Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Analysis of the gate capacitance measurement technique and its application for the evaluation of hot-carrier degradation in submicrometer MOSFETs

Identifieur interne : 001B20 ( Main/Merge ); précédent : 001B19; suivant : 001B21

Analysis of the gate capacitance measurement technique and its application for the evaluation of hot-carrier degradation in submicrometer MOSFETs

Auteurs : C. T Hsu [Australie] ; M. M Lau [Australie] ; Y. T Yeow [Australie]

Source :

RBID : ISTEX:14FC3D559A1DA6BBE7E6CE201C2372BB773FEECA

Descripteurs français

English descriptors

Abstract

Abstract: The use of gate-to-drain capacitance (Cgd) measurement as a tool to characterize hot-carrier-induced charge centers in submicron n- and p-MOSFET’s has been reviewed and demonstrated. By analyzing the change in Cgd measured at room and cryogenic temperature before and after high gate-to-drain transverse field (high field) and maximum substrate current (Ibmax) stress, it is concluded that the degradation was found to be mostly due to trapping of majority carriers and generation of interface states. These interface states were found to be acceptor states at top half of band gap for n-MOSFETs and donor states at bottom half of band gap for p-MOSFETs. In general, hot electrons are more likely to be trapped in gate oxide as compared to hot holes while the presence of hot holes generates more interface states. Also, we have demonstrated a new method for extracting the spatial distribution of oxide trapped charge, Qot, through gate-to-substrate capacitance (Cgb) measurement. This method is simple to implement and does not require additional information from simulation or detailed knowledge of the device’s structure.

Url:
DOI: 10.1016/S0026-2714(00)00222-5

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:14FC3D559A1DA6BBE7E6CE201C2372BB773FEECA

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Analysis of the gate capacitance measurement technique and its application for the evaluation of hot-carrier degradation in submicrometer MOSFETs</title>
<author>
<name sortKey="Hsu, C T" sort="Hsu, C T" uniqKey="Hsu C" first="C. T" last="Hsu">C. T Hsu</name>
</author>
<author>
<name sortKey="Lau, M M" sort="Lau, M M" uniqKey="Lau M" first="M. M" last="Lau">M. M Lau</name>
</author>
<author>
<name sortKey="Yeow, Y T" sort="Yeow, Y T" uniqKey="Yeow Y" first="Y. T" last="Yeow">Y. T Yeow</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:14FC3D559A1DA6BBE7E6CE201C2372BB773FEECA</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1016/S0026-2714(00)00222-5</idno>
<idno type="url">https://api.istex.fr/document/14FC3D559A1DA6BBE7E6CE201C2372BB773FEECA/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001814</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001814</idno>
<idno type="wicri:Area/Istex/Curation">001814</idno>
<idno type="wicri:Area/Istex/Checkpoint">000508</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000508</idno>
<idno type="wicri:doubleKey">0026-2714:2001:Hsu C:analysis:of:the</idno>
<idno type="wicri:Area/Main/Merge">001B20</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Analysis of the gate capacitance measurement technique and its application for the evaluation of hot-carrier degradation in submicrometer MOSFETs</title>
<author>
<name sortKey="Hsu, C T" sort="Hsu, C T" uniqKey="Hsu C" first="C. T" last="Hsu">C. T Hsu</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Computer Science and Electrical Engineering, The University of Queensland, Brisbane, Qld 4072</wicri:regionArea>
<wicri:noRegion>Qld 4072</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Lau, M M" sort="Lau, M M" uniqKey="Lau M" first="M. M" last="Lau">M. M Lau</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Computer Science and Electrical Engineering, The University of Queensland, Brisbane, Qld 4072</wicri:regionArea>
<wicri:noRegion>Qld 4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yeow, Y T" sort="Yeow, Y T" uniqKey="Yeow Y" first="Y. T" last="Yeow">Y. T Yeow</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Computer Science and Electrical Engineering, The University of Queensland, Brisbane, Qld 4072</wicri:regionArea>
<wicri:noRegion>Qld 4072</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Microelectronics Reliability</title>
<title level="j" type="abbrev">MR</title>
<idno type="ISSN">0026-2714</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001">2001</date>
<biblScope unit="volume">41</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="201">201</biblScope>
<biblScope unit="page" to="209">209</biblScope>
</imprint>
<idno type="ISSN">0026-2714</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0026-2714</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acceptor</term>
<term>Acceptor states</term>
<term>Accumulation region</term>
<term>Additional information</term>
<term>Bottom half</term>
<term>Capacitance</term>
<term>Capacitance measurement</term>
<term>Center point</term>
<term>Certain density</term>
<term>Channel region</term>
<term>Cryogenic probe station</term>
<term>Cryogenic temperature</term>
<term>Dcgd</term>
<term>Degradation</term>
<term>Dominant defect type</term>
<term>Donor states</term>
<term>Drain junction</term>
<term>Drain side</term>
<term>Elsevier science</term>
<term>Experimental results</term>
<term>Extraction method</term>
<term>Gate bias</term>
<term>Gate edge</term>
<term>Gate electrode</term>
<term>Gate oxide</term>
<term>Gate voltage</term>
<term>Hand side</term>
<term>Higher band</term>
<term>Ibmax stress</term>
<term>Ieee</term>
<term>Ieee electron</term>
<term>Ieee trans electron</term>
<term>Interface</term>
<term>Interface charges</term>
<term>Interface states</term>
<term>Interface trap</term>
<term>Interface traps</term>
<term>Inversion</term>
<term>Inversion layer</term>
<term>Larger portion</term>
<term>Local threshold voltage</term>
<term>Majority carriers</term>
<term>Measurement frequency</term>
<term>Measurement setup</term>
<term>Microelectronics</term>
<term>Microelectronics reliability</term>
<term>More acceptor states</term>
<term>Mosfet</term>
<term>Negative charge</term>
<term>Negative charges</term>
<term>Other hand</term>
<term>Oxide</term>
<term>Oxide interface</term>
<term>Positive charge</term>
<term>Positive charges</term>
<term>Positive dcgd</term>
<term>Reliability</term>
<term>Right hand side</term>
<term>Room temperature</term>
<term>Silicon band</term>
<term>Simulation</term>
<term>Simulation data</term>
<term>Simulation result</term>
<term>Sio2 interface</term>
<term>Small signal</term>
<term>Spatial distribution</term>
<term>Spatial variation</term>
<term>Stress condition</term>
<term>Stress time</term>
<term>Strong inversion</term>
<term>Time evolution</term>
<term>Total charge</term>
<term>Trans</term>
<term>Unit area</term>
<term>Various stress time</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Acceptor</term>
<term>Acceptor states</term>
<term>Accumulation region</term>
<term>Additional information</term>
<term>Bottom half</term>
<term>Capacitance</term>
<term>Capacitance measurement</term>
<term>Center point</term>
<term>Certain density</term>
<term>Channel region</term>
<term>Cryogenic probe station</term>
<term>Cryogenic temperature</term>
<term>Dcgd</term>
<term>Degradation</term>
<term>Dominant defect type</term>
<term>Donor states</term>
<term>Drain junction</term>
<term>Drain side</term>
<term>Elsevier science</term>
<term>Experimental results</term>
<term>Extraction method</term>
<term>Gate bias</term>
<term>Gate edge</term>
<term>Gate electrode</term>
<term>Gate oxide</term>
<term>Gate voltage</term>
<term>Hand side</term>
<term>Higher band</term>
<term>Ibmax stress</term>
<term>Ieee</term>
<term>Ieee electron</term>
<term>Ieee trans electron</term>
<term>Interface</term>
<term>Interface charges</term>
<term>Interface states</term>
<term>Interface trap</term>
<term>Interface traps</term>
<term>Inversion</term>
<term>Inversion layer</term>
<term>Larger portion</term>
<term>Local threshold voltage</term>
<term>Majority carriers</term>
<term>Measurement frequency</term>
<term>Measurement setup</term>
<term>Microelectronics</term>
<term>Microelectronics reliability</term>
<term>More acceptor states</term>
<term>Mosfet</term>
<term>Negative charge</term>
<term>Negative charges</term>
<term>Other hand</term>
<term>Oxide</term>
<term>Oxide interface</term>
<term>Positive charge</term>
<term>Positive charges</term>
<term>Positive dcgd</term>
<term>Reliability</term>
<term>Right hand side</term>
<term>Room temperature</term>
<term>Silicon band</term>
<term>Simulation</term>
<term>Simulation data</term>
<term>Simulation result</term>
<term>Sio2 interface</term>
<term>Small signal</term>
<term>Spatial distribution</term>
<term>Spatial variation</term>
<term>Stress condition</term>
<term>Stress time</term>
<term>Strong inversion</term>
<term>Time evolution</term>
<term>Total charge</term>
<term>Trans</term>
<term>Unit area</term>
<term>Various stress time</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Microélectronique</term>
<term>Oxyde</term>
<term>Simulation</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: The use of gate-to-drain capacitance (Cgd) measurement as a tool to characterize hot-carrier-induced charge centers in submicron n- and p-MOSFET’s has been reviewed and demonstrated. By analyzing the change in Cgd measured at room and cryogenic temperature before and after high gate-to-drain transverse field (high field) and maximum substrate current (Ibmax) stress, it is concluded that the degradation was found to be mostly due to trapping of majority carriers and generation of interface states. These interface states were found to be acceptor states at top half of band gap for n-MOSFETs and donor states at bottom half of band gap for p-MOSFETs. In general, hot electrons are more likely to be trapped in gate oxide as compared to hot holes while the presence of hot holes generates more interface states. Also, we have demonstrated a new method for extracting the spatial distribution of oxide trapped charge, Qot, through gate-to-substrate capacitance (Cgb) measurement. This method is simple to implement and does not require additional information from simulation or detailed knowledge of the device’s structure.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Main/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B20 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Merge/biblio.hfd -nk 001B20 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Main
   |étape=   Merge
   |type=    RBID
   |clé=     ISTEX:14FC3D559A1DA6BBE7E6CE201C2372BB773FEECA
   |texte=   Analysis of the gate capacitance measurement technique and its application for the evaluation of hot-carrier degradation in submicrometer MOSFETs
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024