Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Enhancing surface activity in silicon microreactors : Use of black silicon and alumina as catalyst supports for chemical and biological applications

Identifieur interne : 000397 ( PascalFrancis/Corpus ); précédent : 000396; suivant : 000398

Enhancing surface activity in silicon microreactors : Use of black silicon and alumina as catalyst supports for chemical and biological applications

Auteurs : Marilyne Roumanie ; Cyril Delattre ; Frédérique Mittler ; Gilles Marchand ; Valérie Meille ; Claude De Bellefon ; Christophe Pijolat ; Guy Tournier ; Patrick Pouteau

Source :

RBID : Pascal:08-0055193

Descripteurs français

English descriptors

Abstract

When surface-supported chemical reactions are performed in microsystems, high production rate cannot be obtained due to the intrinsically low surface area. Increasing the active surface area of silicon microsystems is a challenge that is addressed in this paper using two original approaches: (i) modifying the structure of silicon by creating nanostructures (black silicon) using conventional etching processes of silicon micromachining or (ii) depositing a layer of porous γ-alurnina by washcoating a colloidal suspension of boehmite onto the silicon surface. The catalytic oxidation of carbon monoxide on platinum was chosen as a first test reaction in the domain of heterogeneous catalysis. In order to perform this reaction, platinum was either deposited by sputtering on silicon devices with black silicon nanostructuration, or impregnated inside the porosity of an alumina layer previously deposited on a silicon device. For specific biological applications, such as proteins analysis, some biological reactions could be advantageously achieved in microsystems using surface-supported species. As an example, an enzymatic reaction was carried out using silicon devices modified with black silicon nanostructuration and further functionalized with trypsin as a model enzyme. The catalytic activity was compared between silicon devices with the same two types of catalysts, comprising or not an enhancement of the surface activity. A minimum 10-fold increase in catalytic activity was estimated from kinetic measurements and represents the augmentation of the active surface really available for reactions. It was also shown how these catalytic materials were integrated in a microreactor increasing its catalytic active surface without modifying its global size.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1385-8947
A03   1    @0 Chem. eng. j. : (1996)
A05       @2 135
A06       @3 SUP1
A08 01  1  ENG  @1 Enhancing surface activity in silicon microreactors : Use of black silicon and alumina as catalyst supports for chemical and biological applications
A09 01  1  ENG  @1 Microreaction Technology, IMRET 9: Proceedings of the Ninth International Conference on Microreaction Technology
A11 01  1    @1 ROUMANIE (Marilyne)
A11 02  1    @1 DELATTRE (Cyril)
A11 03  1    @1 MITTLER (Frédérique)
A11 04  1    @1 MARCHAND (Gilles)
A11 05  1    @1 MEILLE (Valérie)
A11 06  1    @1 DE BELLEFON (Claude)
A11 07  1    @1 PIJOLAT (Christophe)
A11 08  1    @1 TOURNIER (Guy)
A11 09  1    @1 POUTEAU (Patrick)
A12 01  1    @1 SCHÜTTE (Rüdiger) @9 ed.
A12 02  1    @1 RENKEN (Albert) @9 ed.
A12 03  1    @1 KLEMM (Elias) @9 ed.
A12 04  1    @1 LIAUW (Marcel A.) @9 ed.
A12 05  1    @1 MATLOSZ (Michael) @9 ed.
A14 01      @1 Ecole des Mines de Saint Etienne, Centre SPIN, Dpt MICC, LPMG-UMR CNRS 5148, 58 Cours Fauriel @2 42023 Saint Etienne @3 FRA @Z 1 aut. @Z 7 aut. @Z 8 aut.
A14 02      @1 Laboratoire d'Electronique et de Technologie de l'Information, CEA-LETI/DTBS, 17 rue Martyrs @2 38054 Grenoble @3 FRA @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 9 aut.
A14 03      @1 Laboratoire de Génie des Procédés Catalytiques, CNRS-CPE, 43 bd 11 novembre 1918, BP 2077 @2 69616 Villeurbanne @3 FRA @Z 5 aut. @Z 6 aut.
A15 01      @1 Process Technology & Engineering, Evonik Degussa GmbH, Rodenbacher Chaussee 4 @2 63457 Hanau (Wolfgang) @3 DEU @Z 1 aut.
A15 02      @1 Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), SB-ISIC-LGRC-Station 6, Bâtiment CH / CH J2 500 @2 1015 Lausanne @3 CHE @Z 2 aut.
A15 03      @1 Chemnitz University of Technology, Faculty of Natural Sciences, Department of Chemical Technology @2 09107 Chemnitz @3 DEU @Z 3 aut.
A15 04      @1 Technical Chemistry and Reaction Engineering, ITMC, RWTH Aachen, Worringerweg 1 @2 52074 Aachen @3 DEU @Z 4 aut.
A15 05      @1 CNRS-ENSIC, Laboratoire des Sciences du Genie Chimique, 1, rue Grandville @2 54001 Nancy @3 FRA @Z 5 aut.
A20       @2 S317-S326
A21       @1 2008
A23 01      @0 ENG
A43 01      @1 INIST @2 14678 @5 354000173568260490
A44       @0 0000 @1 © 2008 INIST-CNRS. All rights reserved.
A45       @0 29 ref.
A47 01  1    @0 08-0055193
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Chemical engineering journal : (1996)
A66 01      @0 NLD
C01 01    ENG  @0 When surface-supported chemical reactions are performed in microsystems, high production rate cannot be obtained due to the intrinsically low surface area. Increasing the active surface area of silicon microsystems is a challenge that is addressed in this paper using two original approaches: (i) modifying the structure of silicon by creating nanostructures (black silicon) using conventional etching processes of silicon micromachining or (ii) depositing a layer of porous γ-alurnina by washcoating a colloidal suspension of boehmite onto the silicon surface. The catalytic oxidation of carbon monoxide on platinum was chosen as a first test reaction in the domain of heterogeneous catalysis. In order to perform this reaction, platinum was either deposited by sputtering on silicon devices with black silicon nanostructuration, or impregnated inside the porosity of an alumina layer previously deposited on a silicon device. For specific biological applications, such as proteins analysis, some biological reactions could be advantageously achieved in microsystems using surface-supported species. As an example, an enzymatic reaction was carried out using silicon devices modified with black silicon nanostructuration and further functionalized with trypsin as a model enzyme. The catalytic activity was compared between silicon devices with the same two types of catalysts, comprising or not an enhancement of the surface activity. A minimum 10-fold increase in catalytic activity was estimated from kinetic measurements and represents the augmentation of the active surface really available for reactions. It was also shown how these catalytic materials were integrated in a microreactor increasing its catalytic active surface without modifying its global size.
C02 01  X    @0 001D07H
C02 02  X    @0 001C01A03B
C03 01  X  FRE  @0 Microréacteur @5 01
C03 01  X  ENG  @0 Microreactor @5 01
C03 01  X  SPA  @0 Microreactor @5 01
C03 02  X  FRE  @0 Support catalyseur @5 02
C03 02  X  ENG  @0 Catalyst support @5 02
C03 02  X  SPA  @0 Soporte catalizador @5 02
C03 03  X  FRE  @0 Catalyseur sur support @5 03
C03 03  X  ENG  @0 Supported catalyst @5 03
C03 03  X  SPA  @0 Catalizador sobre soporte @5 03
C03 04  X  FRE  @0 Réaction chimique @5 04
C03 04  X  ENG  @0 Chemical reaction @5 04
C03 04  X  SPA  @0 Reacción química @5 04
C03 05  X  FRE  @0 Production @5 05
C03 05  X  ENG  @0 Production @5 05
C03 05  X  SPA  @0 Producción @5 05
C03 06  X  FRE  @0 Aire superficielle @5 06
C03 06  X  ENG  @0 Surface area @5 06
C03 06  X  SPA  @0 Area superficial @5 06
C03 07  X  FRE  @0 Nanostructure @5 07
C03 07  X  ENG  @0 Nanostructure @5 07
C03 07  X  SPA  @0 Nanoestructura @5 07
C03 08  X  FRE  @0 Microusinage @5 08
C03 08  X  ENG  @0 Micromachining @5 08
C03 08  X  SPA  @0 Micromaquinado @5 08
C03 09  X  FRE  @0 Suspension colloïdale @5 09
C03 09  X  ENG  @0 Colloidal suspension @5 09
C03 09  X  SPA  @0 Suspensión coloidal @5 09
C03 10  X  FRE  @0 Réaction catalytique @5 10
C03 10  X  ENG  @0 Catalytic reaction @5 10
C03 10  X  SPA  @0 Reacción catalítica @5 10
C03 11  X  FRE  @0 Oxydation @5 11
C03 11  X  ENG  @0 Oxidation @5 11
C03 11  X  SPA  @0 Oxidación @5 11
C03 12  X  FRE  @0 Catalyse hétérogène @5 12
C03 12  X  ENG  @0 Heterogeneous catalysis @5 12
C03 12  X  SPA  @0 Catálisis heterogénea @5 12
C03 13  X  FRE  @0 Pulvérisation irradiation @5 13
C03 13  X  ENG  @0 Sputtering @5 13
C03 13  X  SPA  @0 Pulverización irradiación @5 13
C03 14  X  FRE  @0 Porosité @5 14
C03 14  X  ENG  @0 Porosity @5 14
C03 14  X  SPA  @0 Porosidad @5 14
C03 15  X  FRE  @0 Réaction enzymatique @5 15
C03 15  X  ENG  @0 Enzymatic reaction @5 15
C03 15  X  SPA  @0 Reacción enzimática @5 15
C03 16  X  FRE  @0 Modélisation @5 16
C03 16  X  ENG  @0 Modeling @5 16
C03 16  X  SPA  @0 Modelización @5 16
C03 17  X  FRE  @0 Activité catalytique @5 17
C03 17  X  ENG  @0 Catalyst activity @5 17
C03 17  X  SPA  @0 Actividad catalítica @5 17
C03 18  X  FRE  @0 Cinétique @5 18
C03 18  X  ENG  @0 Kinetics @5 18
C03 18  X  SPA  @0 Cinética @5 18
N21       @1 028
N44 01      @1 OTO
N82       @1 OTO
pR  
A30 01  1  ENG  @1 IMRET 9 : International Conference on Microreaction Technology @2 9 @3 Potsdam DEU @4 2006-09-06

Format Inist (serveur)

NO : PASCAL 08-0055193 INIST
ET : Enhancing surface activity in silicon microreactors : Use of black silicon and alumina as catalyst supports for chemical and biological applications
AU : ROUMANIE (Marilyne); DELATTRE (Cyril); MITTLER (Frédérique); MARCHAND (Gilles); MEILLE (Valérie); DE BELLEFON (Claude); PIJOLAT (Christophe); TOURNIER (Guy); POUTEAU (Patrick); SCHÜTTE (Rüdiger); RENKEN (Albert); KLEMM (Elias); LIAUW (Marcel A.); MATLOSZ (Michael)
AF : Ecole des Mines de Saint Etienne, Centre SPIN, Dpt MICC, LPMG-UMR CNRS 5148, 58 Cours Fauriel/42023 Saint Etienne/France (1 aut., 7 aut., 8 aut.); Laboratoire d'Electronique et de Technologie de l'Information, CEA-LETI/DTBS, 17 rue Martyrs/38054 Grenoble/France (2 aut., 3 aut., 4 aut., 9 aut.); Laboratoire de Génie des Procédés Catalytiques, CNRS-CPE, 43 bd 11 novembre 1918, BP 2077/69616 Villeurbanne/France (5 aut., 6 aut.); Process Technology & Engineering, Evonik Degussa GmbH, Rodenbacher Chaussee 4/63457 Hanau (Wolfgang)/Allemagne (1 aut.); Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), SB-ISIC-LGRC-Station 6, Bâtiment CH / CH J2 500/1015 Lausanne/Suisse (2 aut.); Chemnitz University of Technology, Faculty of Natural Sciences, Department of Chemical Technology/09107 Chemnitz/Allemagne (3 aut.); Technical Chemistry and Reaction Engineering, ITMC, RWTH Aachen, Worringerweg 1/52074 Aachen/Allemagne (4 aut.); CNRS-ENSIC, Laboratoire des Sciences du Genie Chimique, 1, rue Grandville/54001 Nancy/France (5 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Chemical engineering journal : (1996); ISSN 1385-8947; Pays-Bas; Da. 2008; Vol. 135; No. SUP1; S317-S326; Bibl. 29 ref.
LA : Anglais
EA : When surface-supported chemical reactions are performed in microsystems, high production rate cannot be obtained due to the intrinsically low surface area. Increasing the active surface area of silicon microsystems is a challenge that is addressed in this paper using two original approaches: (i) modifying the structure of silicon by creating nanostructures (black silicon) using conventional etching processes of silicon micromachining or (ii) depositing a layer of porous γ-alurnina by washcoating a colloidal suspension of boehmite onto the silicon surface. The catalytic oxidation of carbon monoxide on platinum was chosen as a first test reaction in the domain of heterogeneous catalysis. In order to perform this reaction, platinum was either deposited by sputtering on silicon devices with black silicon nanostructuration, or impregnated inside the porosity of an alumina layer previously deposited on a silicon device. For specific biological applications, such as proteins analysis, some biological reactions could be advantageously achieved in microsystems using surface-supported species. As an example, an enzymatic reaction was carried out using silicon devices modified with black silicon nanostructuration and further functionalized with trypsin as a model enzyme. The catalytic activity was compared between silicon devices with the same two types of catalysts, comprising or not an enhancement of the surface activity. A minimum 10-fold increase in catalytic activity was estimated from kinetic measurements and represents the augmentation of the active surface really available for reactions. It was also shown how these catalytic materials were integrated in a microreactor increasing its catalytic active surface without modifying its global size.
CC : 001D07H; 001C01A03B
FD : Microréacteur; Support catalyseur; Catalyseur sur support; Réaction chimique; Production; Aire superficielle; Nanostructure; Microusinage; Suspension colloïdale; Réaction catalytique; Oxydation; Catalyse hétérogène; Pulvérisation irradiation; Porosité; Réaction enzymatique; Modélisation; Activité catalytique; Cinétique
ED : Microreactor; Catalyst support; Supported catalyst; Chemical reaction; Production; Surface area; Nanostructure; Micromachining; Colloidal suspension; Catalytic reaction; Oxidation; Heterogeneous catalysis; Sputtering; Porosity; Enzymatic reaction; Modeling; Catalyst activity; Kinetics
SD : Microreactor; Soporte catalizador; Catalizador sobre soporte; Reacción química; Producción; Area superficial; Nanoestructura; Micromaquinado; Suspensión coloidal; Reacción catalítica; Oxidación; Catálisis heterogénea; Pulverización irradiación; Porosidad; Reacción enzimática; Modelización; Actividad catalítica; Cinética
LO : INIST-14678.354000173568260490
ID : 08-0055193

Links to Exploration step

Pascal:08-0055193

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Enhancing surface activity in silicon microreactors : Use of black silicon and alumina as catalyst supports for chemical and biological applications</title>
<author>
<name sortKey="Roumanie, Marilyne" sort="Roumanie, Marilyne" uniqKey="Roumanie M" first="Marilyne" last="Roumanie">Marilyne Roumanie</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Ecole des Mines de Saint Etienne, Centre SPIN, Dpt MICC, LPMG-UMR CNRS 5148, 58 Cours Fauriel</s1>
<s2>42023 Saint Etienne</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Delattre, Cyril" sort="Delattre, Cyril" uniqKey="Delattre C" first="Cyril" last="Delattre">Cyril Delattre</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire d'Electronique et de Technologie de l'Information, CEA-LETI/DTBS, 17 rue Martyrs</s1>
<s2>38054 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mittler, Frederique" sort="Mittler, Frederique" uniqKey="Mittler F" first="Frédérique" last="Mittler">Frédérique Mittler</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire d'Electronique et de Technologie de l'Information, CEA-LETI/DTBS, 17 rue Martyrs</s1>
<s2>38054 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Marchand, Gilles" sort="Marchand, Gilles" uniqKey="Marchand G" first="Gilles" last="Marchand">Gilles Marchand</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire d'Electronique et de Technologie de l'Information, CEA-LETI/DTBS, 17 rue Martyrs</s1>
<s2>38054 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Meille, Valerie" sort="Meille, Valerie" uniqKey="Meille V" first="Valérie" last="Meille">Valérie Meille</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Laboratoire de Génie des Procédés Catalytiques, CNRS-CPE, 43 bd 11 novembre 1918, BP 2077</s1>
<s2>69616 Villeurbanne</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="De Bellefon, Claude" sort="De Bellefon, Claude" uniqKey="De Bellefon C" first="Claude" last="De Bellefon">Claude De Bellefon</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Laboratoire de Génie des Procédés Catalytiques, CNRS-CPE, 43 bd 11 novembre 1918, BP 2077</s1>
<s2>69616 Villeurbanne</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pijolat, Christophe" sort="Pijolat, Christophe" uniqKey="Pijolat C" first="Christophe" last="Pijolat">Christophe Pijolat</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Ecole des Mines de Saint Etienne, Centre SPIN, Dpt MICC, LPMG-UMR CNRS 5148, 58 Cours Fauriel</s1>
<s2>42023 Saint Etienne</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tournier, Guy" sort="Tournier, Guy" uniqKey="Tournier G" first="Guy" last="Tournier">Guy Tournier</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Ecole des Mines de Saint Etienne, Centre SPIN, Dpt MICC, LPMG-UMR CNRS 5148, 58 Cours Fauriel</s1>
<s2>42023 Saint Etienne</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pouteau, Patrick" sort="Pouteau, Patrick" uniqKey="Pouteau P" first="Patrick" last="Pouteau">Patrick Pouteau</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire d'Electronique et de Technologie de l'Information, CEA-LETI/DTBS, 17 rue Martyrs</s1>
<s2>38054 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0055193</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0055193 INIST</idno>
<idno type="RBID">Pascal:08-0055193</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000397</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Enhancing surface activity in silicon microreactors : Use of black silicon and alumina as catalyst supports for chemical and biological applications</title>
<author>
<name sortKey="Roumanie, Marilyne" sort="Roumanie, Marilyne" uniqKey="Roumanie M" first="Marilyne" last="Roumanie">Marilyne Roumanie</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Ecole des Mines de Saint Etienne, Centre SPIN, Dpt MICC, LPMG-UMR CNRS 5148, 58 Cours Fauriel</s1>
<s2>42023 Saint Etienne</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Delattre, Cyril" sort="Delattre, Cyril" uniqKey="Delattre C" first="Cyril" last="Delattre">Cyril Delattre</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire d'Electronique et de Technologie de l'Information, CEA-LETI/DTBS, 17 rue Martyrs</s1>
<s2>38054 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mittler, Frederique" sort="Mittler, Frederique" uniqKey="Mittler F" first="Frédérique" last="Mittler">Frédérique Mittler</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire d'Electronique et de Technologie de l'Information, CEA-LETI/DTBS, 17 rue Martyrs</s1>
<s2>38054 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Marchand, Gilles" sort="Marchand, Gilles" uniqKey="Marchand G" first="Gilles" last="Marchand">Gilles Marchand</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire d'Electronique et de Technologie de l'Information, CEA-LETI/DTBS, 17 rue Martyrs</s1>
<s2>38054 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Meille, Valerie" sort="Meille, Valerie" uniqKey="Meille V" first="Valérie" last="Meille">Valérie Meille</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Laboratoire de Génie des Procédés Catalytiques, CNRS-CPE, 43 bd 11 novembre 1918, BP 2077</s1>
<s2>69616 Villeurbanne</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="De Bellefon, Claude" sort="De Bellefon, Claude" uniqKey="De Bellefon C" first="Claude" last="De Bellefon">Claude De Bellefon</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Laboratoire de Génie des Procédés Catalytiques, CNRS-CPE, 43 bd 11 novembre 1918, BP 2077</s1>
<s2>69616 Villeurbanne</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pijolat, Christophe" sort="Pijolat, Christophe" uniqKey="Pijolat C" first="Christophe" last="Pijolat">Christophe Pijolat</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Ecole des Mines de Saint Etienne, Centre SPIN, Dpt MICC, LPMG-UMR CNRS 5148, 58 Cours Fauriel</s1>
<s2>42023 Saint Etienne</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tournier, Guy" sort="Tournier, Guy" uniqKey="Tournier G" first="Guy" last="Tournier">Guy Tournier</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Ecole des Mines de Saint Etienne, Centre SPIN, Dpt MICC, LPMG-UMR CNRS 5148, 58 Cours Fauriel</s1>
<s2>42023 Saint Etienne</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pouteau, Patrick" sort="Pouteau, Patrick" uniqKey="Pouteau P" first="Patrick" last="Pouteau">Patrick Pouteau</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire d'Electronique et de Technologie de l'Information, CEA-LETI/DTBS, 17 rue Martyrs</s1>
<s2>38054 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Chemical engineering journal : (1996)</title>
<title level="j" type="abbreviated">Chem. eng. j. : (1996)</title>
<idno type="ISSN">1385-8947</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Chemical engineering journal : (1996)</title>
<title level="j" type="abbreviated">Chem. eng. j. : (1996)</title>
<idno type="ISSN">1385-8947</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Catalyst activity</term>
<term>Catalyst support</term>
<term>Catalytic reaction</term>
<term>Chemical reaction</term>
<term>Colloidal suspension</term>
<term>Enzymatic reaction</term>
<term>Heterogeneous catalysis</term>
<term>Kinetics</term>
<term>Micromachining</term>
<term>Microreactor</term>
<term>Modeling</term>
<term>Nanostructure</term>
<term>Oxidation</term>
<term>Porosity</term>
<term>Production</term>
<term>Sputtering</term>
<term>Supported catalyst</term>
<term>Surface area</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Microréacteur</term>
<term>Support catalyseur</term>
<term>Catalyseur sur support</term>
<term>Réaction chimique</term>
<term>Production</term>
<term>Aire superficielle</term>
<term>Nanostructure</term>
<term>Microusinage</term>
<term>Suspension colloïdale</term>
<term>Réaction catalytique</term>
<term>Oxydation</term>
<term>Catalyse hétérogène</term>
<term>Pulvérisation irradiation</term>
<term>Porosité</term>
<term>Réaction enzymatique</term>
<term>Modélisation</term>
<term>Activité catalytique</term>
<term>Cinétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">When surface-supported chemical reactions are performed in microsystems, high production rate cannot be obtained due to the intrinsically low surface area. Increasing the active surface area of silicon microsystems is a challenge that is addressed in this paper using two original approaches: (i) modifying the structure of silicon by creating nanostructures (black silicon) using conventional etching processes of silicon micromachining or (ii) depositing a layer of porous γ-alurnina by washcoating a colloidal suspension of boehmite onto the silicon surface. The catalytic oxidation of carbon monoxide on platinum was chosen as a first test reaction in the domain of heterogeneous catalysis. In order to perform this reaction, platinum was either deposited by sputtering on silicon devices with black silicon nanostructuration, or impregnated inside the porosity of an alumina layer previously deposited on a silicon device. For specific biological applications, such as proteins analysis, some biological reactions could be advantageously achieved in microsystems using surface-supported species. As an example, an enzymatic reaction was carried out using silicon devices modified with black silicon nanostructuration and further functionalized with trypsin as a model enzyme. The catalytic activity was compared between silicon devices with the same two types of catalysts, comprising or not an enhancement of the surface activity. A minimum 10-fold increase in catalytic activity was estimated from kinetic measurements and represents the augmentation of the active surface really available for reactions. It was also shown how these catalytic materials were integrated in a microreactor increasing its catalytic active surface without modifying its global size.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1385-8947</s0>
</fA01>
<fA03 i2="1">
<s0>Chem. eng. j. : (1996)</s0>
</fA03>
<fA05>
<s2>135</s2>
</fA05>
<fA06>
<s3>SUP1</s3>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Enhancing surface activity in silicon microreactors : Use of black silicon and alumina as catalyst supports for chemical and biological applications</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Microreaction Technology, IMRET 9: Proceedings of the Ninth International Conference on Microreaction Technology</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>ROUMANIE (Marilyne)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DELATTRE (Cyril)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MITTLER (Frédérique)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MARCHAND (Gilles)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MEILLE (Valérie)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>DE BELLEFON (Claude)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>PIJOLAT (Christophe)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>TOURNIER (Guy)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>POUTEAU (Patrick)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>SCHÜTTE (Rüdiger)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>RENKEN (Albert)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>KLEMM (Elias)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>LIAUW (Marcel A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>MATLOSZ (Michael)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Ecole des Mines de Saint Etienne, Centre SPIN, Dpt MICC, LPMG-UMR CNRS 5148, 58 Cours Fauriel</s1>
<s2>42023 Saint Etienne</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire d'Electronique et de Technologie de l'Information, CEA-LETI/DTBS, 17 rue Martyrs</s1>
<s2>38054 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Laboratoire de Génie des Procédés Catalytiques, CNRS-CPE, 43 bd 11 novembre 1918, BP 2077</s1>
<s2>69616 Villeurbanne</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Process Technology & Engineering, Evonik Degussa GmbH, Rodenbacher Chaussee 4</s1>
<s2>63457 Hanau (Wolfgang)</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), SB-ISIC-LGRC-Station 6, Bâtiment CH / CH J2 500</s1>
<s2>1015 Lausanne</s2>
<s3>CHE</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Chemnitz University of Technology, Faculty of Natural Sciences, Department of Chemical Technology</s1>
<s2>09107 Chemnitz</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>Technical Chemistry and Reaction Engineering, ITMC, RWTH Aachen, Worringerweg 1</s1>
<s2>52074 Aachen</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA15 i1="05">
<s1>CNRS-ENSIC, Laboratoire des Sciences du Genie Chimique, 1, rue Grandville</s1>
<s2>54001 Nancy</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</fA15>
<fA20>
<s2>S317-S326</s2>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14678</s2>
<s5>354000173568260490</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>29 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0055193</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Chemical engineering journal : (1996)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>When surface-supported chemical reactions are performed in microsystems, high production rate cannot be obtained due to the intrinsically low surface area. Increasing the active surface area of silicon microsystems is a challenge that is addressed in this paper using two original approaches: (i) modifying the structure of silicon by creating nanostructures (black silicon) using conventional etching processes of silicon micromachining or (ii) depositing a layer of porous γ-alurnina by washcoating a colloidal suspension of boehmite onto the silicon surface. The catalytic oxidation of carbon monoxide on platinum was chosen as a first test reaction in the domain of heterogeneous catalysis. In order to perform this reaction, platinum was either deposited by sputtering on silicon devices with black silicon nanostructuration, or impregnated inside the porosity of an alumina layer previously deposited on a silicon device. For specific biological applications, such as proteins analysis, some biological reactions could be advantageously achieved in microsystems using surface-supported species. As an example, an enzymatic reaction was carried out using silicon devices modified with black silicon nanostructuration and further functionalized with trypsin as a model enzyme. The catalytic activity was compared between silicon devices with the same two types of catalysts, comprising or not an enhancement of the surface activity. A minimum 10-fold increase in catalytic activity was estimated from kinetic measurements and represents the augmentation of the active surface really available for reactions. It was also shown how these catalytic materials were integrated in a microreactor increasing its catalytic active surface without modifying its global size.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D07H</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001C01A03B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Microréacteur</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Microreactor</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Microreactor</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Support catalyseur</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Catalyst support</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Soporte catalizador</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Catalyseur sur support</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Supported catalyst</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Catalizador sobre soporte</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Réaction chimique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Chemical reaction</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Reacción química</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Production</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Production</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Producción</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Aire superficielle</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Surface area</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Area superficial</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Nanostructure</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Nanostructure</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Nanoestructura</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Microusinage</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Micromachining</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Micromaquinado</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Suspension colloïdale</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Colloidal suspension</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Suspensión coloidal</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Réaction catalytique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Catalytic reaction</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Reacción catalítica</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Oxydation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Oxidation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Oxidación</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Catalyse hétérogène</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Heterogeneous catalysis</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Catálisis heterogénea</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Pulvérisation irradiation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Sputtering</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Pulverización irradiación</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Porosité</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Porosity</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Porosidad</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Réaction enzymatique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Enzymatic reaction</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Reacción enzimática</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Activité catalytique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Catalyst activity</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Actividad catalítica</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Cinétique</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Kinetics</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Cinética</s0>
<s5>18</s5>
</fC03>
<fN21>
<s1>028</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>IMRET 9 : International Conference on Microreaction Technology</s1>
<s2>9</s2>
<s3>Potsdam DEU</s3>
<s4>2006-09-06</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 08-0055193 INIST</NO>
<ET>Enhancing surface activity in silicon microreactors : Use of black silicon and alumina as catalyst supports for chemical and biological applications</ET>
<AU>ROUMANIE (Marilyne); DELATTRE (Cyril); MITTLER (Frédérique); MARCHAND (Gilles); MEILLE (Valérie); DE BELLEFON (Claude); PIJOLAT (Christophe); TOURNIER (Guy); POUTEAU (Patrick); SCHÜTTE (Rüdiger); RENKEN (Albert); KLEMM (Elias); LIAUW (Marcel A.); MATLOSZ (Michael)</AU>
<AF>Ecole des Mines de Saint Etienne, Centre SPIN, Dpt MICC, LPMG-UMR CNRS 5148, 58 Cours Fauriel/42023 Saint Etienne/France (1 aut., 7 aut., 8 aut.); Laboratoire d'Electronique et de Technologie de l'Information, CEA-LETI/DTBS, 17 rue Martyrs/38054 Grenoble/France (2 aut., 3 aut., 4 aut., 9 aut.); Laboratoire de Génie des Procédés Catalytiques, CNRS-CPE, 43 bd 11 novembre 1918, BP 2077/69616 Villeurbanne/France (5 aut., 6 aut.); Process Technology & Engineering, Evonik Degussa GmbH, Rodenbacher Chaussee 4/63457 Hanau (Wolfgang)/Allemagne (1 aut.); Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), SB-ISIC-LGRC-Station 6, Bâtiment CH / CH J2 500/1015 Lausanne/Suisse (2 aut.); Chemnitz University of Technology, Faculty of Natural Sciences, Department of Chemical Technology/09107 Chemnitz/Allemagne (3 aut.); Technical Chemistry and Reaction Engineering, ITMC, RWTH Aachen, Worringerweg 1/52074 Aachen/Allemagne (4 aut.); CNRS-ENSIC, Laboratoire des Sciences du Genie Chimique, 1, rue Grandville/54001 Nancy/France (5 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Chemical engineering journal : (1996); ISSN 1385-8947; Pays-Bas; Da. 2008; Vol. 135; No. SUP1; S317-S326; Bibl. 29 ref.</SO>
<LA>Anglais</LA>
<EA>When surface-supported chemical reactions are performed in microsystems, high production rate cannot be obtained due to the intrinsically low surface area. Increasing the active surface area of silicon microsystems is a challenge that is addressed in this paper using two original approaches: (i) modifying the structure of silicon by creating nanostructures (black silicon) using conventional etching processes of silicon micromachining or (ii) depositing a layer of porous γ-alurnina by washcoating a colloidal suspension of boehmite onto the silicon surface. The catalytic oxidation of carbon monoxide on platinum was chosen as a first test reaction in the domain of heterogeneous catalysis. In order to perform this reaction, platinum was either deposited by sputtering on silicon devices with black silicon nanostructuration, or impregnated inside the porosity of an alumina layer previously deposited on a silicon device. For specific biological applications, such as proteins analysis, some biological reactions could be advantageously achieved in microsystems using surface-supported species. As an example, an enzymatic reaction was carried out using silicon devices modified with black silicon nanostructuration and further functionalized with trypsin as a model enzyme. The catalytic activity was compared between silicon devices with the same two types of catalysts, comprising or not an enhancement of the surface activity. A minimum 10-fold increase in catalytic activity was estimated from kinetic measurements and represents the augmentation of the active surface really available for reactions. It was also shown how these catalytic materials were integrated in a microreactor increasing its catalytic active surface without modifying its global size.</EA>
<CC>001D07H; 001C01A03B</CC>
<FD>Microréacteur; Support catalyseur; Catalyseur sur support; Réaction chimique; Production; Aire superficielle; Nanostructure; Microusinage; Suspension colloïdale; Réaction catalytique; Oxydation; Catalyse hétérogène; Pulvérisation irradiation; Porosité; Réaction enzymatique; Modélisation; Activité catalytique; Cinétique</FD>
<ED>Microreactor; Catalyst support; Supported catalyst; Chemical reaction; Production; Surface area; Nanostructure; Micromachining; Colloidal suspension; Catalytic reaction; Oxidation; Heterogeneous catalysis; Sputtering; Porosity; Enzymatic reaction; Modeling; Catalyst activity; Kinetics</ED>
<SD>Microreactor; Soporte catalizador; Catalizador sobre soporte; Reacción química; Producción; Area superficial; Nanoestructura; Micromaquinado; Suspensión coloidal; Reacción catalítica; Oxidación; Catálisis heterogénea; Pulverización irradiación; Porosidad; Reacción enzimática; Modelización; Actividad catalítica; Cinética</SD>
<LO>INIST-14678.354000173568260490</LO>
<ID>08-0055193</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000397 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000397 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:08-0055193
   |texte=   Enhancing surface activity in silicon microreactors : Use of black silicon and alumina as catalyst supports for chemical and biological applications
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024