Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Experimental investigations on the backbone folding of proline‐containing model tripeptides

Identifieur interne : 001563 ( Istex/Corpus ); précédent : 001562; suivant : 001564

Experimental investigations on the backbone folding of proline‐containing model tripeptides

Auteurs : Guy Boussard ; Michel Marraud ; André Aubry

Source :

RBID : ISTEX:E13881F11D6AECED77E996AC9E167B4C10B1C16C

English descriptors

Abstract

Some proline‐containing tripeptides with the general formulas R0CO‐L‐Pro‐X‐NHR3 (X = Gly,Sar,L‐Ala,D‐Ala) and R0CO‐X‐L‐Pro‐NHR3 (X = Gly,L‐Ala,D‐Ala) have been investigated in solution by ir and 1H‐nmr spectroscopies. Their favored conformational states depend mainly on both the primary structure and the chiral sequence of the molecules. In inert solvents the βII‐folding mode is the most favored conformation for the L‐Pro‐D‐Ala and L‐Pro‐Gly tripeptides, while the βII′‐turn is largely preferred by D‐Ala‐L‐Pro derivatives. Under the same conditions only about one‐third of the whole conformers of L‐Pro‐L‐Ala molecules adopts the βI‐folding mode. Semiopened C7C5 and C5C7 conformations are appreciably populated in the L‐Pro‐L‐Ala sequence, on the one hand, and in the Gly‐L‐Pro and L‐Ala‐L‐Pro derivatives, on the other hand. In L‐Pro‐Sar and X‐L‐Pro models, the cis–trans isomerism around the middle tertiary amide function is observed. Thus cis L‐Pro‐Sar and L‐Ala‐L‐Pro conformers are folded by an intramolecular i + 3 → i hydrogen bond, whereas cis D‐Ala‐L‐Pro and Gly‐L‐Pro molecules accommodate an open conformation. In dimethylsulfoxide the βII‐ and βII′‐folding modes are not essentially destabilized, as contrasted with the βI conformation, which is less populated. In water solution all the above‐mentioned conformations, with the possible exception of the βII′‐folding mode for D‐Ala‐L‐Pro molecules, seem to vanish. Solute conformations are also compared with the crystal structures of four proline‐containing tripeptides.

Url:
DOI: 10.1002/bip.1979.360180602

Links to Exploration step

ISTEX:E13881F11D6AECED77E996AC9E167B4C10B1C16C

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Experimental investigations on the backbone folding of proline‐containing model tripeptides</title>
<author>
<name sortKey="Boussard, Guy" sort="Boussard, Guy" uniqKey="Boussard G" first="Guy" last="Boussard">Guy Boussard</name>
<affiliation>
<mods:affiliation>Laboratorire de Chimie Physique Macromoléculaire (ERA, CNRS 23) ENSIC, I.N.P.L., 54042 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marraud, Michel" sort="Marraud, Michel" uniqKey="Marraud M" first="Michel" last="Marraud">Michel Marraud</name>
<affiliation>
<mods:affiliation>Laboratorire de Chimie Physique Macromoléculaire (ERA, CNRS 23) ENSIC, I.N.P.L., 54042 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aubry, Andre" sort="Aubry, Andre" uniqKey="Aubry A" first="André" last="Aubry">André Aubry</name>
<affiliation>
<mods:affiliation>Laboratoire de Minéralogie et Cristallographie (ERA, CNRS 162) Université de Nancy I, 54037 Nancy, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:E13881F11D6AECED77E996AC9E167B4C10B1C16C</idno>
<date when="1979" year="1979">1979</date>
<idno type="doi">10.1002/bip.1979.360180602</idno>
<idno type="url">https://api.istex.fr/document/E13881F11D6AECED77E996AC9E167B4C10B1C16C/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001563</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001563</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Experimental investigations on the backbone folding of proline‐containing model tripeptides</title>
<author>
<name sortKey="Boussard, Guy" sort="Boussard, Guy" uniqKey="Boussard G" first="Guy" last="Boussard">Guy Boussard</name>
<affiliation>
<mods:affiliation>Laboratorire de Chimie Physique Macromoléculaire (ERA, CNRS 23) ENSIC, I.N.P.L., 54042 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marraud, Michel" sort="Marraud, Michel" uniqKey="Marraud M" first="Michel" last="Marraud">Michel Marraud</name>
<affiliation>
<mods:affiliation>Laboratorire de Chimie Physique Macromoléculaire (ERA, CNRS 23) ENSIC, I.N.P.L., 54042 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aubry, Andre" sort="Aubry, Andre" uniqKey="Aubry A" first="André" last="Aubry">André Aubry</name>
<affiliation>
<mods:affiliation>Laboratoire de Minéralogie et Cristallographie (ERA, CNRS 162) Université de Nancy I, 54037 Nancy, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Biopolymers</title>
<title level="j" type="alt">BIOPOLYMERS</title>
<idno type="ISSN">0006-3525</idno>
<idno type="eISSN">1097-0282</idno>
<imprint>
<biblScope unit="vol">18</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="1297">1297</biblScope>
<biblScope unit="page" to="1331">1331</biblScope>
<biblScope unit="page-count">35</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="1979-06">1979-06</date>
</imprint>
<idno type="ISSN">0006-3525</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0006-3525</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption band</term>
<term>Absorption bands</term>
<term>Absorption spectra</term>
<term>Acta</term>
<term>Acta crystallogr</term>
<term>Amide</term>
<term>Amide function</term>
<term>Amide proton</term>
<term>Amide proton chemical shifts</term>
<term>Amide protons</term>
<term>Aprotic</term>
<term>Arbor</term>
<term>Arbor science</term>
<term>Aubry</term>
<term>Biol</term>
<term>Biopolymers</term>
<term>Boussard</term>
<term>Carbonyl</term>
<term>Carbonyl group</term>
<term>Carbonyl groups</term>
<term>Chem</term>
<term>Chemical shifts</term>
<term>Chlorinated solvents</term>
<term>Chloroform</term>
<term>Common acceptor site</term>
<term>Conformation</term>
<term>Conformational</term>
<term>Conformational features</term>
<term>Conformational state</term>
<term>Conformational states</term>
<term>Conformer</term>
<term>Conformers</term>
<term>Crystal structure</term>
<term>Crystal structures</term>
<term>Derivative</term>
<term>Destabilized</term>
<term>Dioxane</term>
<term>Dmso</term>
<term>Dmso chloroform solutions</term>
<term>Dmso concentrations</term>
<term>Free carbonyl groups</term>
<term>Frequency range</term>
<term>Glycine</term>
<term>Heterochiral</term>
<term>Hydrogen bond</term>
<term>Inert medium</term>
<term>Inert solvents</term>
<term>Intramolecular</term>
<term>Intramolecular hydrogen bond</term>
<term>Intramolecular interaction</term>
<term>Isomerism</term>
<term>Marraud</term>
<term>Middle amide function</term>
<term>Model compounds</term>
<term>Nbel</term>
<term>Open conformations</term>
<term>Peptide</term>
<term>Proline</term>
<term>Proline residue</term>
<term>Protas</term>
<term>Proton</term>
<term>Pure dmso</term>
<term>Same conditions</term>
<term>Semiopen</term>
<term>Side chain</term>
<term>Solid state</term>
<term>Solvent</term>
<term>Solvent composition</term>
<term>Solvent effect</term>
<term>Spectroscopy</term>
<term>Strong aprotic medium</term>
<term>Temperature coefficients</term>
<term>Temperature effect</term>
<term>Tertiary</term>
<term>Tertiary amide function</term>
<term>Trans</term>
<term>Trans conformations</term>
<term>Trans conformers</term>
<term>Tripeptides</term>
<term>Various solvents</term>
<term>Volumetric composition</term>
<term>Water solution</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Absorption band</term>
<term>Absorption bands</term>
<term>Absorption spectra</term>
<term>Acta</term>
<term>Acta crystallogr</term>
<term>Amide</term>
<term>Amide function</term>
<term>Amide proton</term>
<term>Amide proton chemical shifts</term>
<term>Amide protons</term>
<term>Aprotic</term>
<term>Arbor</term>
<term>Arbor science</term>
<term>Aubry</term>
<term>Biol</term>
<term>Biopolymers</term>
<term>Boussard</term>
<term>Carbonyl</term>
<term>Carbonyl group</term>
<term>Carbonyl groups</term>
<term>Chem</term>
<term>Chemical shifts</term>
<term>Chlorinated solvents</term>
<term>Chloroform</term>
<term>Common acceptor site</term>
<term>Conformation</term>
<term>Conformational</term>
<term>Conformational features</term>
<term>Conformational state</term>
<term>Conformational states</term>
<term>Conformer</term>
<term>Conformers</term>
<term>Crystal structure</term>
<term>Crystal structures</term>
<term>Derivative</term>
<term>Destabilized</term>
<term>Dioxane</term>
<term>Dmso</term>
<term>Dmso chloroform solutions</term>
<term>Dmso concentrations</term>
<term>Free carbonyl groups</term>
<term>Frequency range</term>
<term>Glycine</term>
<term>Heterochiral</term>
<term>Hydrogen bond</term>
<term>Inert medium</term>
<term>Inert solvents</term>
<term>Intramolecular</term>
<term>Intramolecular hydrogen bond</term>
<term>Intramolecular interaction</term>
<term>Isomerism</term>
<term>Marraud</term>
<term>Middle amide function</term>
<term>Model compounds</term>
<term>Nbel</term>
<term>Open conformations</term>
<term>Peptide</term>
<term>Proline</term>
<term>Proline residue</term>
<term>Protas</term>
<term>Proton</term>
<term>Pure dmso</term>
<term>Same conditions</term>
<term>Semiopen</term>
<term>Side chain</term>
<term>Solid state</term>
<term>Solvent</term>
<term>Solvent composition</term>
<term>Solvent effect</term>
<term>Spectroscopy</term>
<term>Strong aprotic medium</term>
<term>Temperature coefficients</term>
<term>Temperature effect</term>
<term>Tertiary</term>
<term>Tertiary amide function</term>
<term>Trans</term>
<term>Trans conformations</term>
<term>Trans conformers</term>
<term>Tripeptides</term>
<term>Various solvents</term>
<term>Volumetric composition</term>
<term>Water solution</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Some proline‐containing tripeptides with the general formulas R0CO‐L‐Pro‐X‐NHR3 (X = Gly,Sar,L‐Ala,D‐Ala) and R0CO‐X‐L‐Pro‐NHR3 (X = Gly,L‐Ala,D‐Ala) have been investigated in solution by ir and 1H‐nmr spectroscopies. Their favored conformational states depend mainly on both the primary structure and the chiral sequence of the molecules. In inert solvents the βII‐folding mode is the most favored conformation for the L‐Pro‐D‐Ala and L‐Pro‐Gly tripeptides, while the βII′‐turn is largely preferred by D‐Ala‐L‐Pro derivatives. Under the same conditions only about one‐third of the whole conformers of L‐Pro‐L‐Ala molecules adopts the βI‐folding mode. Semiopened C7C5 and C5C7 conformations are appreciably populated in the L‐Pro‐L‐Ala sequence, on the one hand, and in the Gly‐L‐Pro and L‐Ala‐L‐Pro derivatives, on the other hand. In L‐Pro‐Sar and X‐L‐Pro models, the cis–trans isomerism around the middle tertiary amide function is observed. Thus cis L‐Pro‐Sar and L‐Ala‐L‐Pro conformers are folded by an intramolecular i + 3 → i hydrogen bond, whereas cis D‐Ala‐L‐Pro and Gly‐L‐Pro molecules accommodate an open conformation. In dimethylsulfoxide the βII‐ and βII′‐folding modes are not essentially destabilized, as contrasted with the βI conformation, which is less populated. In water solution all the above‐mentioned conformations, with the possible exception of the βII′‐folding mode for D‐Ala‐L‐Pro molecules, seem to vanish. Solute conformations are also compared with the crystal structures of four proline‐containing tripeptides.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>tripeptides</json:string>
<json:string>dmso</json:string>
<json:string>trans</json:string>
<json:string>conformers</json:string>
<json:string>marraud</json:string>
<json:string>intramolecular</json:string>
<json:string>amide</json:string>
<json:string>boussard</json:string>
<json:string>aubry</json:string>
<json:string>hydrogen bond</json:string>
<json:string>conformation</json:string>
<json:string>conformer</json:string>
<json:string>chem</json:string>
<json:string>glycine</json:string>
<json:string>dioxane</json:string>
<json:string>amide proton chemical shifts</json:string>
<json:string>aprotic</json:string>
<json:string>biol</json:string>
<json:string>chloroform</json:string>
<json:string>peptide</json:string>
<json:string>biopolymers</json:string>
<json:string>proline</json:string>
<json:string>nbel</json:string>
<json:string>absorption bands</json:string>
<json:string>isomerism</json:string>
<json:string>intramolecular hydrogen bond</json:string>
<json:string>frequency range</json:string>
<json:string>proton</json:string>
<json:string>derivative</json:string>
<json:string>carbonyl</json:string>
<json:string>semiopen</json:string>
<json:string>acta</json:string>
<json:string>carbonyl group</json:string>
<json:string>destabilized</json:string>
<json:string>heterochiral</json:string>
<json:string>crystal structures</json:string>
<json:string>absorption band</json:string>
<json:string>protas</json:string>
<json:string>inert solvents</json:string>
<json:string>absorption spectra</json:string>
<json:string>tertiary amide function</json:string>
<json:string>arbor science</json:string>
<json:string>crystal structure</json:string>
<json:string>conformational states</json:string>
<json:string>arbor</json:string>
<json:string>volumetric composition</json:string>
<json:string>amide function</json:string>
<json:string>trans conformations</json:string>
<json:string>dmso concentrations</json:string>
<json:string>amide protons</json:string>
<json:string>trans conformers</json:string>
<json:string>amide proton</json:string>
<json:string>middle amide function</json:string>
<json:string>acta crystallogr</json:string>
<json:string>conformational</json:string>
<json:string>conformational state</json:string>
<json:string>chlorinated solvents</json:string>
<json:string>water solution</json:string>
<json:string>various solvents</json:string>
<json:string>chemical shifts</json:string>
<json:string>model compounds</json:string>
<json:string>inert medium</json:string>
<json:string>solid state</json:string>
<json:string>carbonyl groups</json:string>
<json:string>solvent effect</json:string>
<json:string>proline residue</json:string>
<json:string>temperature coefficients</json:string>
<json:string>dmso chloroform solutions</json:string>
<json:string>intramolecular interaction</json:string>
<json:string>solvent</json:string>
<json:string>spectroscopy</json:string>
<json:string>tertiary</json:string>
<json:string>free carbonyl groups</json:string>
<json:string>common acceptor site</json:string>
<json:string>conformational features</json:string>
<json:string>side chain</json:string>
<json:string>strong aprotic medium</json:string>
<json:string>temperature effect</json:string>
<json:string>same conditions</json:string>
<json:string>open conformations</json:string>
<json:string>pure dmso</json:string>
<json:string>solvent composition</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Guy Boussard</name>
<affiliations>
<json:string>Laboratorire de Chimie Physique Macromoléculaire (ERA, CNRS 23) ENSIC, I.N.P.L., 54042 Nancy, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Michel Marraud</name>
<affiliations>
<json:string>Laboratorire de Chimie Physique Macromoléculaire (ERA, CNRS 23) ENSIC, I.N.P.L., 54042 Nancy, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>André Aubry</name>
<affiliations>
<json:string>Laboratoire de Minéralogie et Cristallographie (ERA, CNRS 162) Université de Nancy I, 54037 Nancy, France</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>BIP360180602</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Some proline‐containing tripeptides with the general formulas R0CO‐L‐Pro‐X‐NHR3 (X = Gly,Sar,L‐Ala,D‐Ala) and R0CO‐X‐L‐Pro‐NHR3 (X = Gly,L‐Ala,D‐Ala) have been investigated in solution by ir and 1H‐nmr spectroscopies. Their favored conformational states depend mainly on both the primary structure and the chiral sequence of the molecules. In inert solvents the βII‐folding mode is the most favored conformation for the L‐Pro‐D‐Ala and L‐Pro‐Gly tripeptides, while the βII′‐turn is largely preferred by D‐Ala‐L‐Pro derivatives. Under the same conditions only about one‐third of the whole conformers of L‐Pro‐L‐Ala molecules adopts the βI‐folding mode. Semiopened C7C5 and C5C7 conformations are appreciably populated in the L‐Pro‐L‐Ala sequence, on the one hand, and in the Gly‐L‐Pro and L‐Ala‐L‐Pro derivatives, on the other hand. In L‐Pro‐Sar and X‐L‐Pro models, the cis–trans isomerism around the middle tertiary amide function is observed. Thus cis L‐Pro‐Sar and L‐Ala‐L‐Pro conformers are folded by an intramolecular i + 3 → i hydrogen bond, whereas cis D‐Ala‐L‐Pro and Gly‐L‐Pro molecules accommodate an open conformation. In dimethylsulfoxide the βII‐ and βII′‐folding modes are not essentially destabilized, as contrasted with the βI conformation, which is less populated. In water solution all the above‐mentioned conformations, with the possible exception of the βII′‐folding mode for D‐Ala‐L‐Pro molecules, seem to vanish. Solute conformations are also compared with the crystal structures of four proline‐containing tripeptides.</abstract>
<qualityIndicators>
<score>7.568</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>468 x 720 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1540</abstractCharCount>
<pdfWordCount>9601</pdfWordCount>
<pdfCharCount>59742</pdfCharCount>
<pdfPageCount>35</pdfPageCount>
<abstractWordCount>214</abstractWordCount>
</qualityIndicators>
<title>Experimental investigations on the backbone folding of proline‐containing model tripeptides</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Biopolymers</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1097-0282</json:string>
</doi>
<issn>
<json:string>0006-3525</json:string>
</issn>
<eissn>
<json:string>1097-0282</json:string>
</eissn>
<publisherId>
<json:string>BIP</json:string>
</publisherId>
<volume>18</volume>
<issue>6</issue>
<pages>
<first>1297</first>
<last>1331</last>
<total>35</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Article</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>biophysics</json:string>
<json:string>biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>biomedical research</json:string>
<json:string>biophysics</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences biologiques et medicales</json:string>
<json:string>sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>1979</publicationDate>
<copyrightDate>1979</copyrightDate>
<doi>
<json:string>10.1002/bip.1979.360180602</json:string>
</doi>
<id>E13881F11D6AECED77E996AC9E167B4C10B1C16C</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/E13881F11D6AECED77E996AC9E167B4C10B1C16C/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/E13881F11D6AECED77E996AC9E167B4C10B1C16C/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/E13881F11D6AECED77E996AC9E167B4C10B1C16C/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Experimental investigations on the backbone folding of proline‐containing model tripeptides</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<licence>Copyright © 1979 John Wiley & Sons, Inc.</licence>
</availability>
<date type="published" when="1979-06"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Experimental investigations on the backbone folding of proline‐containing model tripeptides</title>
<title level="a" type="short" xml:lang="en">PROLINE‐CONTAINING TRIPEPTIDES</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Guy</forename>
<surname>Boussard</surname>
</persName>
<affiliation>Laboratorire de Chimie Physique Macromoléculaire (ERA, CNRS 23) ENSIC, I.N.P.L., 54042 Nancy, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Michel</forename>
<surname>Marraud</surname>
</persName>
<affiliation>Laboratorire de Chimie Physique Macromoléculaire (ERA, CNRS 23) ENSIC, I.N.P.L., 54042 Nancy, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">André</forename>
<surname>Aubry</surname>
</persName>
<affiliation>Laboratoire de Minéralogie et Cristallographie (ERA, CNRS 162) Université de Nancy I, 54037 Nancy, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<idno type="istex">E13881F11D6AECED77E996AC9E167B4C10B1C16C</idno>
<idno type="ark">ark:/67375/WNG-RVGJM2QN-G</idno>
<idno type="DOI">10.1002/bip.1979.360180602</idno>
<idno type="unit">BIP360180602</idno>
<idno type="toTypesetVersion">file:BIP.BIP360180602.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Biopolymers</title>
<title level="j" type="alt">BIOPOLYMERS</title>
<idno type="pISSN">0006-3525</idno>
<idno type="eISSN">1097-0282</idno>
<idno type="book-DOI">10.1002/(ISSN)1097-0282</idno>
<idno type="book-part-DOI">10.1002/bip.36.v18:6</idno>
<idno type="product">BIP</idno>
<imprint>
<biblScope unit="vol">18</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="1297">1297</biblScope>
<biblScope unit="page" to="1331">1331</biblScope>
<biblScope unit="page-count">35</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="1979-06"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>Some proline‐containing tripeptides with the general formulas
<hi rend="italic">R</hi>
<hi rend="superscript">0</hi>
CO‐
<hi rend="smallCaps">L</hi>
‐Pro‐
<hi rend="italic">X</hi>
‐NHR
<hi rend="superscript">3</hi>
(
<hi rend="italic">X</hi>
= Gly,Sar,
<hi rend="smallCaps">L</hi>
‐Ala,
<hi rend="smallCaps">D</hi>
‐Ala) and
<hi rend="italic">R</hi>
<hi rend="superscript">0</hi>
CO‐
<hi rend="italic">X</hi>
<hi rend="smallCaps">L</hi>
‐Pro‐NHR
<hi rend="superscript">3</hi>
(
<hi rend="italic">X</hi>
= Gly,
<hi rend="smallCaps">L</hi>
‐Ala,
<hi rend="smallCaps">D</hi>
‐Ala) have been investigated in solution by ir and
<hi rend="superscript">1</hi>
H‐nmr spectroscopies. Their favored conformational states depend mainly on both the primary structure and the chiral sequence of the molecules. In inert solvents the βII‐folding mode is the most favored conformation for the
<hi rend="smallCaps">L</hi>
‐Pro‐
<hi rend="smallCaps">D</hi>
‐Ala and
<hi rend="smallCaps">L</hi>
‐Pro‐Gly tripeptides, while the βII′‐turn is largely preferred by
<hi rend="smallCaps">D</hi>
‐Ala‐
<hi rend="smallCaps">L</hi>
‐Pro derivatives. Under the same conditions only about one‐third of the whole conformers of
<hi rend="smallCaps">L</hi>
‐Pro‐
<hi rend="smallCaps">L</hi>
‐Ala molecules adopts the βI‐folding mode. Semiopened C
<hi rend="subscript">7</hi>
C
<hi rend="subscript">5</hi>
and C
<hi rend="subscript">5</hi>
C
<hi rend="subscript">7</hi>
conformations are appreciably populated in the
<hi rend="smallCaps">L</hi>
‐Pro‐
<hi rend="smallCaps">L</hi>
‐Ala sequence, on the one hand, and in the Gly‐
<hi rend="smallCaps">L</hi>
‐Pro and
<hi rend="smallCaps">L</hi>
‐Ala‐
<hi rend="smallCaps">L</hi>
‐Pro derivatives, on the other hand. In
<hi rend="smallCaps">L</hi>
‐Pro‐Sar and
<hi rend="italic">X</hi>
<hi rend="smallCaps">L</hi>
‐Pro models, the
<hi rend="italic">cis</hi>
<hi rend="italic">trans</hi>
isomerism around the middle tertiary amide function is observed. Thus
<hi rend="italic">cis</hi>
<hi rend="smallCaps">L</hi>
‐Pro‐Sar and
<hi rend="smallCaps">L</hi>
‐Ala‐
<hi rend="smallCaps">L</hi>
‐Pro conformers are folded by an intramolecular
<hi rend="italic">i</hi>
+ 3 →
<hi rend="italic">i</hi>
hydrogen bond, whereas
<hi rend="italic">cis</hi>
<hi rend="smallCaps">D</hi>
‐Ala‐
<hi rend="smallCaps">L</hi>
‐Pro and Gly‐
<hi rend="smallCaps">L</hi>
‐Pro molecules accommodate an open conformation. In dimethylsulfoxide the βII‐ and βII′‐folding modes are not essentially destabilized, as contrasted with the βI conformation, which is less populated. In water solution all the above‐mentioned conformations, with the possible exception of the βII′‐folding mode for
<hi rend="smallCaps">D</hi>
‐Ala‐
<hi rend="smallCaps">L</hi>
‐Pro molecules, seem to vanish. Solute conformations are also compared with the crystal structures of four proline‐containing tripeptides.</p>
</abstract>
<textClass>
<keywords rend="articleCategory">
<term>Article</term>
</keywords>
<keywords rend="tocHeading1">
<term>Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/E13881F11D6AECED77E996AC9E167B4C10B1C16C/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1097-0282</doi>
<issn type="print">0006-3525</issn>
<issn type="electronic">1097-0282</issn>
<idGroup>
<id type="product" value="BIP"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="BIOPOLYMERS">Biopolymers</title>
<title type="subtitle">Original Research on Biomolecules</title>
<title type="short">Biopolymers</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="60">
<doi origin="wiley" registered="yes">10.1002/bip.36.v18:6</doi>
<numberingGroup>
<numbering type="journalVolume" number="18">18</numbering>
<numbering type="journalIssue">6</numbering>
</numberingGroup>
<coverDate startDate="1979-06">June 1979</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="2" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/bip.1979.360180602</doi>
<idGroup>
<id type="unit" value="BIP360180602"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="35"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Article</title>
<title type="tocHeading1">Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 1979 John Wiley & Sons, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="1978-07-10"></event>
<event type="manuscriptRevised" date="1978-09-27"></event>
<event type="manuscriptAccepted" date="1978-11-17"></event>
<event type="firstOnline" date="2004-02-01"></event>
<event type="publishedOnlineFinalForm" date="2004-02-01"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-08"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-07"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-15"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">1297</numbering>
<numbering type="pageLast">1331</numbering>
</numberingGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:BIP.BIP360180602.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="19"></count>
<count type="tableTotal" number="5"></count>
<count type="referenceTotal" number="73"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Experimental investigations on the backbone folding of proline‐containing model tripeptides</title>
<title type="short" xml:lang="en">PROLINE‐CONTAINING TRIPEPTIDES</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Guy</givenNames>
<familyName>Boussard</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Michel</givenNames>
<familyName>Marraud</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>André</givenNames>
<familyName>Aubry</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="FR" type="organization">
<unparsedAffiliation>Laboratorire de Chimie Physique Macromoléculaire (ERA, CNRS 23) ENSIC, I.N.P.L., 54042 Nancy, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="FR" type="organization">
<unparsedAffiliation>Laboratoire de Minéralogie et Cristallographie (ERA, CNRS 162) Université de Nancy I, 54037 Nancy, France</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Some proline‐containing tripeptides with the general formulas
<i>R</i>
<sup>0</sup>
CO‐
<sc>L</sc>
‐Pro‐
<i>X</i>
‐NHR
<sup>3</sup>
(
<i>X</i>
= Gly,Sar,
<sc>L</sc>
‐Ala,
<sc>D</sc>
‐Ala) and
<i>R</i>
<sup>0</sup>
CO‐
<i>X</i>
<sc>L</sc>
‐Pro‐NHR
<sup>3</sup>
(
<i>X</i>
= Gly,
<sc>L</sc>
‐Ala,
<sc>D</sc>
‐Ala) have been investigated in solution by ir and
<sup>1</sup>
H‐nmr spectroscopies. Their favored conformational states depend mainly on both the primary structure and the chiral sequence of the molecules. In inert solvents the βII‐folding mode is the most favored conformation for the
<sc>L</sc>
‐Pro‐
<sc>D</sc>
‐Ala and
<sc>L</sc>
‐Pro‐Gly tripeptides, while the βII′‐turn is largely preferred by
<sc>D</sc>
‐Ala‐
<sc>L</sc>
‐Pro derivatives. Under the same conditions only about one‐third of the whole conformers of
<sc>L</sc>
‐Pro‐
<sc>L</sc>
‐Ala molecules adopts the βI‐folding mode. Semiopened C
<sub>7</sub>
C
<sub>5</sub>
and C
<sub>5</sub>
C
<sub>7</sub>
conformations are appreciably populated in the
<sc>L</sc>
‐Pro‐
<sc>L</sc>
‐Ala sequence, on the one hand, and in the Gly‐
<sc>L</sc>
‐Pro and
<sc>L</sc>
‐Ala‐
<sc>L</sc>
‐Pro derivatives, on the other hand. In
<sc>L</sc>
‐Pro‐Sar and
<i>X</i>
<sc>L</sc>
‐Pro models, the
<i>cis</i>
<i>trans</i>
isomerism around the middle tertiary amide function is observed. Thus
<i>cis</i>
<sc>L</sc>
‐Pro‐Sar and
<sc>L</sc>
‐Ala‐
<sc>L</sc>
‐Pro conformers are folded by an intramolecular
<i>i</i>
+ 3 →
<i>i</i>
hydrogen bond, whereas
<i>cis</i>
<sc>D</sc>
‐Ala‐
<sc>L</sc>
‐Pro and Gly‐
<sc>L</sc>
‐Pro molecules accommodate an open conformation. In dimethylsulfoxide the βII‐ and βII′‐folding modes are not essentially destabilized, as contrasted with the βI conformation, which is less populated. In water solution all the above‐mentioned conformations, with the possible exception of the βII′‐folding mode for
<sc>D</sc>
‐Ala‐
<sc>L</sc>
‐Pro molecules, seem to vanish. Solute conformations are also compared with the crystal structures of four proline‐containing tripeptides.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Experimental investigations on the backbone folding of proline‐containing model tripeptides</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>PROLINE‐CONTAINING TRIPEPTIDES</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Experimental investigations on the backbone folding of proline‐containing model tripeptides</title>
</titleInfo>
<name type="personal">
<namePart type="given">Guy</namePart>
<namePart type="family">Boussard</namePart>
<affiliation>Laboratorire de Chimie Physique Macromoléculaire (ERA, CNRS 23) ENSIC, I.N.P.L., 54042 Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michel</namePart>
<namePart type="family">Marraud</namePart>
<affiliation>Laboratorire de Chimie Physique Macromoléculaire (ERA, CNRS 23) ENSIC, I.N.P.L., 54042 Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">André</namePart>
<namePart type="family">Aubry</namePart>
<affiliation>Laboratoire de Minéralogie et Cristallographie (ERA, CNRS 162) Université de Nancy I, 54037 Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1979-06</dateIssued>
<dateCaptured encoding="w3cdtf">1978-07-10</dateCaptured>
<dateValid encoding="w3cdtf">1978-11-17</dateValid>
<copyrightDate encoding="w3cdtf">1979</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">19</extent>
<extent unit="tables">5</extent>
<extent unit="references">73</extent>
</physicalDescription>
<abstract lang="en">Some proline‐containing tripeptides with the general formulas R0CO‐L‐Pro‐X‐NHR3 (X = Gly,Sar,L‐Ala,D‐Ala) and R0CO‐X‐L‐Pro‐NHR3 (X = Gly,L‐Ala,D‐Ala) have been investigated in solution by ir and 1H‐nmr spectroscopies. Their favored conformational states depend mainly on both the primary structure and the chiral sequence of the molecules. In inert solvents the βII‐folding mode is the most favored conformation for the L‐Pro‐D‐Ala and L‐Pro‐Gly tripeptides, while the βII′‐turn is largely preferred by D‐Ala‐L‐Pro derivatives. Under the same conditions only about one‐third of the whole conformers of L‐Pro‐L‐Ala molecules adopts the βI‐folding mode. Semiopened C7C5 and C5C7 conformations are appreciably populated in the L‐Pro‐L‐Ala sequence, on the one hand, and in the Gly‐L‐Pro and L‐Ala‐L‐Pro derivatives, on the other hand. In L‐Pro‐Sar and X‐L‐Pro models, the cis–trans isomerism around the middle tertiary amide function is observed. Thus cis L‐Pro‐Sar and L‐Ala‐L‐Pro conformers are folded by an intramolecular i + 3 → i hydrogen bond, whereas cis D‐Ala‐L‐Pro and Gly‐L‐Pro molecules accommodate an open conformation. In dimethylsulfoxide the βII‐ and βII′‐folding modes are not essentially destabilized, as contrasted with the βI conformation, which is less populated. In water solution all the above‐mentioned conformations, with the possible exception of the βII′‐folding mode for D‐Ala‐L‐Pro molecules, seem to vanish. Solute conformations are also compared with the crystal structures of four proline‐containing tripeptides.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Biopolymers</title>
<subTitle>Original Research on Biomolecules</subTitle>
</titleInfo>
<titleInfo type="abbreviated">
<title>Biopolymers</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Article</topic>
</subject>
<identifier type="ISSN">0006-3525</identifier>
<identifier type="eISSN">1097-0282</identifier>
<identifier type="DOI">10.1002/(ISSN)1097-0282</identifier>
<identifier type="PublisherID">BIP</identifier>
<part>
<date>1979</date>
<detail type="volume">
<caption>vol.</caption>
<number>18</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>1297</start>
<end>1331</end>
<total>35</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">E13881F11D6AECED77E996AC9E167B4C10B1C16C</identifier>
<identifier type="ark">ark:/67375/WNG-RVGJM2QN-G</identifier>
<identifier type="DOI">10.1002/bip.1979.360180602</identifier>
<identifier type="ArticleID">BIP360180602</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 1979 John Wiley & Sons, Inc.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/E13881F11D6AECED77E996AC9E167B4C10B1C16C/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001563 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001563 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:E13881F11D6AECED77E996AC9E167B4C10B1C16C
   |texte=   Experimental investigations on the backbone folding of proline‐containing model tripeptides
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024