Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Analysis of optimal operation of a fed-batch emulsion copolymerization reactor used for production of particles with core-shell morphology

Identifieur interne : 000013 ( PascalFrancis/Corpus ); précédent : 000012; suivant : 000014

Analysis of optimal operation of a fed-batch emulsion copolymerization reactor used for production of particles with core-shell morphology

Auteurs : R. Paulen ; B. Benyahia ; M. A. Latifi ; M. Fikar

Source :

RBID : Pascal:14-0166144

Descripteurs français

English descriptors

Abstract

In this paper dynamic optimization of a lab-scale semi-batch emulsion copolymerization reactor for styrene and butyl acrylate in the presence of a chain transfer agent (CTA) is studied. The mathematical model of the process, previously developed and experimentally validated, is used to predict the glass transition temperature of produced polymer, the number and weight average molecular weights, the monomers global conversion, the particle size distribution, and the amount of residual monomers. The model is implemented within gPROMS environment for modeling and optimization. It is desired to compute feed rate profiles of pre-emulsioned monomers, inhibitor and CTA that will allow the production of polymer particles with prescribed core-shell morphology with high productivity. The results obtained for different operating conditions and various additional product specifications are presented. The resulting feeding profiles are analyzed from the perspective of the nature of emulsion polymerization process and some interesting conclusions are drawn.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0098-1354
A02 01      @0 CCENDW
A03   1    @0 Comput. chem. eng.
A05       @2 66
A08 01  1  ENG  @1 Analysis of optimal operation of a fed-batch emulsion copolymerization reactor used for production of particles with core-shell morphology
A09 01  1  ENG  @1 Selected papers from ESCAPE-23 (European Symposium on Computer Aided Process Engineering - 23), 9-12 June 2013, Lapeenranta, Finland
A11 01  1    @1 PAULEN (R.)
A11 02  1    @1 BENYAHIA (B.)
A11 03  1    @1 LATIFI (M. A.)
A11 04  1    @1 FIKAR (M.)
A12 01  1    @1 KRASLAWSKI (Andrzej) @9 ed.
A12 02  1    @1 TURUNEN (Ilkka) @9 ed.
A14 01      @1 Laboratoire Reactions et Génie des Procédés CNRS - ENSIC, Université de Lorraine, UPR 6811 CNRS, 1 rue Grandville @2 Nancy @3 FRA @Z 1 aut. @Z 3 aut.
A14 02      @1 Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9 @2 Bratislava @3 SVK @Z 1 aut. @Z 4 aut.
A14 03      @1 Department of Chemical and Biochemical Engineering, Technische Universität Dortmund, Emil-Figge-Strasse 70 @2 44221 Dortmund @3 DEU @Z 1 aut.
A14 04      @1 Department of Chemical Engineering, Loughborough University @2 Loughborough, Leicestershire LE11 3TU @3 GBR @Z 2 aut.
A20       @1 233-243
A21       @1 2014
A23 01      @0 ENG
A43 01      @1 INIST @2 16409 @5 354000507546710180
A44       @0 0000 @1 © 2014 INIST-CNRS. All rights reserved.
A45       @0 1/4 p.
A47 01  1    @0 14-0166144
A60       @1 P
A61       @0 A
A64 01  1    @0 Computers & chemical engineering
A66 01      @0 GBR
C01 01    ENG  @0 In this paper dynamic optimization of a lab-scale semi-batch emulsion copolymerization reactor for styrene and butyl acrylate in the presence of a chain transfer agent (CTA) is studied. The mathematical model of the process, previously developed and experimentally validated, is used to predict the glass transition temperature of produced polymer, the number and weight average molecular weights, the monomers global conversion, the particle size distribution, and the amount of residual monomers. The model is implemented within gPROMS environment for modeling and optimization. It is desired to compute feed rate profiles of pre-emulsioned monomers, inhibitor and CTA that will allow the production of polymer particles with prescribed core-shell morphology with high productivity. The results obtained for different operating conditions and various additional product specifications are presented. The resulting feeding profiles are analyzed from the perspective of the nature of emulsion polymerization process and some interesting conclusions are drawn.
C02 01  X    @0 001D07H
C02 02  X    @0 001D09D02C
C02 03  3    @0 001B60D70K
C02 04  X    @0 001D09D02B
C03 01  X  FRE  @0 Copolymérisation émulsion @5 06
C03 01  X  ENG  @0 Emulsion copolymerization @5 06
C03 01  X  SPA  @0 Copolimerización emulsión @5 06
C03 02  X  FRE  @0 Transition vitreuse @5 07
C03 02  X  ENG  @0 Glass transition @5 07
C03 02  X  SPA  @0 Transición vítrea @5 07
C03 03  X  FRE  @0 Poids @5 08
C03 03  X  ENG  @0 Weight @5 08
C03 03  X  SPA  @0 Peso @5 08
C03 04  X  FRE  @0 Distribution dimension particule @5 09
C03 04  X  ENG  @0 Particle size distribution @5 09
C03 04  X  SPA  @0 Distribución dimensión partícula @5 09
C03 05  X  FRE  @0 Vitesse avancement @5 10
C03 05  X  ENG  @0 Penetration rate @5 10
C03 05  X  SPA  @0 Velocidad penetración @5 10
C03 06  X  FRE  @0 Emulsion @5 11
C03 06  X  ENG  @0 Emulsion @5 11
C03 06  X  SPA  @0 Emulsión @5 11
C03 07  X  FRE  @0 Productivité @5 12
C03 07  X  ENG  @0 Productivity @5 12
C03 07  X  SPA  @0 Productividad @5 12
C03 08  X  FRE  @0 Condition opératoire @5 13
C03 08  X  ENG  @0 Operating conditions @5 13
C03 08  X  SPA  @0 Condición operatoria @5 13
C03 09  X  FRE  @0 Devis descriptif @5 14
C03 09  X  ENG  @0 Product specification @5 14
C03 09  X  SPA  @0 Presupuesto descriptivo @5 14
C03 10  X  FRE  @0 Structure coeur couche @5 15
C03 10  X  ENG  @0 Core shell structure @5 15
C03 10  X  SPA  @0 Estructura núcleo cascarón @5 15
C03 11  X  FRE  @0 Polymérisation émulsion @5 16
C03 11  X  ENG  @0 Emulsion polymerization @5 16
C03 11  X  SPA  @0 Polimerización emulsión @5 16
C03 12  X  FRE  @0 Procédé discontinu @5 20
C03 12  X  ENG  @0 Batch process @5 20
C03 12  X  SPA  @0 Procedimiento discontínuo @5 20
C03 13  X  FRE  @0 Réacteur chimique @5 21
C03 13  X  ENG  @0 Chemical reactor @5 21
C03 13  X  SPA  @0 Reactor químico @5 21
C03 14  X  FRE  @0 Réacteur polymérisation @5 22
C03 14  X  ENG  @0 Polymerization reactor @5 22
C03 14  X  SPA  @0 Reactor polimerización @5 22
C03 15  X  FRE  @0 Styrène @2 NK @2 FX @5 23
C03 15  X  ENG  @0 Styrene @2 NK @2 FX @5 23
C03 15  X  SPA  @0 Estireno @2 NK @2 FX @5 23
C03 16  X  FRE  @0 Température transition @5 24
C03 16  X  ENG  @0 Transition temperature @5 24
C03 16  X  SPA  @0 Temperatura transición @5 24
C03 17  X  FRE  @0 Polymère @5 25
C03 17  X  ENG  @0 Polymer @5 25
C03 17  X  SPA  @0 Polímero @5 25
C03 18  X  FRE  @0 Monomère @5 26
C03 18  X  ENG  @0 Monomer @5 26
C03 18  X  SPA  @0 Monómero @5 26
C03 19  X  FRE  @0 Programmation dynamique @5 27
C03 19  X  ENG  @0 Dynamic programming @5 27
C03 19  X  SPA  @0 Programación dinámica @5 27
C03 20  X  FRE  @0 Modélisation @5 28
C03 20  X  ENG  @0 Modeling @5 28
C03 20  X  SPA  @0 Modelización @5 28
C03 21  X  FRE  @0 Masse moléculaire @5 29
C03 21  X  ENG  @0 Molecular mass @5 29
C03 21  X  SPA  @0 Masa molecular @5 29
C03 22  X  FRE  @0 Optimisation @5 30
C03 22  X  ENG  @0 Optimization @5 30
C03 22  X  SPA  @0 Optimización @5 30
C03 23  X  FRE  @0 Paramétrisation @5 31
C03 23  X  ENG  @0 Parameterization @5 31
C03 23  X  SPA  @0 Parametrización @5 31
C03 24  X  FRE  @0 En semi continu @5 33
C03 24  X  ENG  @0 Semicontinuous @5 33
C03 24  X  SPA  @0 En semicontinuo @5 33
C03 25  X  FRE  @0 Etude expérimentale @5 34
C03 25  X  ENG  @0 Experimental study @5 34
C03 25  X  SPA  @0 Estudio experimental @5 34
C03 26  X  FRE  @0 Dispositif alimentation @5 41
C03 26  X  ENG  @0 Feeding device @5 41
C03 26  X  SPA  @0 Dispositivo alimentación @5 41
C03 27  X  FRE  @0 . @4 INC @5 82
N21       @1 209
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 14-0166144 INIST
ET : Analysis of optimal operation of a fed-batch emulsion copolymerization reactor used for production of particles with core-shell morphology
AU : PAULEN (R.); BENYAHIA (B.); LATIFI (M. A.); FIKAR (M.); KRASLAWSKI (Andrzej); TURUNEN (Ilkka)
AF : Laboratoire Reactions et Génie des Procédés CNRS - ENSIC, Université de Lorraine, UPR 6811 CNRS, 1 rue Grandville/Nancy/France (1 aut., 3 aut.); Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9/Bratislava/Slovaquie (1 aut., 4 aut.); Department of Chemical and Biochemical Engineering, Technische Universität Dortmund, Emil-Figge-Strasse 70/44221 Dortmund/Allemagne (1 aut.); Department of Chemical Engineering, Loughborough University/Loughborough, Leicestershire LE11 3TU/Royaume-Uni (2 aut.)
DT : Publication en série; Niveau analytique
SO : Computers & chemical engineering; ISSN 0098-1354; Coden CCENDW; Royaume-Uni; Da. 2014; Vol. 66; Pp. 233-243; Bibl. 1/4 p.
LA : Anglais
EA : In this paper dynamic optimization of a lab-scale semi-batch emulsion copolymerization reactor for styrene and butyl acrylate in the presence of a chain transfer agent (CTA) is studied. The mathematical model of the process, previously developed and experimentally validated, is used to predict the glass transition temperature of produced polymer, the number and weight average molecular weights, the monomers global conversion, the particle size distribution, and the amount of residual monomers. The model is implemented within gPROMS environment for modeling and optimization. It is desired to compute feed rate profiles of pre-emulsioned monomers, inhibitor and CTA that will allow the production of polymer particles with prescribed core-shell morphology with high productivity. The results obtained for different operating conditions and various additional product specifications are presented. The resulting feeding profiles are analyzed from the perspective of the nature of emulsion polymerization process and some interesting conclusions are drawn.
CC : 001D07H; 001D09D02C; 001B60D70K; 001D09D02B
FD : Copolymérisation émulsion; Transition vitreuse; Poids; Distribution dimension particule; Vitesse avancement; Emulsion; Productivité; Condition opératoire; Devis descriptif; Structure coeur couche; Polymérisation émulsion; Procédé discontinu; Réacteur chimique; Réacteur polymérisation; Styrène; Température transition; Polymère; Monomère; Programmation dynamique; Modélisation; Masse moléculaire; Optimisation; Paramétrisation; En semi continu; Etude expérimentale; Dispositif alimentation; .
ED : Emulsion copolymerization; Glass transition; Weight; Particle size distribution; Penetration rate; Emulsion; Productivity; Operating conditions; Product specification; Core shell structure; Emulsion polymerization; Batch process; Chemical reactor; Polymerization reactor; Styrene; Transition temperature; Polymer; Monomer; Dynamic programming; Modeling; Molecular mass; Optimization; Parameterization; Semicontinuous; Experimental study; Feeding device
SD : Copolimerización emulsión; Transición vítrea; Peso; Distribución dimensión partícula; Velocidad penetración; Emulsión; Productividad; Condición operatoria; Presupuesto descriptivo; Estructura núcleo cascarón; Polimerización emulsión; Procedimiento discontínuo; Reactor químico; Reactor polimerización; Estireno; Temperatura transición; Polímero; Monómero; Programación dinámica; Modelización; Masa molecular; Optimización; Parametrización; En semicontinuo; Estudio experimental; Dispositivo alimentación
LO : INIST-16409.354000507546710180
ID : 14-0166144

Links to Exploration step

Pascal:14-0166144

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Analysis of optimal operation of a fed-batch emulsion copolymerization reactor used for production of particles with core-shell morphology</title>
<author>
<name sortKey="Paulen, R" sort="Paulen, R" uniqKey="Paulen R" first="R." last="Paulen">R. Paulen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire Reactions et Génie des Procédés CNRS - ENSIC, Université de Lorraine, UPR 6811 CNRS, 1 rue Grandville</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9</s1>
<s2>Bratislava</s2>
<s3>SVK</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Chemical and Biochemical Engineering, Technische Universität Dortmund, Emil-Figge-Strasse 70</s1>
<s2>44221 Dortmund</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Benyahia, B" sort="Benyahia, B" uniqKey="Benyahia B" first="B." last="Benyahia">B. Benyahia</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Chemical Engineering, Loughborough University</s1>
<s2>Loughborough, Leicestershire LE11 3TU</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Latifi, M A" sort="Latifi, M A" uniqKey="Latifi M" first="M. A." last="Latifi">M. A. Latifi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire Reactions et Génie des Procédés CNRS - ENSIC, Université de Lorraine, UPR 6811 CNRS, 1 rue Grandville</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fikar, M" sort="Fikar, M" uniqKey="Fikar M" first="M." last="Fikar">M. Fikar</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9</s1>
<s2>Bratislava</s2>
<s3>SVK</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0166144</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0166144 INIST</idno>
<idno type="RBID">Pascal:14-0166144</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000013</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Analysis of optimal operation of a fed-batch emulsion copolymerization reactor used for production of particles with core-shell morphology</title>
<author>
<name sortKey="Paulen, R" sort="Paulen, R" uniqKey="Paulen R" first="R." last="Paulen">R. Paulen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire Reactions et Génie des Procédés CNRS - ENSIC, Université de Lorraine, UPR 6811 CNRS, 1 rue Grandville</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9</s1>
<s2>Bratislava</s2>
<s3>SVK</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Chemical and Biochemical Engineering, Technische Universität Dortmund, Emil-Figge-Strasse 70</s1>
<s2>44221 Dortmund</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Benyahia, B" sort="Benyahia, B" uniqKey="Benyahia B" first="B." last="Benyahia">B. Benyahia</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Chemical Engineering, Loughborough University</s1>
<s2>Loughborough, Leicestershire LE11 3TU</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Latifi, M A" sort="Latifi, M A" uniqKey="Latifi M" first="M. A." last="Latifi">M. A. Latifi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire Reactions et Génie des Procédés CNRS - ENSIC, Université de Lorraine, UPR 6811 CNRS, 1 rue Grandville</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fikar, M" sort="Fikar, M" uniqKey="Fikar M" first="M." last="Fikar">M. Fikar</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9</s1>
<s2>Bratislava</s2>
<s3>SVK</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Computers & chemical engineering</title>
<title level="j" type="abbreviated">Comput. chem. eng.</title>
<idno type="ISSN">0098-1354</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Computers & chemical engineering</title>
<title level="j" type="abbreviated">Comput. chem. eng.</title>
<idno type="ISSN">0098-1354</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Batch process</term>
<term>Chemical reactor</term>
<term>Core shell structure</term>
<term>Dynamic programming</term>
<term>Emulsion</term>
<term>Emulsion copolymerization</term>
<term>Emulsion polymerization</term>
<term>Experimental study</term>
<term>Feeding device</term>
<term>Glass transition</term>
<term>Modeling</term>
<term>Molecular mass</term>
<term>Monomer</term>
<term>Operating conditions</term>
<term>Optimization</term>
<term>Parameterization</term>
<term>Particle size distribution</term>
<term>Penetration rate</term>
<term>Polymer</term>
<term>Polymerization reactor</term>
<term>Product specification</term>
<term>Productivity</term>
<term>Semicontinuous</term>
<term>Styrene</term>
<term>Transition temperature</term>
<term>Weight</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Copolymérisation émulsion</term>
<term>Transition vitreuse</term>
<term>Poids</term>
<term>Distribution dimension particule</term>
<term>Vitesse avancement</term>
<term>Emulsion</term>
<term>Productivité</term>
<term>Condition opératoire</term>
<term>Devis descriptif</term>
<term>Structure coeur couche</term>
<term>Polymérisation émulsion</term>
<term>Procédé discontinu</term>
<term>Réacteur chimique</term>
<term>Réacteur polymérisation</term>
<term>Styrène</term>
<term>Température transition</term>
<term>Polymère</term>
<term>Monomère</term>
<term>Programmation dynamique</term>
<term>Modélisation</term>
<term>Masse moléculaire</term>
<term>Optimisation</term>
<term>Paramétrisation</term>
<term>En semi continu</term>
<term>Etude expérimentale</term>
<term>Dispositif alimentation</term>
<term>.</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this paper dynamic optimization of a lab-scale semi-batch emulsion copolymerization reactor for styrene and butyl acrylate in the presence of a chain transfer agent (CTA) is studied. The mathematical model of the process, previously developed and experimentally validated, is used to predict the glass transition temperature of produced polymer, the number and weight average molecular weights, the monomers global conversion, the particle size distribution, and the amount of residual monomers. The model is implemented within gPROMS environment for modeling and optimization. It is desired to compute feed rate profiles of pre-emulsioned monomers, inhibitor and CTA that will allow the production of polymer particles with prescribed core-shell morphology with high productivity. The results obtained for different operating conditions and various additional product specifications are presented. The resulting feeding profiles are analyzed from the perspective of the nature of emulsion polymerization process and some interesting conclusions are drawn.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0098-1354</s0>
</fA01>
<fA02 i1="01">
<s0>CCENDW</s0>
</fA02>
<fA03 i2="1">
<s0>Comput. chem. eng.</s0>
</fA03>
<fA05>
<s2>66</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Analysis of optimal operation of a fed-batch emulsion copolymerization reactor used for production of particles with core-shell morphology</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Selected papers from ESCAPE-23 (European Symposium on Computer Aided Process Engineering - 23), 9-12 June 2013, Lapeenranta, Finland</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>PAULEN (R.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BENYAHIA (B.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LATIFI (M. A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>FIKAR (M.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>KRASLAWSKI (Andrzej)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>TURUNEN (Ilkka)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Laboratoire Reactions et Génie des Procédés CNRS - ENSIC, Université de Lorraine, UPR 6811 CNRS, 1 rue Grandville</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9</s1>
<s2>Bratislava</s2>
<s3>SVK</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Chemical and Biochemical Engineering, Technische Universität Dortmund, Emil-Figge-Strasse 70</s1>
<s2>44221 Dortmund</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Chemical Engineering, Loughborough University</s1>
<s2>Loughborough, Leicestershire LE11 3TU</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>233-243</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16409</s2>
<s5>354000507546710180</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0166144</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Computers & chemical engineering</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this paper dynamic optimization of a lab-scale semi-batch emulsion copolymerization reactor for styrene and butyl acrylate in the presence of a chain transfer agent (CTA) is studied. The mathematical model of the process, previously developed and experimentally validated, is used to predict the glass transition temperature of produced polymer, the number and weight average molecular weights, the monomers global conversion, the particle size distribution, and the amount of residual monomers. The model is implemented within gPROMS environment for modeling and optimization. It is desired to compute feed rate profiles of pre-emulsioned monomers, inhibitor and CTA that will allow the production of polymer particles with prescribed core-shell morphology with high productivity. The results obtained for different operating conditions and various additional product specifications are presented. The resulting feeding profiles are analyzed from the perspective of the nature of emulsion polymerization process and some interesting conclusions are drawn.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D07H</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D09D02C</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60D70K</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D09D02B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Copolymérisation émulsion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Emulsion copolymerization</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Copolimerización emulsión</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Transition vitreuse</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Glass transition</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Transición vítrea</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Poids</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Weight</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Peso</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Distribution dimension particule</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Particle size distribution</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Distribución dimensión partícula</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Vitesse avancement</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Penetration rate</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Velocidad penetración</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Emulsion</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Emulsion</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Emulsión</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Productivité</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Productivity</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Productividad</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Condition opératoire</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Operating conditions</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Condición operatoria</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Devis descriptif</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Product specification</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Presupuesto descriptivo</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Structure coeur couche</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Core shell structure</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Estructura núcleo cascarón</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Polymérisation émulsion</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Emulsion polymerization</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Polimerización emulsión</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Procédé discontinu</s0>
<s5>20</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Batch process</s0>
<s5>20</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Procedimiento discontínuo</s0>
<s5>20</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Réacteur chimique</s0>
<s5>21</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Chemical reactor</s0>
<s5>21</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Reactor químico</s0>
<s5>21</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Réacteur polymérisation</s0>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Polymerization reactor</s0>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Reactor polimerización</s0>
<s5>22</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Styrène</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Styrene</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Estireno</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>23</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Température transition</s0>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Transition temperature</s0>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Temperatura transición</s0>
<s5>24</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Polymère</s0>
<s5>25</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Polymer</s0>
<s5>25</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Polímero</s0>
<s5>25</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Monomère</s0>
<s5>26</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Monomer</s0>
<s5>26</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Monómero</s0>
<s5>26</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Programmation dynamique</s0>
<s5>27</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Dynamic programming</s0>
<s5>27</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Programación dinámica</s0>
<s5>27</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>28</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>28</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>28</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Masse moléculaire</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Molecular mass</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Masa molecular</s0>
<s5>29</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Optimisation</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Optimization</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Optimización</s0>
<s5>30</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Paramétrisation</s0>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Parameterization</s0>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Parametrización</s0>
<s5>31</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>En semi continu</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Semicontinuous</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>En semicontinuo</s0>
<s5>33</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Etude expérimentale</s0>
<s5>34</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Experimental study</s0>
<s5>34</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Estudio experimental</s0>
<s5>34</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Dispositif alimentation</s0>
<s5>41</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Feeding device</s0>
<s5>41</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Dispositivo alimentación</s0>
<s5>41</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>.</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>209</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 14-0166144 INIST</NO>
<ET>Analysis of optimal operation of a fed-batch emulsion copolymerization reactor used for production of particles with core-shell morphology</ET>
<AU>PAULEN (R.); BENYAHIA (B.); LATIFI (M. A.); FIKAR (M.); KRASLAWSKI (Andrzej); TURUNEN (Ilkka)</AU>
<AF>Laboratoire Reactions et Génie des Procédés CNRS - ENSIC, Université de Lorraine, UPR 6811 CNRS, 1 rue Grandville/Nancy/France (1 aut., 3 aut.); Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9/Bratislava/Slovaquie (1 aut., 4 aut.); Department of Chemical and Biochemical Engineering, Technische Universität Dortmund, Emil-Figge-Strasse 70/44221 Dortmund/Allemagne (1 aut.); Department of Chemical Engineering, Loughborough University/Loughborough, Leicestershire LE11 3TU/Royaume-Uni (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Computers & chemical engineering; ISSN 0098-1354; Coden CCENDW; Royaume-Uni; Da. 2014; Vol. 66; Pp. 233-243; Bibl. 1/4 p.</SO>
<LA>Anglais</LA>
<EA>In this paper dynamic optimization of a lab-scale semi-batch emulsion copolymerization reactor for styrene and butyl acrylate in the presence of a chain transfer agent (CTA) is studied. The mathematical model of the process, previously developed and experimentally validated, is used to predict the glass transition temperature of produced polymer, the number and weight average molecular weights, the monomers global conversion, the particle size distribution, and the amount of residual monomers. The model is implemented within gPROMS environment for modeling and optimization. It is desired to compute feed rate profiles of pre-emulsioned monomers, inhibitor and CTA that will allow the production of polymer particles with prescribed core-shell morphology with high productivity. The results obtained for different operating conditions and various additional product specifications are presented. The resulting feeding profiles are analyzed from the perspective of the nature of emulsion polymerization process and some interesting conclusions are drawn.</EA>
<CC>001D07H; 001D09D02C; 001B60D70K; 001D09D02B</CC>
<FD>Copolymérisation émulsion; Transition vitreuse; Poids; Distribution dimension particule; Vitesse avancement; Emulsion; Productivité; Condition opératoire; Devis descriptif; Structure coeur couche; Polymérisation émulsion; Procédé discontinu; Réacteur chimique; Réacteur polymérisation; Styrène; Température transition; Polymère; Monomère; Programmation dynamique; Modélisation; Masse moléculaire; Optimisation; Paramétrisation; En semi continu; Etude expérimentale; Dispositif alimentation; .</FD>
<ED>Emulsion copolymerization; Glass transition; Weight; Particle size distribution; Penetration rate; Emulsion; Productivity; Operating conditions; Product specification; Core shell structure; Emulsion polymerization; Batch process; Chemical reactor; Polymerization reactor; Styrene; Transition temperature; Polymer; Monomer; Dynamic programming; Modeling; Molecular mass; Optimization; Parameterization; Semicontinuous; Experimental study; Feeding device</ED>
<SD>Copolimerización emulsión; Transición vítrea; Peso; Distribución dimensión partícula; Velocidad penetración; Emulsión; Productividad; Condición operatoria; Presupuesto descriptivo; Estructura núcleo cascarón; Polimerización emulsión; Procedimiento discontínuo; Reactor químico; Reactor polimerización; Estireno; Temperatura transición; Polímero; Monómero; Programación dinámica; Modelización; Masa molecular; Optimización; Parametrización; En semicontinuo; Estudio experimental; Dispositivo alimentación</SD>
<LO>INIST-16409.354000507546710180</LO>
<ID>14-0166144</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000013 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000013 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:14-0166144
   |texte=   Analysis of optimal operation of a fed-batch emulsion copolymerization reactor used for production of particles with core-shell morphology
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024