Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Recycle optimization in non-linear productive chromatography—I Mixing recycle with fresh feed

Identifieur interne : 003C00 ( Main/Merge ); précédent : 003B99; suivant : 003C01

Recycle optimization in non-linear productive chromatography—I Mixing recycle with fresh feed

Auteurs : Michel Bailly [France] ; Daniel Tondeur [France]

Source :

RBID : ISTEX:B78FF69425AFC301A87C02B7AEA6309021F230D6

Descripteurs français

English descriptors

Abstract

Abstract: This paper examines the chromatographic separation of two solutes interacting non-linearly with the sorbent, when only partial separation is achieved at the column outlet, and an intermediate cut of the effluent is recycled. It is shown that, for given feed composition and column size, there is an optimum of the amount of fresh feed injected per cycle; alternately, for given feed composition and amount treated per cycle, there is an optimal column length. This optimum is such that interferences of concentration fronts are minimized in the column. The process is analysed using the “equilibrium theory”, which neglects hydrodynamic dispersion and mass-transfer resistances. Complete analytical solutions are given in the optimal situation, for the case of mass-action law equilibria with unity exponents (Langmuir type equilibrium).The theoretical predictions are compared to experimental results for the separation of Na+ from K+ by H+ eluent in chloride solutions, on a commercial cation-exchanger. The results are also compared to “classical” chromatography (without recycle), and to “two-way” chromatography, presented in a previous paper[1]. With respect to “classical chromatography”, for a given product purity, the optimal recycle process is shown to improve product richness (i.e. concentration of product with respect to solvent) and all performance criteria (eluent consumption, sorbent immobilization, productivity). With respect to “two-way” chromatography, it improves sorbent immobilization and productivity, but yields a poorer Na+ product, thus uses more eluent.

Url:
DOI: 10.1016/0009-2509(82)85063-X

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:B78FF69425AFC301A87C02B7AEA6309021F230D6

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Recycle optimization in non-linear productive chromatography—I Mixing recycle with fresh feed</title>
<author>
<name sortKey="Bailly, Michel" sort="Bailly, Michel" uniqKey="Bailly M" first="Michel" last="Bailly">Michel Bailly</name>
</author>
<author>
<name sortKey="Tondeur, Daniel" sort="Tondeur, Daniel" uniqKey="Tondeur D" first="Daniel" last="Tondeur">Daniel Tondeur</name>
<affiliation>
<country>France</country>
<placeName>
<settlement type="city">Nancy</settlement>
<region type="region" nuts="2">Grand Est</region>
<region type="region" nuts="2">Lorraine (région)</region>
</placeName>
<orgName type="laboratoire" n="5">Laboratoire réactions et génie des procédés</orgName>
<orgName type="university">Université de Lorraine</orgName>
<orgName type="institution">Centre national de la recherche scientifique</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:B78FF69425AFC301A87C02B7AEA6309021F230D6</idno>
<date when="1982" year="1982">1982</date>
<idno type="doi">10.1016/0009-2509(82)85063-X</idno>
<idno type="url">https://api.istex.fr/document/B78FF69425AFC301A87C02B7AEA6309021F230D6/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001378</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001378</idno>
<idno type="wicri:Area/Istex/Curation">001378</idno>
<idno type="wicri:Area/Istex/Checkpoint">001902</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001902</idno>
<idno type="wicri:doubleKey">0009-2509:1982:Bailly M:recycle:optimization:in</idno>
<idno type="wicri:Area/Main/Merge">003C00</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Recycle optimization in non-linear productive chromatography—I Mixing recycle with fresh feed</title>
<author>
<name sortKey="Bailly, Michel" sort="Bailly, Michel" uniqKey="Bailly M" first="Michel" last="Bailly">Michel Bailly</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire des Sciences du Génie Chimique CNRS-ENSIC, 1 rue Grandville, Nancy</wicri:regionArea>
<placeName>
<region type="region">Grand Est</region>
<region type="old region">Lorraine (région)</region>
<settlement type="city">Nancy</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tondeur, Daniel" sort="Tondeur, Daniel" uniqKey="Tondeur D" first="Daniel" last="Tondeur">Daniel Tondeur</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire des Sciences du Génie Chimique CNRS-ENSIC, 1 rue Grandville, Nancy</wicri:regionArea>
<placeName>
<region type="region">Grand Est</region>
<region type="old region">Lorraine (région)</region>
<settlement type="city">Nancy</settlement>
</placeName>
<placeName>
<settlement type="city">Nancy</settlement>
<region type="region" nuts="2">Grand Est</region>
<region type="region" nuts="2">Lorraine (région)</region>
</placeName>
<orgName type="laboratoire" n="5">Laboratoire réactions et génie des procédés</orgName>
<orgName type="university">Université de Lorraine</orgName>
<orgName type="institution">Centre national de la recherche scientifique</orgName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Chemical Engineering Science</title>
<title level="j" type="abbrev">CES</title>
<idno type="ISSN">0009-2509</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1982">1982</date>
<biblScope unit="volume">37</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="1199">1199</biblScope>
<biblScope unit="page" to="1212">1212</biblScope>
</imprint>
<idno type="ISSN">0009-2509</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0009-2509</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abscissa</term>
<term>Average composition</term>
<term>Bailly</term>
<term>Binary mixture</term>
<term>Characteristic equation</term>
<term>Chromatographic process</term>
<term>Chromatographic separation</term>
<term>Classical chromatography</term>
<term>Column length</term>
<term>Column outlet</term>
<term>Complete calculation</term>
<term>Composition</term>
<term>Composition history</term>
<term>Composition profile</term>
<term>Critical case</term>
<term>Cyclic</term>
<term>Cyclic material balances</term>
<term>Cyclic regime</term>
<term>Daniel tondeur</term>
<term>Decision parameters</term>
<term>Dispersive</term>
<term>Dispersive front</term>
<term>Dispersive fronts</term>
<term>Effluent concentration history</term>
<term>Eluent</term>
<term>Eluent consumption</term>
<term>Eqns</term>
<term>Equilibrium model</term>
<term>Equilibrium theory</term>
<term>Equivalent affinity</term>
<term>Essential features</term>
<term>Exit times</term>
<term>Experimental example</term>
<term>Experimental results</term>
<term>Feed composition</term>
<term>Final results</term>
<term>First cycle</term>
<term>Fresh feed</term>
<term>Fresh solution</term>
<term>Frontal chromatography</term>
<term>General conclusion</term>
<term>General relations</term>
<term>Gibbs triangle</term>
<term>Injection time</term>
<term>Interference processes</term>
<term>Interstitial fluid velocity</term>
<term>Ionic fraction</term>
<term>Ionic fractions</term>
<term>Latter equation</term>
<term>Maximum value</term>
<term>Mkhel bailly</term>
<term>Optimal case</term>
<term>Optimal column length</term>
<term>Optimal cyclic conditions</term>
<term>Other words</term>
<term>Performance criteria</term>
<term>Plateau</term>
<term>Previous cycle</term>
<term>Previous section</term>
<term>Product purity</term>
<term>Same production</term>
<term>Second cycle</term>
<term>Sorbent immobilization</term>
<term>Straight lines</term>
<term>Synthetic solution</term>
<term>Ternary</term>
<term>Ternary mixture</term>
<term>Theoretical analysis</term>
<term>Tondeur</term>
<term>Total concentration</term>
<term>Total cycle time</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Abscissa</term>
<term>Average composition</term>
<term>Bailly</term>
<term>Binary mixture</term>
<term>Characteristic equation</term>
<term>Chromatographic process</term>
<term>Chromatographic separation</term>
<term>Classical chromatography</term>
<term>Column length</term>
<term>Column outlet</term>
<term>Complete calculation</term>
<term>Composition</term>
<term>Composition history</term>
<term>Composition profile</term>
<term>Critical case</term>
<term>Cyclic</term>
<term>Cyclic material balances</term>
<term>Cyclic regime</term>
<term>Daniel tondeur</term>
<term>Decision parameters</term>
<term>Dispersive</term>
<term>Dispersive front</term>
<term>Dispersive fronts</term>
<term>Effluent concentration history</term>
<term>Eluent</term>
<term>Eluent consumption</term>
<term>Eqns</term>
<term>Equilibrium model</term>
<term>Equilibrium theory</term>
<term>Equivalent affinity</term>
<term>Essential features</term>
<term>Exit times</term>
<term>Experimental example</term>
<term>Experimental results</term>
<term>Feed composition</term>
<term>Final results</term>
<term>First cycle</term>
<term>Fresh feed</term>
<term>Fresh solution</term>
<term>Frontal chromatography</term>
<term>General conclusion</term>
<term>General relations</term>
<term>Gibbs triangle</term>
<term>Injection time</term>
<term>Interference processes</term>
<term>Interstitial fluid velocity</term>
<term>Ionic fraction</term>
<term>Ionic fractions</term>
<term>Latter equation</term>
<term>Maximum value</term>
<term>Mkhel bailly</term>
<term>Optimal case</term>
<term>Optimal column length</term>
<term>Optimal cyclic conditions</term>
<term>Other words</term>
<term>Performance criteria</term>
<term>Plateau</term>
<term>Previous cycle</term>
<term>Previous section</term>
<term>Product purity</term>
<term>Same production</term>
<term>Second cycle</term>
<term>Sorbent immobilization</term>
<term>Straight lines</term>
<term>Synthetic solution</term>
<term>Ternary</term>
<term>Ternary mixture</term>
<term>Theoretical analysis</term>
<term>Tondeur</term>
<term>Total concentration</term>
<term>Total cycle time</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Règlement judiciaire</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: This paper examines the chromatographic separation of two solutes interacting non-linearly with the sorbent, when only partial separation is achieved at the column outlet, and an intermediate cut of the effluent is recycled. It is shown that, for given feed composition and column size, there is an optimum of the amount of fresh feed injected per cycle; alternately, for given feed composition and amount treated per cycle, there is an optimal column length. This optimum is such that interferences of concentration fronts are minimized in the column. The process is analysed using the “equilibrium theory”, which neglects hydrodynamic dispersion and mass-transfer resistances. Complete analytical solutions are given in the optimal situation, for the case of mass-action law equilibria with unity exponents (Langmuir type equilibrium).The theoretical predictions are compared to experimental results for the separation of Na+ from K+ by H+ eluent in chloride solutions, on a commercial cation-exchanger. The results are also compared to “classical” chromatography (without recycle), and to “two-way” chromatography, presented in a previous paper[1]. With respect to “classical chromatography”, for a given product purity, the optimal recycle process is shown to improve product richness (i.e. concentration of product with respect to solvent) and all performance criteria (eluent consumption, sorbent immobilization, productivity). With respect to “two-way” chromatography, it improves sorbent immobilization and productivity, but yields a poorer Na+ product, thus uses more eluent.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Main/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003C00 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Merge/biblio.hfd -nk 003C00 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Main
   |étape=   Merge
   |type=    RBID
   |clé=     ISTEX:B78FF69425AFC301A87C02B7AEA6309021F230D6
   |texte=   Recycle optimization in non-linear productive chromatography—I Mixing recycle with fresh feed
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024