Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Feedstream jet intermittency phenomenon in a continuous stirred tank reactor

Identifieur interne : 000D23 ( Istex/Corpus ); précédent : 000D22; suivant : 000D24

Feedstream jet intermittency phenomenon in a continuous stirred tank reactor

Auteurs : I. Houcine ; E. Plasari ; R. David ; J. Villermaux

Source :

RBID : ISTEX:7F37BA2802284B7996465B96674A27A552933A84

English descriptors

Abstract

Abstract: A feedstream jet intermittency phenomenon and its onset conditions in a continuous stirred tank reactor are detected for the first time using a laser sheet induced fluorescence visualisation technique. The aim of the present investigation is to determine the operating conditions for which the intermittency phenomenon occurs in stirred tank reactors. The jet intermittency parameters studied are: stirrer type (Rushton and 45° pitched blade turbines, profiled Mixel TTP propeller), stirrer rotational speed, fluid viscosity, feeding rate and the feed point location in the tank. In the case of the Rushton turbine stirred tank reactor, diagrams of intermittency occurrence are reported. These diagrams represent the feeding jet velocity as a function of specific power input or local fluid velocity in the tank. It was not possible to derive from these diagrams any valuable correlation. In order to predict and scale-up the occurrence of intermittency in industrial stirred reactors, dimensionless correlations characterising intermittency occurrence in these devices have been modelled for the three types of stirrers. The dominant variables determining the occurrence of intermittency is the ratio of the jet velocity vJ to the tip velocity vtip.

Url:
DOI: 10.1016/S1385-8947(98)00124-7

Links to Exploration step

ISTEX:7F37BA2802284B7996465B96674A27A552933A84

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Feedstream jet intermittency phenomenon in a continuous stirred tank reactor</title>
<author>
<name sortKey="Houcine, I" sort="Houcine, I" uniqKey="Houcine I" first="I." last="Houcine">I. Houcine</name>
<affiliation>
<mods:affiliation>Institut National de Recherche Scientifique et Technique, Route Touristique de Soliman, B.P. 95, 2050Hammam-LifTunisia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Corresponding author.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Plasari, E" sort="Plasari, E" uniqKey="Plasari E" first="E." last="Plasari">E. Plasari</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique CNRS - ENSIC - INPL, 1, Rue Grandville B.P. 451, 54001NancyFrance</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="David, R" sort="David, R" uniqKey="David R" first="R." last="David">R. David</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique CNRS - ENSIC - INPL, 1, Rue Grandville B.P. 451, 54001NancyFrance</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Villermaux, J" sort="Villermaux, J" uniqKey="Villermaux J" first="J." last="Villermaux">J. Villermaux</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique CNRS - ENSIC - INPL, 1, Rue Grandville B.P. 451, 54001NancyFrance</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:7F37BA2802284B7996465B96674A27A552933A84</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1016/S1385-8947(98)00124-7</idno>
<idno type="url">https://api.istex.fr/document/7F37BA2802284B7996465B96674A27A552933A84/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000D23</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000D23</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Feedstream jet intermittency phenomenon in a continuous stirred tank reactor</title>
<author>
<name sortKey="Houcine, I" sort="Houcine, I" uniqKey="Houcine I" first="I." last="Houcine">I. Houcine</name>
<affiliation>
<mods:affiliation>Institut National de Recherche Scientifique et Technique, Route Touristique de Soliman, B.P. 95, 2050Hammam-LifTunisia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Corresponding author.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Plasari, E" sort="Plasari, E" uniqKey="Plasari E" first="E." last="Plasari">E. Plasari</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique CNRS - ENSIC - INPL, 1, Rue Grandville B.P. 451, 54001NancyFrance</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="David, R" sort="David, R" uniqKey="David R" first="R." last="David">R. David</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique CNRS - ENSIC - INPL, 1, Rue Grandville B.P. 451, 54001NancyFrance</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Villermaux, J" sort="Villermaux, J" uniqKey="Villermaux J" first="J." last="Villermaux">J. Villermaux</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique CNRS - ENSIC - INPL, 1, Rue Grandville B.P. 451, 54001NancyFrance</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Chemical Engineering Journal</title>
<title level="j" type="abbrev">CEJ</title>
<idno type="ISSN">1385-8947</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999">1999</date>
<biblScope unit="volume">72</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="19">19</biblScope>
<biblScope unit="page" to="29">29</biblScope>
</imprint>
<idno type="ISSN">1385-8947</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1385-8947</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Blade turbine</term>
<term>Blade turbines</term>
<term>Chaotic movement</term>
<term>Characterising</term>
<term>Chemical engineering journal</term>
<term>Dimensional analysis</term>
<term>Dimensionless</term>
<term>Double feed reactor</term>
<term>Double loop</term>
<term>Effective intermittency</term>
<term>Experimental results</term>
<term>Feed point location</term>
<term>Feed point locations</term>
<term>Feed position</term>
<term>Feedstream</term>
<term>Feedstream jets</term>
<term>Houcine</term>
<term>Image processing</term>
<term>Impeller</term>
<term>Injector tube diameter</term>
<term>Intermittency</term>
<term>Intermittency occurrence</term>
<term>Intermittency phenomenon</term>
<term>Intermittent flows</term>
<term>Laser</term>
<term>Laser sheet</term>
<term>Laser sheet visualisation</term>
<term>Local characteristics</term>
<term>Mixel</term>
<term>Power input</term>
<term>Present investigation</term>
<term>Propeller</term>
<term>Reactor</term>
<term>Rushton</term>
<term>Rushton turbine</term>
<term>Segregation index</term>
<term>Slight intermittencies</term>
<term>Slight intermittency</term>
<term>Stirrer</term>
<term>Stirrer reynolds number</term>
<term>Stirrer type</term>
<term>Tank</term>
<term>Tank reactor</term>
<term>Tank reactors</term>
<term>Theoretical analysis</term>
<term>Transition range</term>
<term>Turbine</term>
<term>Unit mass</term>
<term>Villermaux</term>
<term>Visualisation</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Blade turbine</term>
<term>Blade turbines</term>
<term>Chaotic movement</term>
<term>Characterising</term>
<term>Chemical engineering journal</term>
<term>Dimensional analysis</term>
<term>Dimensionless</term>
<term>Double feed reactor</term>
<term>Double loop</term>
<term>Effective intermittency</term>
<term>Experimental results</term>
<term>Feed point location</term>
<term>Feed point locations</term>
<term>Feed position</term>
<term>Feedstream</term>
<term>Feedstream jets</term>
<term>Houcine</term>
<term>Image processing</term>
<term>Impeller</term>
<term>Injector tube diameter</term>
<term>Intermittency</term>
<term>Intermittency occurrence</term>
<term>Intermittency phenomenon</term>
<term>Intermittent flows</term>
<term>Laser</term>
<term>Laser sheet</term>
<term>Laser sheet visualisation</term>
<term>Local characteristics</term>
<term>Mixel</term>
<term>Power input</term>
<term>Present investigation</term>
<term>Propeller</term>
<term>Reactor</term>
<term>Rushton</term>
<term>Rushton turbine</term>
<term>Segregation index</term>
<term>Slight intermittencies</term>
<term>Slight intermittency</term>
<term>Stirrer</term>
<term>Stirrer reynolds number</term>
<term>Stirrer type</term>
<term>Tank</term>
<term>Tank reactor</term>
<term>Tank reactors</term>
<term>Theoretical analysis</term>
<term>Transition range</term>
<term>Turbine</term>
<term>Unit mass</term>
<term>Villermaux</term>
<term>Visualisation</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: A feedstream jet intermittency phenomenon and its onset conditions in a continuous stirred tank reactor are detected for the first time using a laser sheet induced fluorescence visualisation technique. The aim of the present investigation is to determine the operating conditions for which the intermittency phenomenon occurs in stirred tank reactors. The jet intermittency parameters studied are: stirrer type (Rushton and 45° pitched blade turbines, profiled Mixel TTP propeller), stirrer rotational speed, fluid viscosity, feeding rate and the feed point location in the tank. In the case of the Rushton turbine stirred tank reactor, diagrams of intermittency occurrence are reported. These diagrams represent the feeding jet velocity as a function of specific power input or local fluid velocity in the tank. It was not possible to derive from these diagrams any valuable correlation. In order to predict and scale-up the occurrence of intermittency in industrial stirred reactors, dimensionless correlations characterising intermittency occurrence in these devices have been modelled for the three types of stirrers. The dominant variables determining the occurrence of intermittency is the ratio of the jet velocity vJ to the tip velocity vtip.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>intermittency</json:string>
<json:string>feedstream</json:string>
<json:string>stirrer</json:string>
<json:string>rushton</json:string>
<json:string>laser</json:string>
<json:string>rushton turbine</json:string>
<json:string>intermittency phenomenon</json:string>
<json:string>tank reactors</json:string>
<json:string>dimensionless</json:string>
<json:string>houcine</json:string>
<json:string>tank reactor</json:string>
<json:string>chemical engineering journal</json:string>
<json:string>visualisation</json:string>
<json:string>laser sheet</json:string>
<json:string>intermittency occurrence</json:string>
<json:string>impeller</json:string>
<json:string>mixel</json:string>
<json:string>feed point location</json:string>
<json:string>villermaux</json:string>
<json:string>characterising</json:string>
<json:string>present investigation</json:string>
<json:string>power input</json:string>
<json:string>segregation index</json:string>
<json:string>local characteristics</json:string>
<json:string>blade turbine</json:string>
<json:string>effective intermittency</json:string>
<json:string>slight intermittency</json:string>
<json:string>experimental results</json:string>
<json:string>chaotic movement</json:string>
<json:string>tank</json:string>
<json:string>reactor</json:string>
<json:string>image processing</json:string>
<json:string>feed position</json:string>
<json:string>intermittent flows</json:string>
<json:string>feedstream jets</json:string>
<json:string>blade turbines</json:string>
<json:string>double loop</json:string>
<json:string>injector tube diameter</json:string>
<json:string>stirrer type</json:string>
<json:string>unit mass</json:string>
<json:string>feed point locations</json:string>
<json:string>transition range</json:string>
<json:string>slight intermittencies</json:string>
<json:string>laser sheet visualisation</json:string>
<json:string>double feed reactor</json:string>
<json:string>dimensional analysis</json:string>
<json:string>theoretical analysis</json:string>
<json:string>stirrer reynolds number</json:string>
<json:string>propeller</json:string>
<json:string>turbine</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>I. Houcine</name>
<affiliations>
<json:string>Institut National de Recherche Scientifique et Technique, Route Touristique de Soliman, B.P. 95, 2050Hammam-LifTunisia</json:string>
<json:string>Corresponding author.</json:string>
</affiliations>
</json:item>
<json:item>
<name>E. Plasari</name>
<affiliations>
<json:string>Laboratoire des Sciences du Génie Chimique CNRS - ENSIC - INPL, 1, Rue Grandville B.P. 451, 54001NancyFrance</json:string>
</affiliations>
</json:item>
<json:item>
<name>R. David</name>
<affiliations>
<json:string>Laboratoire des Sciences du Génie Chimique CNRS - ENSIC - INPL, 1, Rue Grandville B.P. 451, 54001NancyFrance</json:string>
</affiliations>
</json:item>
<json:item>
<name>J. Villermaux</name>
<affiliations>
<json:string>Laboratoire des Sciences du Génie Chimique CNRS - ENSIC - INPL, 1, Rue Grandville B.P. 451, 54001NancyFrance</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Intermittency</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Feedstream jet</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Jet velocity</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Tip velocity</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>A feedstream jet intermittency phenomenon and its onset conditions in a continuous stirred tank reactor are detected for the first time using a laser sheet induced fluorescence visualisation technique. The aim of the present investigation is to determine the operating conditions for which the intermittency phenomenon occurs in stirred tank reactors. The jet intermittency parameters studied are: stirrer type (Rushton and 45° pitched blade turbines, profiled Mixel TTP propeller), stirrer rotational speed, fluid viscosity, feeding rate and the feed point location in the tank. In the case of the Rushton turbine stirred tank reactor, diagrams of intermittency occurrence are reported. These diagrams represent the feeding jet velocity as a function of specific power input or local fluid velocity in the tank. It was not possible to derive from these diagrams any valuable correlation. In order to predict and scale-up the occurrence of intermittency in industrial stirred reactors, dimensionless correlations characterising intermittency occurrence in these devices have been modelled for the three types of stirrers. The dominant variables determining the occurrence of intermittency is the ratio of the jet velocity vJ to the tip velocity vtip.</abstract>
<qualityIndicators>
<score>7.16</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>570 x 841 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>4</keywordCount>
<abstractCharCount>1250</abstractCharCount>
<pdfWordCount>4940</pdfWordCount>
<pdfCharCount>29347</pdfCharCount>
<pdfPageCount>11</pdfPageCount>
<abstractWordCount>185</abstractWordCount>
</qualityIndicators>
<title>Feedstream jet intermittency phenomenon in a continuous stirred tank reactor</title>
<pii>
<json:string>S1385-8947(98)00124-7</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Chemical Engineering Journal</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1999</publicationDate>
<issn>
<json:string>1385-8947</json:string>
</issn>
<pii>
<json:string>S1385-8947(00)X0006-X</json:string>
</pii>
<volume>72</volume>
<issue>1</issue>
<pages>
<first>19</first>
<last>29</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>engineering, environmental</json:string>
<json:string>engineering, chemical</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>engineering</json:string>
<json:string>chemical engineering</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences exactes et technologie</json:string>
<json:string>chimie</json:string>
<json:string>chimie generale et chimie physique</json:string>
</inist>
</categories>
<publicationDate>1999</publicationDate>
<copyrightDate>1999</copyrightDate>
<doi>
<json:string>10.1016/S1385-8947(98)00124-7</json:string>
</doi>
<id>7F37BA2802284B7996465B96674A27A552933A84</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/7F37BA2802284B7996465B96674A27A552933A84/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/7F37BA2802284B7996465B96674A27A552933A84/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/7F37BA2802284B7996465B96674A27A552933A84/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Feedstream jet intermittency phenomenon in a continuous stirred tank reactor</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©1999 Elsevier Science S.A.</p>
</availability>
<date>1999</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: Experimental set-up 1. Reservoir (1m3), 2. Pump, 3. Flow meter, 4. Feed tubes, 5. Reducing motor, 6. Mixing tank (20dm3), 7. Stirrer, 8. Optical bench-table, 9. Water-cooled Argon ion laser (power 1.4W at 514nm), 10. Plano-convex lens, 11. Plano-concave lens, 12. Cylindrical lens (f=22.2nm), 13. CCD camera (sensibility: 0.25lx), 14. Sharp cut-off filter (560nm), 15. Magnetic tape recorder, 16. Computer (image processing), 17. Color graphics display unit, 18. Printer.</note>
<note type="content">Fig. 2: Mixing tank and feeding point location 〈1-1〉 ⋯ 〈6-6〉.</note>
<note type="content">Fig. 3: Mixing stirrers.</note>
<note type="content">Fig. 4: Instantaneous digital LIF images for Rushton turbine: no intermittency (D=T/3, h=H/3, VJ=0.6ms−1, N=112rpm, μ=10−3Pas, dt=7mm, feed position 〈6-6〉).</note>
<note type="content">Fig. 5: Instantaneous digital LIF images for Rushton turbine: slight intermittency (D=T/3, h=H/3, vJ=0.6ms−1, N=112rpm, μ=10−3Pas, dt=7mm, feed position 〈6-6〉).</note>
<note type="content">Fig. 6: Instantaneous digital LIF images for Rushton turbine: effective intermittency (D=T/3, h=H/3, vj=0.6ms−1, N=112rpm, μ=10−3Pas, dt=7mm, feed position (〈6-6〉).</note>
<note type="content">Fig. 7: Typical example of experimental results (feed points 〈3-3〉, D=T/3, h=H/3, μ=10−3Pas, dt=7mm).</note>
<note type="content">Fig. 8: Feeding jet velocity vJ vs. specific power input ε for Rushton turbine.</note>
<note type="content">Fig. 9: Feeding jet velocity vJ vs. local fluid velocity v for Rushton turbine.</note>
<note type="content">Fig. 10: (vJ/vtip) vs. Rec1×(dt/D)c2 for transition from steady to intermittent flows (Rushton turbine).</note>
<note type="content">Fig. 11: (vJ/vtip) vs. Rec1×(dt/D)c2 for transition from steady to intermittent flows (45° pitched turbine).</note>
<note type="content">Fig. 12: (vJ/vtip) vs. Rec1×(dt/D)c2 for transition from steady to intermittent flows (Mixel propeller).</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Feedstream jet intermittency phenomenon in a continuous stirred tank reactor</title>
<author xml:id="author-0000">
<persName>
<forename type="first">I.</forename>
<surname>Houcine</surname>
</persName>
<affiliation>Institut National de Recherche Scientifique et Technique, Route Touristique de Soliman, B.P. 95, 2050Hammam-LifTunisia</affiliation>
<affiliation>Corresponding author.</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">E.</forename>
<surname>Plasari</surname>
</persName>
<affiliation>Laboratoire des Sciences du Génie Chimique CNRS - ENSIC - INPL, 1, Rue Grandville B.P. 451, 54001NancyFrance</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">R.</forename>
<surname>David</surname>
</persName>
<affiliation>Laboratoire des Sciences du Génie Chimique CNRS - ENSIC - INPL, 1, Rue Grandville B.P. 451, 54001NancyFrance</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">J.</forename>
<surname>Villermaux</surname>
</persName>
<affiliation>Laboratoire des Sciences du Génie Chimique CNRS - ENSIC - INPL, 1, Rue Grandville B.P. 451, 54001NancyFrance</affiliation>
</author>
<idno type="istex">7F37BA2802284B7996465B96674A27A552933A84</idno>
<idno type="DOI">10.1016/S1385-8947(98)00124-7</idno>
<idno type="PII">S1385-8947(98)00124-7</idno>
</analytic>
<monogr>
<title level="j">Chemical Engineering Journal</title>
<title level="j" type="abbrev">CEJ</title>
<idno type="pISSN">1385-8947</idno>
<idno type="PII">S1385-8947(00)X0006-X</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999"></date>
<biblScope unit="volume">72</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="19">19</biblScope>
<biblScope unit="page" to="29">29</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1999</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>A feedstream jet intermittency phenomenon and its onset conditions in a continuous stirred tank reactor are detected for the first time using a laser sheet induced fluorescence visualisation technique. The aim of the present investigation is to determine the operating conditions for which the intermittency phenomenon occurs in stirred tank reactors. The jet intermittency parameters studied are: stirrer type (Rushton and 45° pitched blade turbines, profiled Mixel TTP propeller), stirrer rotational speed, fluid viscosity, feeding rate and the feed point location in the tank. In the case of the Rushton turbine stirred tank reactor, diagrams of intermittency occurrence are reported. These diagrams represent the feeding jet velocity as a function of specific power input or local fluid velocity in the tank. It was not possible to derive from these diagrams any valuable correlation. In order to predict and scale-up the occurrence of intermittency in industrial stirred reactors, dimensionless correlations characterising intermittency occurrence in these devices have been modelled for the three types of stirrers. The dominant variables determining the occurrence of intermittency is the ratio of the jet velocity vJ to the tip velocity vtip.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Intermittency</term>
</item>
<item>
<term>Feedstream jet</term>
</item>
<item>
<term>Jet velocity</term>
</item>
<item>
<term>Tip velocity</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1998-07-24">Modified</change>
<change when="1999">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/7F37BA2802284B7996465B96674A27A552933A84/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
<istex:entity SYSTEM="gr8" NDATA="IMAGE" name="gr8"></istex:entity>
<istex:entity SYSTEM="gr9" NDATA="IMAGE" name="gr9"></istex:entity>
<istex:entity SYSTEM="gr10" NDATA="IMAGE" name="gr10"></istex:entity>
<istex:entity SYSTEM="gr11" NDATA="IMAGE" name="gr11"></istex:entity>
<istex:entity SYSTEM="gr12" NDATA="IMAGE" name="gr12"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>CEJ</jid>
<aid>3377</aid>
<ce:pii>S1385-8947(98)00124-7</ce:pii>
<ce:doi>10.1016/S1385-8947(98)00124-7</ce:doi>
<ce:copyright year="1999" type="full-transfer">Elsevier Science S.A.</ce:copyright>
</item-info>
<head>
<ce:title>Feedstream jet intermittency phenomenon in a continuous stirred tank reactor</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>I.</ce:given-name>
<ce:surname>Houcine</ce:surname>
<ce:cross-ref refid="AFF1">a</ce:cross-ref>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>E.</ce:given-name>
<ce:surname>Plasari</ce:surname>
<ce:cross-ref refid="AFF2">b</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>R.</ce:given-name>
<ce:surname>David</ce:surname>
<ce:cross-ref refid="AFF2">b</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>J.</ce:given-name>
<ce:surname>Villermaux</ce:surname>
<ce:cross-ref refid="AFF2">b</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>
<ce:hsp sp="0.25"></ce:hsp>
Institut National de Recherche Scientifique et Technique, Route Touristique de Soliman, B.P. 95, 2050Hammam-LifTunisia</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>
<ce:hsp sp="0.25"></ce:hsp>
Laboratoire des Sciences du Génie Chimique CNRS - ENSIC - INPL, 1, Rue Grandville B.P. 451, 54001NancyFrance</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author.</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="19" month="12" year="1997"></ce:date-received>
<ce:date-revised day="24" month="7" year="1998"></ce:date-revised>
<ce:date-accepted day="13" month="8" year="1998"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>A feedstream jet intermittency phenomenon and its onset conditions in a continuous stirred tank reactor are detected for the first time using a laser sheet induced fluorescence visualisation technique. The aim of the present investigation is to determine the operating conditions for which the intermittency phenomenon occurs in stirred tank reactors. The jet intermittency parameters studied are: stirrer type (Rushton and 45° pitched blade turbines, profiled Mixel TTP propeller), stirrer rotational speed, fluid viscosity, feeding rate and the feed point location in the tank. In the case of the Rushton turbine stirred tank reactor, diagrams of intermittency occurrence are reported. These diagrams represent the feeding jet velocity as a function of specific power input or local fluid velocity in the tank. It was not possible to derive from these diagrams any valuable correlation. In order to predict and scale-up the occurrence of intermittency in industrial stirred reactors, dimensionless correlations characterising intermittency occurrence in these devices have been modelled for the three types of stirrers. The dominant variables determining the occurrence of intermittency is the ratio of the jet velocity
<ce:italic>v</ce:italic>
<ce:inf>J</ce:inf>
to the tip velocity
<ce:italic>v</ce:italic>
<ce:inf>tip</ce:inf>
.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Intermittency</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Feedstream jet</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Jet velocity</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Tip velocity</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Feedstream jet intermittency phenomenon in a continuous stirred tank reactor</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Feedstream jet intermittency phenomenon in a continuous stirred tank reactor</title>
</titleInfo>
<name type="personal">
<namePart type="given">I.</namePart>
<namePart type="family">Houcine</namePart>
<affiliation>Institut National de Recherche Scientifique et Technique, Route Touristique de Soliman, B.P. 95, 2050Hammam-LifTunisia</affiliation>
<affiliation>Corresponding author.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">E.</namePart>
<namePart type="family">Plasari</namePart>
<affiliation>Laboratoire des Sciences du Génie Chimique CNRS - ENSIC - INPL, 1, Rue Grandville B.P. 451, 54001NancyFrance</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">David</namePart>
<affiliation>Laboratoire des Sciences du Génie Chimique CNRS - ENSIC - INPL, 1, Rue Grandville B.P. 451, 54001NancyFrance</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J.</namePart>
<namePart type="family">Villermaux</namePart>
<affiliation>Laboratoire des Sciences du Génie Chimique CNRS - ENSIC - INPL, 1, Rue Grandville B.P. 451, 54001NancyFrance</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1999</dateIssued>
<dateModified encoding="w3cdtf">1998-07-24</dateModified>
<copyrightDate encoding="w3cdtf">1999</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: A feedstream jet intermittency phenomenon and its onset conditions in a continuous stirred tank reactor are detected for the first time using a laser sheet induced fluorescence visualisation technique. The aim of the present investigation is to determine the operating conditions for which the intermittency phenomenon occurs in stirred tank reactors. The jet intermittency parameters studied are: stirrer type (Rushton and 45° pitched blade turbines, profiled Mixel TTP propeller), stirrer rotational speed, fluid viscosity, feeding rate and the feed point location in the tank. In the case of the Rushton turbine stirred tank reactor, diagrams of intermittency occurrence are reported. These diagrams represent the feeding jet velocity as a function of specific power input or local fluid velocity in the tank. It was not possible to derive from these diagrams any valuable correlation. In order to predict and scale-up the occurrence of intermittency in industrial stirred reactors, dimensionless correlations characterising intermittency occurrence in these devices have been modelled for the three types of stirrers. The dominant variables determining the occurrence of intermittency is the ratio of the jet velocity vJ to the tip velocity vtip.</abstract>
<note type="content">Fig. 1: Experimental set-up 1. Reservoir (1m3), 2. Pump, 3. Flow meter, 4. Feed tubes, 5. Reducing motor, 6. Mixing tank (20dm3), 7. Stirrer, 8. Optical bench-table, 9. Water-cooled Argon ion laser (power 1.4W at 514nm), 10. Plano-convex lens, 11. Plano-concave lens, 12. Cylindrical lens (f=22.2nm), 13. CCD camera (sensibility: 0.25lx), 14. Sharp cut-off filter (560nm), 15. Magnetic tape recorder, 16. Computer (image processing), 17. Color graphics display unit, 18. Printer.</note>
<note type="content">Fig. 2: Mixing tank and feeding point location 〈1-1〉 ⋯ 〈6-6〉.</note>
<note type="content">Fig. 3: Mixing stirrers.</note>
<note type="content">Fig. 4: Instantaneous digital LIF images for Rushton turbine: no intermittency (D=T/3, h=H/3, VJ=0.6ms−1, N=112rpm, μ=10−3Pas, dt=7mm, feed position 〈6-6〉).</note>
<note type="content">Fig. 5: Instantaneous digital LIF images for Rushton turbine: slight intermittency (D=T/3, h=H/3, vJ=0.6ms−1, N=112rpm, μ=10−3Pas, dt=7mm, feed position 〈6-6〉).</note>
<note type="content">Fig. 6: Instantaneous digital LIF images for Rushton turbine: effective intermittency (D=T/3, h=H/3, vj=0.6ms−1, N=112rpm, μ=10−3Pas, dt=7mm, feed position (〈6-6〉).</note>
<note type="content">Fig. 7: Typical example of experimental results (feed points 〈3-3〉, D=T/3, h=H/3, μ=10−3Pas, dt=7mm).</note>
<note type="content">Fig. 8: Feeding jet velocity vJ vs. specific power input ε for Rushton turbine.</note>
<note type="content">Fig. 9: Feeding jet velocity vJ vs. local fluid velocity v for Rushton turbine.</note>
<note type="content">Fig. 10: (vJ/vtip) vs. Rec1×(dt/D)c2 for transition from steady to intermittent flows (Rushton turbine).</note>
<note type="content">Fig. 11: (vJ/vtip) vs. Rec1×(dt/D)c2 for transition from steady to intermittent flows (45° pitched turbine).</note>
<note type="content">Fig. 12: (vJ/vtip) vs. Rec1×(dt/D)c2 for transition from steady to intermittent flows (Mixel propeller).</note>
<subject>
<genre>Keywords</genre>
<topic>Intermittency</topic>
<topic>Feedstream jet</topic>
<topic>Jet velocity</topic>
<topic>Tip velocity</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Chemical Engineering Journal</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>CEJ</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">19990129</dateIssued>
</originInfo>
<identifier type="ISSN">1385-8947</identifier>
<identifier type="PII">S1385-8947(00)X0006-X</identifier>
<part>
<date>19990129</date>
<detail type="volume">
<number>72</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>1</start>
<end>90</end>
</extent>
<extent unit="pages">
<start>19</start>
<end>29</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">7F37BA2802284B7996465B96674A27A552933A84</identifier>
<identifier type="ark">ark:/67375/6H6-VT7S8G8K-D</identifier>
<identifier type="DOI">10.1016/S1385-8947(98)00124-7</identifier>
<identifier type="PII">S1385-8947(98)00124-7</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©1999 Elsevier Science S.A.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Elsevier Science S.A., ©1999</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/7F37BA2802284B7996465B96674A27A552933A84/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D23 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000D23 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:7F37BA2802284B7996465B96674A27A552933A84
   |texte=   Feedstream jet intermittency phenomenon in a continuous stirred tank reactor
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024