENG  @0 Forecast model @5 07
C03 06  X  SPA  @0 Modelo previsión @5 07
C03 07  X  FRE  @0 Mécanisme réaction @5 08
C03 07  X  ENG  @0 Reaction mechanism @5 08
C03 07  X  SPA  @0 Mecanismo reacción @5 08
C03 08  X  FRE  @0 Craquage thermique @5 09
C03 08  X  ENG  @0 Thermal cracking @5 09
C03 08  X  SPA  @0 Craqueo térmico @5 09
C03 09  X  FRE  @0 Benzène(lauryl) @1 ENT @2 NK @4 INC @5 32
N21       @1 145
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 04-0221845 INIST
ET : Mechanistic modeling of the thermal cracking of decylbenzene. Application to the prediction of its thermal stability at geological temperatures
AU : BURKLE-VITZTHUM (Valérie); MICHELS (Raymond); SCACCHI (Gérard); MARQUAIRE (Paul-Marie)
AF : CNRS-UMR 7566 G2R, Faculté des Sciences, BP 236/54501 Vandoeuvre Les Nancy/France (1 aut., 2 aut.); Département de Chimie Physique des Réactions, CNRS-UMR 7630, ENSIC-INPL, 1 rue Grandville, BP 451/54001 Nancy/France (3 aut., 4 aut.)
DT : Publication en série; Niveau analytique
SO : Industrial & engineering chemistry research; ISSN 0888-5885; Coden IECRED; Etats-Unis; Da. 2003; Vol. 42; No. 23; Pp. 5791-5808; Bibl. 47 ref.
LA : Anglais
EA : Thermal cracking of decylbenzene is experimentally studied at 330 °C under 70 MPa for 10 h to 1 month, that is, up to 20% of conversion. A detailed kinetic model consisting of 946 free-radical reactions and 1 molecular reaction is developed to describe the results. The formation of main products, namely, toluene, ethylbenzene, nonene, nonane, and octane, is correctly described by the model. The global activation energy is equal to 66 kcal.mol-1. The molecular reaction, that is, the retroen reaction, is of great importance: it explains the major part of toluene and nonene formation at 330 °C. At 400 °C this reaction becomes negligible but at 200 °C it is predominant. Its activation energy is about 54 kcal.mol-1 and is confirmed by experimental measurements. The mechanistic kinetic model is applied to the prediction of the thermal stability of decylbenzene at temperatures usually encountered in petroleum sedimentary basins (T < 250 °C). At such temperatures, the main reactive pathway, controlled by the retroen reaction, leads to the formation of toluene. Such conclusion is not intuitive in the geochemistry field and suggests that long-chain alkylbenzenes may inhibit rather than accelerate the cracking of alkanes in natural hydrocarbon mixtures.
CC : 001C03B02
FD : Modélisation; Stabilité thermique; Modèle cinétique; Radical libre; Energie activation; Modèle prévision; Mécanisme réaction; Craquage thermique; Benzène(lauryl)
ED : Modeling; Thermal stability; Kinetic model; Free radical; Activation energy; Forecast model; Reaction mechanism; Thermal cracking
SD : Modelización; Estabilidad térmica; Modelo cinético; Radical libre; Energía activación; Modelo previsión; Mecanismo reacción; Craqueo térmico
LO : INIST-120F.354000118744360110
ID : 04-0221845

Links to Exploration step

Pascal:04-0221845

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Mechanistic modeling of the thermal cracking of decylbenzene. Application to the prediction of its thermal stability at geological temperatures</title>
<author>
<name sortKey="Burkle Vitzthum, Valerie" sort="Burkle Vitzthum, Valerie" uniqKey="Burkle Vitzthum V" first="Valérie" last="Burkle-Vitzthum">Valérie Burkle-Vitzthum</name>
<affiliation>
<inist:fA14 i1="01">
<s1>CNRS-UMR 7566 G2R, Faculté des Sciences, BP 236</s1>
<s2>54501 Vandoeuvre Les Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Michels, Raymond" sort="Michels, Raymond" uniqKey="Michels R" first="Raymond" last="Michels">Raymond Michels</name>
<affiliation>
<inist:fA14 i1="01">
<s1>CNRS-UMR 7566 G2R, Faculté des Sciences, BP 236</s1>
<s2>54501 Vandoeuvre Les Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Scacchi, Gerard" sort="Scacchi, Gerard" uniqKey="Scacchi G" first="Gérard" last="Scacchi">Gérard Scacchi</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Département de Chimie Physique des Réactions, CNRS-UMR 7630, ENSIC-INPL, 1 rue Grandville, BP 451</s1>
<s2>54001 Nancy</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Marquaire, Paul Marie" sort="Marquaire, Paul Marie" uniqKey="Marquaire P" first="Paul-Marie" last="Marquaire">Paul-Marie Marquaire</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Département de Chimie Physique des Réactions, CNRS-UMR 7630, ENSIC-INPL, 1 rue Grandville, BP 451</s1>
<s2>54001 Nancy</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0221845</idno>
<date when="2003">2003</date>
<idno type="stanalyst">PASCAL 04-0221845 INIST</idno>
<idno type="RBID">Pascal:04-0221845</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000766</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Mechanistic modeling of the thermal cracking of decylbenzene. Application to the prediction of its thermal stability at geological temperatures</title>
<author>
<name sortKey="Burkle Vitzthum, Valerie" sort="Burkle Vitzthum, Valerie" uniqKey="Burkle Vitzthum V" first="Valérie" last="Burkle-Vitzthum">Valérie Burkle-Vitzthum</name>
<affiliation>
<inist:fA14 i1="01">
<s1>CNRS-UMR 7566 G2R, Faculté des Sciences, BP 236</s1>
<s2>54501 Vandoeuvre Les Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Michels, Raymond" sort="Michels, Raymond" uniqKey="Michels R" first="Raymond" last="Michels">Raymond Michels</name>
<affiliation>
<inist:fA14 i1="01">
<s1>CNRS-UMR 7566 G2R, Faculté des Sciences, BP 236</s1>
<s2>54501 Vandoeuvre Les Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Scacchi, Gerard" sort="Scacchi, Gerard" uniqKey="Scacchi G" first="Gérard" last="Scacchi">Gérard Scacchi</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Département de Chimie Physique des Réactions, CNRS-UMR 7630, ENSIC-INPL, 1 rue Grandville, BP 451</s1>
<s2>54001 Nancy</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Marquaire, Paul Marie" sort="Marquaire, Paul Marie" uniqKey="Marquaire P" first="Paul-Marie" last="Marquaire">Paul-Marie Marquaire</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Département de Chimie Physique des Réactions, CNRS-UMR 7630, ENSIC-INPL, 1 rue Grandville, BP 451</s1>
<s2>54001 Nancy</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Industrial & engineering chemistry research</title>
<title level="j" type="abbreviated">Ind. eng. chem. res.</title>
<idno type="ISSN">0888-5885</idno>
<imprint>
<date when="2003">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Industrial & engineering chemistry research</title>
<title level="j" type="abbreviated">Ind. eng. chem. res.</title>
<idno type="ISSN">0888-5885</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Activation energy</term>
<term>Forecast model</term>
<term>Free radical</term>
<term>Kinetic model</term>
<term>Modeling</term>
<term>Reaction mechanism</term>
<term>Thermal cracking</term>
<term>Thermal stability</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Modélisation</term>
<term>Stabilité thermique</term>
<term>Modèle cinétique</term>
<term>Radical libre</term>
<term>Energie activation</term>
<term>Modèle prévision</term>
<term>Mécanisme réaction</term>
<term>Craquage thermique</term>
<term>Benzène(lauryl)</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Thermal cracking of decylbenzene is experimentally studied at 330 °C under 70 MPa for 10 h to 1 month, that is, up to 20% of conversion. A detailed kinetic model consisting of 946 free-radical reactions and 1 molecular reaction is developed to describe the results. The formation of main products, namely, toluene, ethylbenzene, nonene, nonane, and octane, is correctly described by the model. The global activation energy is equal to 66 kcal.mol
<sup>-1</sup>
. The molecular reaction, that is, the retroen reaction, is of great importance: it explains the major part of toluene and nonene formation at 330 °C. At 400 °C this reaction becomes negligible but at 200 °C it is predominant. Its activation energy is about 54 kcal.mol
<sup>-1</sup>
and is confirmed by experimental measurements. The mechanistic kinetic model is applied to the prediction of the thermal stability of decylbenzene at temperatures usually encountered in petroleum sedimentary basins (T < 250 °C). At such temperatures, the main reactive pathway, controlled by the retroen reaction, leads to the formation of toluene. Such conclusion is not intuitive in the geochemistry field and suggests that long-chain alkylbenzenes may inhibit rather than accelerate the cracking of alkanes in natural hydrocarbon mixtures.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0888-5885</s0>
</fA01>
<fA02 i1="01">
<s0>IECRED</s0>
</fA02>
<fA03 i2="1">
<s0>Ind. eng. chem. res.</s0>
</fA03>
<fA05>
<s2>42</s2>
</fA05>
<fA06>
<s2>23</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Mechanistic modeling of the thermal cracking of decylbenzene. Application to the prediction of its thermal stability at geological temperatures</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BURKLE-VITZTHUM (Valérie)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MICHELS (Raymond)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SCACCHI (Gérard)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MARQUAIRE (Paul-Marie)</s1>
</fA11>
<fA14 i1="01">
<s1>CNRS-UMR 7566 G2R, Faculté des Sciences, BP 236</s1>
<s2>54501 Vandoeuvre Les Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Département de Chimie Physique des Réactions, CNRS-UMR 7630, ENSIC-INPL, 1 rue Grandville, BP 451</s1>
<s2>54001 Nancy</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>5791-5808</s1>
</fA20>
<fA21>
<s1>2003</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>120F</s2>
<s5>354000118744360110</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2004 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>47 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0221845</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Industrial & engineering chemistry research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Thermal cracking of decylbenzene is experimentally studied at 330 °C under 70 MPa for 10 h to 1 month, that is, up to 20% of conversion. A detailed kinetic model consisting of 946 free-radical reactions and 1 molecular reaction is developed to describe the results. The formation of main products, namely, toluene, ethylbenzene, nonene, nonane, and octane, is correctly described by the model. The global activation energy is equal to 66 kcal.mol
<sup>-1</sup>
. The molecular reaction, that is, the retroen reaction, is of great importance: it explains the major part of toluene and nonene formation at 330 °C. At 400 °C this reaction becomes negligible but at 200 °C it is predominant. Its activation energy is about 54 kcal.mol
<sup>-1</sup>
and is confirmed by experimental measurements. The mechanistic kinetic model is applied to the prediction of the thermal stability of decylbenzene at temperatures usually encountered in petroleum sedimentary basins (T < 250 °C). At such temperatures, the main reactive pathway, controlled by the retroen reaction, leads to the formation of toluene. Such conclusion is not intuitive in the geochemistry field and suggests that long-chain alkylbenzenes may inhibit rather than accelerate the cracking of alkanes in natural hydrocarbon mixtures.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C03B02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Stabilité thermique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Thermal stability</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Estabilidad térmica</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Modèle cinétique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Kinetic model</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Modelo cinético</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Radical libre</s0>
<s2>FX</s2>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Free radical</s0>
<s2>FX</s2>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Radical libre</s0>
<s2>FX</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Energie activation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Activation energy</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Energía activación</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Modèle prévision</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Forecast model</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Modelo previsión</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Mécanisme réaction</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Reaction mechanism</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Mecanismo reacción</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Craquage thermique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Thermal cracking</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Craqueo térmico</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Benzène(lauryl)</s0>
<s1>ENT</s1>
<s2>NK</s2>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fN21>
<s1>145</s1>
</fN21>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 04-0221845 INIST</NO>
<ET>Mechanistic modeling of the thermal cracking of decylbenzene. Application to the prediction of its thermal stability at geological temperatures</ET>
<AU>BURKLE-VITZTHUM (Valérie); MICHELS (Raymond); SCACCHI (Gérard); MARQUAIRE (Paul-Marie)</AU>
<AF>CNRS-UMR 7566 G2R, Faculté des Sciences, BP 236/54501 Vandoeuvre Les Nancy/France (1 aut., 2 aut.); Département de Chimie Physique des Réactions, CNRS-UMR 7630, ENSIC-INPL, 1 rue Grandville, BP 451/54001 Nancy/France (3 aut., 4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Industrial & engineering chemistry research; ISSN 0888-5885; Coden IECRED; Etats-Unis; Da. 2003; Vol. 42; No. 23; Pp. 5791-5808; Bibl. 47 ref.</SO>
<LA>Anglais</LA>
<EA>Thermal cracking of decylbenzene is experimentally studied at 330 °C under 70 MPa for 10 h to 1 month, that is, up to 20% of conversion. A detailed kinetic model consisting of 946 free-radical reactions and 1 molecular reaction is developed to describe the results. The formation of main products, namely, toluene, ethylbenzene, nonene, nonane, and octane, is correctly described by the model. The global activation energy is equal to 66 kcal.mol
<sup>-1</sup>
. The molecular reaction, that is, the retroen reaction, is of great importance: it explains the major part of toluene and nonene formation at 330 °C. At 400 °C this reaction becomes negligible but at 200 °C it is predominant. Its activation energy is about 54 kcal.mol
<sup>-1</sup>
and is confirmed by experimental measurements. The mechanistic kinetic model is applied to the prediction of the thermal stability of decylbenzene at temperatures usually encountered in petroleum sedimentary basins (T < 250 °C). At such temperatures, the main reactive pathway, controlled by the retroen reaction, leads to the formation of toluene. Such conclusion is not intuitive in the geochemistry field and suggests that long-chain alkylbenzenes may inhibit rather than accelerate the cracking of alkanes in natural hydrocarbon mixtures.</EA>
<CC>001C03B02</CC>
<FD>Modélisation; Stabilité thermique; Modèle cinétique; Radical libre; Energie activation; Modèle prévision; Mécanisme réaction; Craquage thermique; Benzène(lauryl)</FD>
<ED>Modeling; Thermal stability; Kinetic model; Free radical; Activation energy; Forecast model; Reaction mechanism; Thermal cracking</ED>
<SD>Modelización; Estabilidad térmica; Modelo cinético; Radical libre; Energía activación; Modelo previsión; Mecanismo reacción; Craqueo térmico</SD>
<LO>INIST-120F.354000118744360110</LO>
<ID>04-0221845</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000766 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000766 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:04-0221845
   |texte=   Mechanistic modeling of the thermal cracking of decylbenzene. Application to the prediction of its thermal stability at geological temperatures
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024