Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phenomenological approach to interpret the effect of liquid flow modulation in trickle bed reactors at the particle scale

Identifieur interne : 000578 ( PascalFrancis/Corpus ); précédent : 000577; suivant : 000579

Phenomenological approach to interpret the effect of liquid flow modulation in trickle bed reactors at the particle scale

Auteurs : M. A. Ayude ; M. C. Cassanello ; O. M. Martinez ; P. M. Haure

Source :

RBID : Pascal:05-0361187

Descripteurs français

English descriptors

Abstract

This work analyzes the influence of liquid flow modulation on the behavior of a reaction occurring in a spherical porous particle within a trickle bed reactor. A single first-order reaction between a gaseous reactant and a non-volatile liquid reactant is considered. Non-steady-state mass balances for gas and liquid reactants are formulated and solved under isothermal conditions in order to focus the analysis on the mass transport effects. Dynamic reactant profiles inside the catalytic particle are obtained for different cycling and system conditions. The enhancement factor (e) due to periodic operation is defined to evaluate the impact of induced liquid flow modulation on reaction rate. Influence of cycling and system parameters on the enhancement factor is also reported for a wide range of conditions. Experimental trends observed by several authors can be explained with this approach.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0009-2509
A02 01      @0 CESCAC
A03   1    @0 Chem. eng. sci.
A05       @2 60
A06       @2 22
A08 01  1  ENG  @1 Phenomenological approach to interpret the effect of liquid flow modulation in trickle bed reactors at the particle scale
A09 01  1  ENG  @1 7th International Conference on Gas-Liquid and Gas-Liquid-Solid Reactor Engineering, 21-24 August 2005, Strasbourg, France
A11 01  1    @1 AYUDE (M. A.)
A11 02  1    @1 CASSANELLO (M. C.)
A11 03  1    @1 MARTINEZ (O. M.)
A11 04  1    @1 HAURE (P. M.)
A12 01  1    @1 WILD (Gabriel) @9 ed.
A14 01      @1 INTEMA, CONICET, UNMDP, J.B. Justo 4302, 7600 Mar del Plata @2 Buenos Aires @3 ARG @Z 1 aut. @Z 4 aut.
A14 02      @1 PINMATE, Dep. Industrials, FCEyN-UBA lut. Güiraldes 2620 @2 C1428BGA Buenos Aires @3 ARG @Z 2 aut.
A14 03      @1 Dep. Ing. Química, UNLP-CINDECA, Calle 47 No 257 @2 1900 La Plata @3 ARG @Z 3 aut.
A15 01      @1 Département de Chimie Physique des Réactions, UMR 7630 CNRS INPL, ENSIC, BP 20451 @2 54001 Nancy @3 FRA @Z 1 aut.
A20       @1 6262-6269
A21       @1 2005
A23 01      @0 ENG
A43 01      @1 INIST @2 7538 @5 354000132447940380
A44       @0 0000 @1 © 2005 INIST-CNRS. All rights reserved.
A45       @0 17 ref.
A47 01  1    @0 05-0361187
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Chemical engineering science
A66 01      @0 GBR
C01 01    ENG  @0 This work analyzes the influence of liquid flow modulation on the behavior of a reaction occurring in a spherical porous particle within a trickle bed reactor. A single first-order reaction between a gaseous reactant and a non-volatile liquid reactant is considered. Non-steady-state mass balances for gas and liquid reactants are formulated and solved under isothermal conditions in order to focus the analysis on the mass transport effects. Dynamic reactant profiles inside the catalytic particle are obtained for different cycling and system conditions. The enhancement factor (e) due to periodic operation is defined to evaluate the impact of induced liquid flow modulation on reaction rate. Influence of cycling and system parameters on the enhancement factor is also reported for a wide range of conditions. Experimental trends observed by several authors can be explained with this approach.
C02 01  X    @0 001D07H
C02 02  X    @0 001D07G
C02 03  X    @0 001C01A03B
C03 01  X  FRE  @0 Ecoulement liquide @5 01
C03 01  X  ENG  @0 Liquid flow @5 01
C03 01  X  SPA  @0 Flujo líquido @5 01
C03 02  X  FRE  @0 Réacteur ruissellement @5 02
C03 02  X  ENG  @0 Trickle bed reactor @5 02
C03 02  X  SPA  @0 Reactor chorreo @5 02
C03 03  X  FRE  @0 Ordre 1 @5 03
C03 03  X  ENG  @0 First order @5 03
C03 03  X  SPA  @0 Orden 1 @5 03
C03 04  X  FRE  @0 Ordre réaction @5 04
C03 04  X  ENG  @0 Reaction order @5 04
C03 04  X  SPA  @0 Orden reacción @5 04
C03 05  X  FRE  @0 Régime permanent @5 05
C03 05  X  ENG  @0 Steady state @5 05
C03 05  X  SPA  @0 Régimen permanente @5 05
C03 06  X  FRE  @0 Bilan matière @5 06
C03 06  X  ENG  @0 Material balance @5 06
C03 06  X  SPA  @0 Balance materia @5 06
C03 07  X  FRE  @0 Condition isotherme @5 07
C03 07  X  ENG  @0 Isothermal condition @5 07
C03 07  X  SPA  @0 Condición isoterma @5 07
C03 08  X  FRE  @0 Transfert masse @5 08
C03 08  X  ENG  @0 Mass transfer @5 08
C03 08  X  SPA  @0 Transferencia masa @5 08
C03 09  X  FRE  @0 Réaction catalytique @5 09
C03 09  X  ENG  @0 Catalytic reaction @5 09
C03 09  X  SPA  @0 Reacción catalítica @5 09
C03 10  X  FRE  @0 Facteur accroissement @5 10
C03 10  X  ENG  @0 Enhancement factor @5 10
C03 10  X  SPA  @0 Factor incremento @5 10
C03 11  X  FRE  @0 Vitesse réaction @5 11
C03 11  X  ENG  @0 Reaction rate @5 11
C03 11  X  SPA  @0 Velocidad reacción @5 11
C03 12  X  FRE  @0 Cinétique @5 12
C03 12  X  ENG  @0 Kinetics @5 12
C03 12  X  SPA  @0 Cinética @5 12
C03 13  X  FRE  @0 Analyse tendance @5 13
C03 13  X  ENG  @0 Trend analysis @5 13
C03 13  X  SPA  @0 Análisis tendencia @5 13
C03 14  X  FRE  @0 Réacteur chimique @5 14
C03 14  X  ENG  @0 Chemical reactor @5 14
C03 14  X  SPA  @0 Reactor químico @5 14
C03 15  X  FRE  @0 Modèle mathématique @5 15
C03 15  X  ENG  @0 Mathematical model @5 15
C03 15  X  SPA  @0 Modelo matemático @5 15
C03 16  X  FRE  @0 Réponse transitoire @5 16
C03 16  X  ENG  @0 Transient response @5 16
C03 16  X  SPA  @0 Respuesta transitoria @5 16
N21       @1 248
N44 01      @1 OTO
N82       @1 OTO
pR  
A30 01  1  ENG  @1 International Conference on Gas-Liquid and Gas-Liquid-Solid Reactor Engineering @2 7 @3 Strasbourg FRA @4 2005-08-21

Format Inist (serveur)

NO : PASCAL 05-0361187 INIST
ET : Phenomenological approach to interpret the effect of liquid flow modulation in trickle bed reactors at the particle scale
AU : AYUDE (M. A.); CASSANELLO (M. C.); MARTINEZ (O. M.); HAURE (P. M.); WILD (Gabriel)
AF : INTEMA, CONICET, UNMDP, J.B. Justo 4302, 7600 Mar del Plata/Buenos Aires/Argentine (1 aut., 4 aut.); PINMATE, Dep. Industrials, FCEyN-UBA lut. Güiraldes 2620/C1428BGA Buenos Aires/Argentine (2 aut.); Dep. Ing. Química, UNLP-CINDECA, Calle 47 No 257/1900 La Plata/Argentine (3 aut.); Département de Chimie Physique des Réactions, UMR 7630 CNRS INPL, ENSIC, BP 20451/54001 Nancy/France (1 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Chemical engineering science; ISSN 0009-2509; Coden CESCAC; Royaume-Uni; Da. 2005; Vol. 60; No. 22; Pp. 6262-6269; Bibl. 17 ref.
LA : Anglais
EA : This work analyzes the influence of liquid flow modulation on the behavior of a reaction occurring in a spherical porous particle within a trickle bed reactor. A single first-order reaction between a gaseous reactant and a non-volatile liquid reactant is considered. Non-steady-state mass balances for gas and liquid reactants are formulated and solved under isothermal conditions in order to focus the analysis on the mass transport effects. Dynamic reactant profiles inside the catalytic particle are obtained for different cycling and system conditions. The enhancement factor (e) due to periodic operation is defined to evaluate the impact of induced liquid flow modulation on reaction rate. Influence of cycling and system parameters on the enhancement factor is also reported for a wide range of conditions. Experimental trends observed by several authors can be explained with this approach.
CC : 001D07H; 001D07G; 001C01A03B
FD : Ecoulement liquide; Réacteur ruissellement; Ordre 1; Ordre réaction; Régime permanent; Bilan matière; Condition isotherme; Transfert masse; Réaction catalytique; Facteur accroissement; Vitesse réaction; Cinétique; Analyse tendance; Réacteur chimique; Modèle mathématique; Réponse transitoire
ED : Liquid flow; Trickle bed reactor; First order; Reaction order; Steady state; Material balance; Isothermal condition; Mass transfer; Catalytic reaction; Enhancement factor; Reaction rate; Kinetics; Trend analysis; Chemical reactor; Mathematical model; Transient response
SD : Flujo líquido; Reactor chorreo; Orden 1; Orden reacción; Régimen permanente; Balance materia; Condición isoterma; Transferencia masa; Reacción catalítica; Factor incremento; Velocidad reacción; Cinética; Análisis tendencia; Reactor químico; Modelo matemático; Respuesta transitoria
LO : INIST-7538.354000132447940380
ID : 05-0361187

Links to Exploration step

Pascal:05-0361187

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Phenomenological approach to interpret the effect of liquid flow modulation in trickle bed reactors at the particle scale</title>
<author>
<name sortKey="Ayude, M A" sort="Ayude, M A" uniqKey="Ayude M" first="M. A." last="Ayude">M. A. Ayude</name>
<affiliation>
<inist:fA14 i1="01">
<s1>INTEMA, CONICET, UNMDP, J.B. Justo 4302, 7600 Mar del Plata</s1>
<s2>Buenos Aires</s2>
<s3>ARG</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cassanello, M C" sort="Cassanello, M C" uniqKey="Cassanello M" first="M. C." last="Cassanello">M. C. Cassanello</name>
<affiliation>
<inist:fA14 i1="02">
<s1>PINMATE, Dep. Industrials, FCEyN-UBA lut. Güiraldes 2620</s1>
<s2>C1428BGA Buenos Aires</s2>
<s3>ARG</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Martinez, O M" sort="Martinez, O M" uniqKey="Martinez O" first="O. M." last="Martinez">O. M. Martinez</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Dep. Ing. Química, UNLP-CINDECA, Calle 47 No 257</s1>
<s2>1900 La Plata</s2>
<s3>ARG</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Haure, P M" sort="Haure, P M" uniqKey="Haure P" first="P. M." last="Haure">P. M. Haure</name>
<affiliation>
<inist:fA14 i1="01">
<s1>INTEMA, CONICET, UNMDP, J.B. Justo 4302, 7600 Mar del Plata</s1>
<s2>Buenos Aires</s2>
<s3>ARG</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">05-0361187</idno>
<date when="2005">2005</date>
<idno type="stanalyst">PASCAL 05-0361187 INIST</idno>
<idno type="RBID">Pascal:05-0361187</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000578</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Phenomenological approach to interpret the effect of liquid flow modulation in trickle bed reactors at the particle scale</title>
<author>
<name sortKey="Ayude, M A" sort="Ayude, M A" uniqKey="Ayude M" first="M. A." last="Ayude">M. A. Ayude</name>
<affiliation>
<inist:fA14 i1="01">
<s1>INTEMA, CONICET, UNMDP, J.B. Justo 4302, 7600 Mar del Plata</s1>
<s2>Buenos Aires</s2>
<s3>ARG</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cassanello, M C" sort="Cassanello, M C" uniqKey="Cassanello M" first="M. C." last="Cassanello">M. C. Cassanello</name>
<affiliation>
<inist:fA14 i1="02">
<s1>PINMATE, Dep. Industrials, FCEyN-UBA lut. Güiraldes 2620</s1>
<s2>C1428BGA Buenos Aires</s2>
<s3>ARG</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Martinez, O M" sort="Martinez, O M" uniqKey="Martinez O" first="O. M." last="Martinez">O. M. Martinez</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Dep. Ing. Química, UNLP-CINDECA, Calle 47 No 257</s1>
<s2>1900 La Plata</s2>
<s3>ARG</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Haure, P M" sort="Haure, P M" uniqKey="Haure P" first="P. M." last="Haure">P. M. Haure</name>
<affiliation>
<inist:fA14 i1="01">
<s1>INTEMA, CONICET, UNMDP, J.B. Justo 4302, 7600 Mar del Plata</s1>
<s2>Buenos Aires</s2>
<s3>ARG</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Chemical engineering science</title>
<title level="j" type="abbreviated">Chem. eng. sci.</title>
<idno type="ISSN">0009-2509</idno>
<imprint>
<date when="2005">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Chemical engineering science</title>
<title level="j" type="abbreviated">Chem. eng. sci.</title>
<idno type="ISSN">0009-2509</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Catalytic reaction</term>
<term>Chemical reactor</term>
<term>Enhancement factor</term>
<term>First order</term>
<term>Isothermal condition</term>
<term>Kinetics</term>
<term>Liquid flow</term>
<term>Mass transfer</term>
<term>Material balance</term>
<term>Mathematical model</term>
<term>Reaction order</term>
<term>Reaction rate</term>
<term>Steady state</term>
<term>Transient response</term>
<term>Trend analysis</term>
<term>Trickle bed reactor</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Ecoulement liquide</term>
<term>Réacteur ruissellement</term>
<term>Ordre 1</term>
<term>Ordre réaction</term>
<term>Régime permanent</term>
<term>Bilan matière</term>
<term>Condition isotherme</term>
<term>Transfert masse</term>
<term>Réaction catalytique</term>
<term>Facteur accroissement</term>
<term>Vitesse réaction</term>
<term>Cinétique</term>
<term>Analyse tendance</term>
<term>Réacteur chimique</term>
<term>Modèle mathématique</term>
<term>Réponse transitoire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This work analyzes the influence of liquid flow modulation on the behavior of a reaction occurring in a spherical porous particle within a trickle bed reactor. A single first-order reaction between a gaseous reactant and a non-volatile liquid reactant is considered. Non-steady-state mass balances for gas and liquid reactants are formulated and solved under isothermal conditions in order to focus the analysis on the mass transport effects. Dynamic reactant profiles inside the catalytic particle are obtained for different cycling and system conditions. The enhancement factor (e) due to periodic operation is defined to evaluate the impact of induced liquid flow modulation on reaction rate. Influence of cycling and system parameters on the enhancement factor is also reported for a wide range of conditions. Experimental trends observed by several authors can be explained with this approach.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0009-2509</s0>
</fA01>
<fA02 i1="01">
<s0>CESCAC</s0>
</fA02>
<fA03 i2="1">
<s0>Chem. eng. sci.</s0>
</fA03>
<fA05>
<s2>60</s2>
</fA05>
<fA06>
<s2>22</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Phenomenological approach to interpret the effect of liquid flow modulation in trickle bed reactors at the particle scale</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>7th International Conference on Gas-Liquid and Gas-Liquid-Solid Reactor Engineering, 21-24 August 2005, Strasbourg, France</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>AYUDE (M. A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CASSANELLO (M. C.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MARTINEZ (O. M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HAURE (P. M.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>WILD (Gabriel)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>INTEMA, CONICET, UNMDP, J.B. Justo 4302, 7600 Mar del Plata</s1>
<s2>Buenos Aires</s2>
<s3>ARG</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>PINMATE, Dep. Industrials, FCEyN-UBA lut. Güiraldes 2620</s1>
<s2>C1428BGA Buenos Aires</s2>
<s3>ARG</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Dep. Ing. Química, UNLP-CINDECA, Calle 47 No 257</s1>
<s2>1900 La Plata</s2>
<s3>ARG</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Département de Chimie Physique des Réactions, UMR 7630 CNRS INPL, ENSIC, BP 20451</s1>
<s2>54001 Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA20>
<s1>6262-6269</s1>
</fA20>
<fA21>
<s1>2005</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>7538</s2>
<s5>354000132447940380</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2005 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>17 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>05-0361187</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Chemical engineering science</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This work analyzes the influence of liquid flow modulation on the behavior of a reaction occurring in a spherical porous particle within a trickle bed reactor. A single first-order reaction between a gaseous reactant and a non-volatile liquid reactant is considered. Non-steady-state mass balances for gas and liquid reactants are formulated and solved under isothermal conditions in order to focus the analysis on the mass transport effects. Dynamic reactant profiles inside the catalytic particle are obtained for different cycling and system conditions. The enhancement factor (e) due to periodic operation is defined to evaluate the impact of induced liquid flow modulation on reaction rate. Influence of cycling and system parameters on the enhancement factor is also reported for a wide range of conditions. Experimental trends observed by several authors can be explained with this approach.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D07H</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D07G</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001C01A03B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Ecoulement liquide</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Liquid flow</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Flujo líquido</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Réacteur ruissellement</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Trickle bed reactor</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Reactor chorreo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Ordre 1</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>First order</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Orden 1</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Ordre réaction</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Reaction order</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Orden reacción</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Régime permanent</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Steady state</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Régimen permanente</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Bilan matière</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Material balance</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Balance materia</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Condition isotherme</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Isothermal condition</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Condición isoterma</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Transfert masse</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Mass transfer</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Transferencia masa</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Réaction catalytique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Catalytic reaction</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Reacción catalítica</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Facteur accroissement</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Enhancement factor</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Factor incremento</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Vitesse réaction</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Reaction rate</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Velocidad reacción</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Cinétique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Kinetics</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Cinética</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Analyse tendance</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Trend analysis</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Análisis tendencia</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Réacteur chimique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Chemical reactor</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Reactor químico</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Modèle mathématique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Mathematical model</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Modelo matemático</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Réponse transitoire</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Transient response</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Respuesta transitoria</s0>
<s5>16</s5>
</fC03>
<fN21>
<s1>248</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Conference on Gas-Liquid and Gas-Liquid-Solid Reactor Engineering</s1>
<s2>7</s2>
<s3>Strasbourg FRA</s3>
<s4>2005-08-21</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 05-0361187 INIST</NO>
<ET>Phenomenological approach to interpret the effect of liquid flow modulation in trickle bed reactors at the particle scale</ET>
<AU>AYUDE (M. A.); CASSANELLO (M. C.); MARTINEZ (O. M.); HAURE (P. M.); WILD (Gabriel)</AU>
<AF>INTEMA, CONICET, UNMDP, J.B. Justo 4302, 7600 Mar del Plata/Buenos Aires/Argentine (1 aut., 4 aut.); PINMATE, Dep. Industrials, FCEyN-UBA lut. Güiraldes 2620/C1428BGA Buenos Aires/Argentine (2 aut.); Dep. Ing. Química, UNLP-CINDECA, Calle 47 No 257/1900 La Plata/Argentine (3 aut.); Département de Chimie Physique des Réactions, UMR 7630 CNRS INPL, ENSIC, BP 20451/54001 Nancy/France (1 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Chemical engineering science; ISSN 0009-2509; Coden CESCAC; Royaume-Uni; Da. 2005; Vol. 60; No. 22; Pp. 6262-6269; Bibl. 17 ref.</SO>
<LA>Anglais</LA>
<EA>This work analyzes the influence of liquid flow modulation on the behavior of a reaction occurring in a spherical porous particle within a trickle bed reactor. A single first-order reaction between a gaseous reactant and a non-volatile liquid reactant is considered. Non-steady-state mass balances for gas and liquid reactants are formulated and solved under isothermal conditions in order to focus the analysis on the mass transport effects. Dynamic reactant profiles inside the catalytic particle are obtained for different cycling and system conditions. The enhancement factor (e) due to periodic operation is defined to evaluate the impact of induced liquid flow modulation on reaction rate. Influence of cycling and system parameters on the enhancement factor is also reported for a wide range of conditions. Experimental trends observed by several authors can be explained with this approach.</EA>
<CC>001D07H; 001D07G; 001C01A03B</CC>
<FD>Ecoulement liquide; Réacteur ruissellement; Ordre 1; Ordre réaction; Régime permanent; Bilan matière; Condition isotherme; Transfert masse; Réaction catalytique; Facteur accroissement; Vitesse réaction; Cinétique; Analyse tendance; Réacteur chimique; Modèle mathématique; Réponse transitoire</FD>
<ED>Liquid flow; Trickle bed reactor; First order; Reaction order; Steady state; Material balance; Isothermal condition; Mass transfer; Catalytic reaction; Enhancement factor; Reaction rate; Kinetics; Trend analysis; Chemical reactor; Mathematical model; Transient response</ED>
<SD>Flujo líquido; Reactor chorreo; Orden 1; Orden reacción; Régimen permanente; Balance materia; Condición isoterma; Transferencia masa; Reacción catalítica; Factor incremento; Velocidad reacción; Cinética; Análisis tendencia; Reactor químico; Modelo matemático; Respuesta transitoria</SD>
<LO>INIST-7538.354000132447940380</LO>
<ID>05-0361187</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000578 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000578 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:05-0361187
   |texte=   Phenomenological approach to interpret the effect of liquid flow modulation in trickle bed reactors at the particle scale
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024