Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Prediction of pressure drop and liquid saturation in trickle-bed reactors operated in high interaction regimes

Identifieur interne : 000343 ( Istex/Curation ); précédent : 000342; suivant : 000344

Prediction of pressure drop and liquid saturation in trickle-bed reactors operated in high interaction regimes

Auteurs : K. Benkrid [France] ; S. Rode [France] ; N. Midoux [France]

Source :

RBID : ISTEX:496C08042EE7573356BE8C4CB8B5CB2B8A370E52

English descriptors

Abstract

Abstract: Simple models, based on liquid-solid and gas-liquid interaction are proposed in order to model a gas-liquid flow in trickle-bed reactors operating in high interaction regimes. Good results are obtained, when the liquid-solid and the gas-liquid interactions are modeled separately. Besides the classical Ergun equation, a simple model of the liquid-solid interactions, based on a boundary layer flow is proposed. This approach results in a relation which is very close to the well-known liquid saturation correlation proposed by Specchia and Baldi (1977, Chem. Engng Sci.32, 515–523), and might be its theoretical justification. The gas-liquid interaction is modeled using a drift-flux approach. The different models are tested against the data bank of about 1500 saturation and pressure drop measurements, established mainly by the Nancy research group. The importance of the geometrical characteristics of the porous media and their incomplete description are emphasized. Finally simple predictive correlations based on the models are proposed, tested against the data bank and compared to literature correlations.

Url:
DOI: 10.1016/S0009-2509(97)00245-5

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:496C08042EE7573356BE8C4CB8B5CB2B8A370E52

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Prediction of pressure drop and liquid saturation in trickle-bed reactors operated in high interaction regimes</title>
<author>
<name sortKey="Benkrid, K" sort="Benkrid, K" uniqKey="Benkrid K" first="K." last="Benkrid">K. Benkrid</name>
<affiliation wicri:level="1">
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC, BP-451, 1-rue, Grandville, 54001 Nancy Cedex, France</mods:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC, BP-451, 1-rue, Grandville, 54001 Nancy Cedex</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Rode, S" sort="Rode, S" uniqKey="Rode S" first="S." last="Rode">S. Rode</name>
<affiliation wicri:level="1">
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC, BP-451, 1-rue, Grandville, 54001 Nancy Cedex, France</mods:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC, BP-451, 1-rue, Grandville, 54001 Nancy Cedex</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Midoux, N" sort="Midoux, N" uniqKey="Midoux N" first="N." last="Midoux">N. Midoux</name>
<affiliation wicri:level="1">
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC, BP-451, 1-rue, Grandville, 54001 Nancy Cedex, France</mods:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC, BP-451, 1-rue, Grandville, 54001 Nancy Cedex</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:496C08042EE7573356BE8C4CB8B5CB2B8A370E52</idno>
<date when="1997" year="1997">1997</date>
<idno type="doi">10.1016/S0009-2509(97)00245-5</idno>
<idno type="url">https://api.istex.fr/document/496C08042EE7573356BE8C4CB8B5CB2B8A370E52/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000343</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000343</idno>
<idno type="wicri:Area/Istex/Curation">000343</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Prediction of pressure drop and liquid saturation in trickle-bed reactors operated in high interaction regimes</title>
<author>
<name sortKey="Benkrid, K" sort="Benkrid, K" uniqKey="Benkrid K" first="K." last="Benkrid">K. Benkrid</name>
<affiliation wicri:level="1">
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC, BP-451, 1-rue, Grandville, 54001 Nancy Cedex, France</mods:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC, BP-451, 1-rue, Grandville, 54001 Nancy Cedex</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Rode, S" sort="Rode, S" uniqKey="Rode S" first="S." last="Rode">S. Rode</name>
<affiliation wicri:level="1">
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC, BP-451, 1-rue, Grandville, 54001 Nancy Cedex, France</mods:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC, BP-451, 1-rue, Grandville, 54001 Nancy Cedex</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Midoux, N" sort="Midoux, N" uniqKey="Midoux N" first="N." last="Midoux">N. Midoux</name>
<affiliation wicri:level="1">
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC, BP-451, 1-rue, Grandville, 54001 Nancy Cedex, France</mods:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC, BP-451, 1-rue, Grandville, 54001 Nancy Cedex</wicri:regionArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Chemical Engineering Science</title>
<title level="j" type="abbrev">CES</title>
<idno type="ISSN">0009-2509</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1997">1997</date>
<biblScope unit="volume">52</biblScope>
<biblScope unit="issue">21–22</biblScope>
<biblScope unit="page" from="4021">4021</biblScope>
<biblScope unit="page" to="4032">4032</biblScope>
</imprint>
<idno type="ISSN">0009-2509</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0009-2509</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actual particle</term>
<term>Available space</term>
<term>Average shear rate</term>
<term>Baldi</term>
<term>Benkrid</term>
<term>Boundary layer</term>
<term>Boundary layer approach</term>
<term>Boundary layer drift flux</term>
<term>Boundary layer equation</term>
<term>Boundary layer equations</term>
<term>Boundary layer flow</term>
<term>Boundary layer length</term>
<term>Boundary layer model</term>
<term>Bubble flow</term>
<term>Capillary saturation</term>
<term>Catalyst particles</term>
<term>Chem</term>
<term>Classical ergun constants</term>
<term>Cocurrent</term>
<term>Cocurrent downflow</term>
<term>Cocurrent upflow</term>
<term>Column wall</term>
<term>Corresponding scatter</term>
<term>Cylindrical shape</term>
<term>Data bank</term>
<term>Different models</term>
<term>Different relations</term>
<term>Different series</term>
<term>Dimensionless</term>
<term>Downflow</term>
<term>Drift flux</term>
<term>Drift velocity</term>
<term>Dynamic saturation</term>
<term>Ellman</term>
<term>Elsevier science</term>
<term>Engng</term>
<term>Engng chem</term>
<term>Equivalent particle diameter</term>
<term>Ergun</term>
<term>Ergun constants</term>
<term>Ergun equation</term>
<term>Ergun equations</term>
<term>Experimental study</term>
<term>Fixe fonctionnant</term>
<term>Flat plates</term>
<term>Flow conditions</term>
<term>Flow patterns</term>
<term>Flow rate</term>
<term>Flow rates</term>
<term>Flow regime transitions</term>
<term>Flow section</term>
<term>Flow tortuosity</term>
<term>Frictional pressure drop</term>
<term>Galilei number</term>
<term>Geometrical</term>
<term>Geometrical characteristics</term>
<term>Glass spheres</term>
<term>Good predictions</term>
<term>Good results</term>
<term>Gravitational term</term>
<term>Gravity term</term>
<term>High interaction regimes</term>
<term>Hydrodynamic</term>
<term>Hydrodynamic characteristics</term>
<term>Hydrodynamic explanation</term>
<term>Hydrodynamic states</term>
<term>Important parameter</term>
<term>Industrial reactors</term>
<term>Interaction regimes</term>
<term>Interfacial area</term>
<term>Larachi</term>
<term>Liquid downflow</term>
<term>Liquid flow rate</term>
<term>Liquid flow rates</term>
<term>Liquid holdup</term>
<term>Liquid phase</term>
<term>Liquid saturation</term>
<term>Liquid volume</term>
<term>Literature correlations</term>
<term>Logarithmic</term>
<term>Logarithmic bias</term>
<term>Measurement points</term>
<term>Measurement series</term>
<term>Midoux</term>
<term>Minimum fluidization</term>
<term>Model predictions</term>
<term>Multiple hydrodynamic states</term>
<term>Nonfoaming systems</term>
<term>Parameter number</term>
<term>Parity plot</term>
<term>Phase pressure drop</term>
<term>Physical constants</term>
<term>Porous media</term>
<term>Porous medium</term>
<term>Present study</term>
<term>Present work</term>
<term>Pressure drop</term>
<term>Pulse flow</term>
<term>Reactor</term>
<term>Regression constants</term>
<term>Regression results</term>
<term>Same ratio</term>
<term>Saturation</term>
<term>Saturation approaches</term>
<term>Saturation measurements</term>
<term>Scatter</term>
<term>Shear rate</term>
<term>Simple models</term>
<term>Single phase</term>
<term>Solid shear rate</term>
<term>Specchia</term>
<term>Specific pressure drop</term>
<term>Specific twophase pressure drop</term>
<term>Standard deviation</term>
<term>Standard deviations</term>
<term>Static saturation</term>
<term>Tortuosity</term>
<term>Total saturation</term>
<term>Total saturations</term>
<term>Trickle</term>
<term>Trickle beds</term>
<term>Trickle flow</term>
<term>Trickle-bed reactors</term>
<term>Unit reactor volume</term>
<term>Unit void volume</term>
<term>Void volume</term>
<term>high interaction regimes</term>
<term>hydrodynamics</term>
<term>liquid saturation modeling</term>
<term>pressure drop</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Actual particle</term>
<term>Available space</term>
<term>Average shear rate</term>
<term>Baldi</term>
<term>Benkrid</term>
<term>Boundary layer</term>
<term>Boundary layer approach</term>
<term>Boundary layer drift flux</term>
<term>Boundary layer equation</term>
<term>Boundary layer equations</term>
<term>Boundary layer flow</term>
<term>Boundary layer length</term>
<term>Boundary layer model</term>
<term>Bubble flow</term>
<term>Capillary saturation</term>
<term>Catalyst particles</term>
<term>Chem</term>
<term>Classical ergun constants</term>
<term>Cocurrent</term>
<term>Cocurrent downflow</term>
<term>Cocurrent upflow</term>
<term>Column wall</term>
<term>Corresponding scatter</term>
<term>Cylindrical shape</term>
<term>Data bank</term>
<term>Different models</term>
<term>Different relations</term>
<term>Different series</term>
<term>Dimensionless</term>
<term>Downflow</term>
<term>Drift flux</term>
<term>Drift velocity</term>
<term>Dynamic saturation</term>
<term>Ellman</term>
<term>Elsevier science</term>
<term>Engng</term>
<term>Engng chem</term>
<term>Equivalent particle diameter</term>
<term>Ergun</term>
<term>Ergun constants</term>
<term>Ergun equation</term>
<term>Ergun equations</term>
<term>Experimental study</term>
<term>Fixe fonctionnant</term>
<term>Flat plates</term>
<term>Flow conditions</term>
<term>Flow patterns</term>
<term>Flow rate</term>
<term>Flow rates</term>
<term>Flow regime transitions</term>
<term>Flow section</term>
<term>Flow tortuosity</term>
<term>Frictional pressure drop</term>
<term>Galilei number</term>
<term>Geometrical</term>
<term>Geometrical characteristics</term>
<term>Glass spheres</term>
<term>Good predictions</term>
<term>Good results</term>
<term>Gravitational term</term>
<term>Gravity term</term>
<term>High interaction regimes</term>
<term>Hydrodynamic</term>
<term>Hydrodynamic characteristics</term>
<term>Hydrodynamic explanation</term>
<term>Hydrodynamic states</term>
<term>Important parameter</term>
<term>Industrial reactors</term>
<term>Interaction regimes</term>
<term>Interfacial area</term>
<term>Larachi</term>
<term>Liquid downflow</term>
<term>Liquid flow rate</term>
<term>Liquid flow rates</term>
<term>Liquid holdup</term>
<term>Liquid phase</term>
<term>Liquid saturation</term>
<term>Liquid volume</term>
<term>Literature correlations</term>
<term>Logarithmic</term>
<term>Logarithmic bias</term>
<term>Measurement points</term>
<term>Measurement series</term>
<term>Midoux</term>
<term>Minimum fluidization</term>
<term>Model predictions</term>
<term>Multiple hydrodynamic states</term>
<term>Nonfoaming systems</term>
<term>Parameter number</term>
<term>Parity plot</term>
<term>Phase pressure drop</term>
<term>Physical constants</term>
<term>Porous media</term>
<term>Porous medium</term>
<term>Present study</term>
<term>Present work</term>
<term>Pressure drop</term>
<term>Pulse flow</term>
<term>Reactor</term>
<term>Regression constants</term>
<term>Regression results</term>
<term>Same ratio</term>
<term>Saturation</term>
<term>Saturation approaches</term>
<term>Saturation measurements</term>
<term>Scatter</term>
<term>Shear rate</term>
<term>Simple models</term>
<term>Single phase</term>
<term>Solid shear rate</term>
<term>Specchia</term>
<term>Specific pressure drop</term>
<term>Specific twophase pressure drop</term>
<term>Standard deviation</term>
<term>Standard deviations</term>
<term>Static saturation</term>
<term>Tortuosity</term>
<term>Total saturation</term>
<term>Total saturations</term>
<term>Trickle</term>
<term>Trickle beds</term>
<term>Trickle flow</term>
<term>Unit reactor volume</term>
<term>Unit void volume</term>
<term>Void volume</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Simple models, based on liquid-solid and gas-liquid interaction are proposed in order to model a gas-liquid flow in trickle-bed reactors operating in high interaction regimes. Good results are obtained, when the liquid-solid and the gas-liquid interactions are modeled separately. Besides the classical Ergun equation, a simple model of the liquid-solid interactions, based on a boundary layer flow is proposed. This approach results in a relation which is very close to the well-known liquid saturation correlation proposed by Specchia and Baldi (1977, Chem. Engng Sci.32, 515–523), and might be its theoretical justification. The gas-liquid interaction is modeled using a drift-flux approach. The different models are tested against the data bank of about 1500 saturation and pressure drop measurements, established mainly by the Nancy research group. The importance of the geometrical characteristics of the porous media and their incomplete description are emphasized. Finally simple predictive correlations based on the models are proposed, tested against the data bank and compared to literature correlations.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Istex/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000343 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Curation/biblio.hfd -nk 000343 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Istex
   |étape=   Curation
   |type=    RBID
   |clé=     ISTEX:496C08042EE7573356BE8C4CB8B5CB2B8A370E52
   |texte=   Prediction of pressure drop and liquid saturation in trickle-bed reactors operated in high interaction regimes
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024