Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gas‐sweeping pervaporation: A method for studying the transport of solvent mixtures in polymers: Application to the methanol–propan‐1‐ol‐cellulose triacetate system

Identifieur interne : 000732 ( Istex/Corpus ); précédent : 000731; suivant : 000733

Gas‐sweeping pervaporation: A method for studying the transport of solvent mixtures in polymers: Application to the methanol–propan‐1‐ol‐cellulose triacetate system

Auteurs : X. Q. Nguyen ; Q. T. Nguyen ; R. Clement ; P. Uchytil

Source :

RBID : ISTEX:C6C3D54B91CAD2D8C511B1374012103464127C3E

English descriptors

Abstract

A new method using a batch gas‐sweeping pervaporation was proposed for the measurement of different transport parameters of a polymer film to a solvent mixture. In addition to the total permeation flux and the selectivity of the film to the mixture, the diffusion coefficients and the permeation coefficients of the components can be determined. The method, which is based on new solutions of the second Fick law in which the upstream concentration is time‐dependent, was applied to the transport of methanol‐propan‐1‐ol mixtures through a cellulose triacetate membrane and their results were compared with those obtained in vacuum pervaporation. Both the methods give equivalent selectivity and permeation fluxes at all methanol contents. The diffusion coefficient of methanol, which was ca. 10−7 cm2/s in cellulose triacetate when pure methanol was used, was found to be much smaller when methanol was mixed with propan‐1‐ol (ca. 10−9cm2/s). From the practical viewpoint, the cellulose triacetate membrane shows a high permeation flux with a rather good selectivity to methanol. © 1994 John Wiley & Sons, Inc.

Url:
DOI: 10.1002/app.1994.070541304

Links to Exploration step

ISTEX:C6C3D54B91CAD2D8C511B1374012103464127C3E

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Gas‐sweeping pervaporation: A method for studying the transport of solvent mixtures in polymers: Application to the methanol–propan‐1‐ol‐cellulose triacetate system</title>
<author>
<name sortKey="Nguyen, X Q" sort="Nguyen, X Q" uniqKey="Nguyen X" first="X. Q." last="Nguyen">X. Q. Nguyen</name>
<affiliation>
<mods:affiliation>LCPM‐URA 494, ENSIC, 1 rue Grandville, B. P. 451, 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nguyen, Q T" sort="Nguyen, Q T" uniqKey="Nguyen Q" first="Q. T." last="Nguyen">Q. T. Nguyen</name>
<affiliation>
<mods:affiliation>LCPM‐URA 494, ENSIC, 1 rue Grandville, B. P. 451, 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: LCPM‐URA 494, ENSIC, 1 rue Grandville, B. P. 451, 54001 Nancy Cedex, France===</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Clement, R" sort="Clement, R" uniqKey="Clement R" first="R." last="Clement">R. Clement</name>
<affiliation>
<mods:affiliation>LCPM‐URA 494, ENSIC, 1 rue Grandville, B. P. 451, 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Uchytil, P" sort="Uchytil, P" uniqKey="Uchytil P" first="P." last="Uchytil">P. Uchytil</name>
<affiliation>
<mods:affiliation>LCPM‐URA 494, ENSIC, 1 rue Grandville, B. P. 451, 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:C6C3D54B91CAD2D8C511B1374012103464127C3E</idno>
<date when="1994" year="1994">1994</date>
<idno type="doi">10.1002/app.1994.070541304</idno>
<idno type="url">https://api.istex.fr/document/C6C3D54B91CAD2D8C511B1374012103464127C3E/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000732</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000732</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Gas‐sweeping pervaporation: A method for studying the transport of solvent mixtures in polymers: Application to the methanol–propan‐1‐ol‐cellulose triacetate system</title>
<author>
<name sortKey="Nguyen, X Q" sort="Nguyen, X Q" uniqKey="Nguyen X" first="X. Q." last="Nguyen">X. Q. Nguyen</name>
<affiliation>
<mods:affiliation>LCPM‐URA 494, ENSIC, 1 rue Grandville, B. P. 451, 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nguyen, Q T" sort="Nguyen, Q T" uniqKey="Nguyen Q" first="Q. T." last="Nguyen">Q. T. Nguyen</name>
<affiliation>
<mods:affiliation>LCPM‐URA 494, ENSIC, 1 rue Grandville, B. P. 451, 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: LCPM‐URA 494, ENSIC, 1 rue Grandville, B. P. 451, 54001 Nancy Cedex, France===</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Clement, R" sort="Clement, R" uniqKey="Clement R" first="R." last="Clement">R. Clement</name>
<affiliation>
<mods:affiliation>LCPM‐URA 494, ENSIC, 1 rue Grandville, B. P. 451, 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Uchytil, P" sort="Uchytil, P" uniqKey="Uchytil P" first="P." last="Uchytil">P. Uchytil</name>
<affiliation>
<mods:affiliation>LCPM‐URA 494, ENSIC, 1 rue Grandville, B. P. 451, 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Applied Polymer Science</title>
<title level="j" type="alt">JOURNAL OF APPLIED POLYMER SCIENCE</title>
<idno type="ISSN">0021-8995</idno>
<idno type="eISSN">1097-4628</idno>
<imprint>
<biblScope unit="vol">54</biblScope>
<biblScope unit="issue">13</biblScope>
<biblScope unit="page" from="2023">2023</biblScope>
<biblScope unit="page" to="2032">2032</biblScope>
<biblScope unit="page-count">10</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="1994-12-26">1994-12-26</date>
</imprint>
<idno type="ISSN">0021-8995</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0021-8995</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atmospheric pressure</term>
<term>Batch pervaporation</term>
<term>Boundary conditions</term>
<term>Cellulose triacetate</term>
<term>Cellulose triacetate membrane</term>
<term>Chromatographic analysis</term>
<term>Chromatographic peaks</term>
<term>Classical vacuum pervaporation</term>
<term>Coefficient</term>
<term>Colloid polym</term>
<term>Component permeation fluxes</term>
<term>Composite membrane</term>
<term>Constant temperature</term>
<term>Different compositions</term>
<term>Different times</term>
<term>Differential permeation</term>
<term>Differential permeation method</term>
<term>Differential permeations</term>
<term>Diffusion coefficient</term>
<term>Diffusion coefficients</term>
<term>Early stage</term>
<term>Experimental fluxes</term>
<term>Experimental points</term>
<term>Feed mixture</term>
<term>Flow rate</term>
<term>Gassweeping pervaporation</term>
<term>High vacuum</term>
<term>John wiley sons</term>
<term>Liquid mixture</term>
<term>Lute stage</term>
<term>Membrane</term>
<term>Membrane characteristics</term>
<term>Membrane permeability</term>
<term>Membrane selectivity</term>
<term>Membrane surface</term>
<term>Meoh</term>
<term>Methanol</term>
<term>Methanol content</term>
<term>Methanol contents</term>
<term>Methanol molecules</term>
<term>Nguyen</term>
<term>Permeability</term>
<term>Permeability coefficient</term>
<term>Permeant</term>
<term>Permeant concentration</term>
<term>Permeation</term>
<term>Permeation flux</term>
<term>Permeation fluxes</term>
<term>Permeation parameters</term>
<term>Permeation rate</term>
<term>Permeation rates</term>
<term>Permeation selectivity</term>
<term>Pervaporation</term>
<term>Pervaporation process</term>
<term>Pervaporation temperature</term>
<term>Polymer</term>
<term>Polymer chains</term>
<term>Polymer film</term>
<term>Polymer material</term>
<term>Propanol</term>
<term>Propanol molecules</term>
<term>Pure methanol</term>
<term>Rational thermodynamics</term>
<term>Retentate</term>
<term>Retentate figure</term>
<term>Same membrane</term>
<term>Second fick</term>
<term>Selectivity</term>
<term>Solvent mixtures</term>
<term>Solvent permeation</term>
<term>Solvent transport</term>
<term>State regime</term>
<term>Surface area</term>
<term>Time dependence</term>
<term>Total flux</term>
<term>Total permeation flux</term>
<term>Transient diffusion regime</term>
<term>Transient regime</term>
<term>Transport parameters</term>
<term>Triacetate</term>
<term>Typical time dependence</term>
<term>Useful information</term>
<term>Vacuum pervaporation</term>
<term>Vapor permeation</term>
<term>Vapor pressure</term>
<term>Weight fraction</term>
<term>Weight fractions</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Atmospheric pressure</term>
<term>Batch pervaporation</term>
<term>Boundary conditions</term>
<term>Cellulose triacetate</term>
<term>Cellulose triacetate membrane</term>
<term>Chromatographic analysis</term>
<term>Chromatographic peaks</term>
<term>Classical vacuum pervaporation</term>
<term>Coefficient</term>
<term>Colloid polym</term>
<term>Component permeation fluxes</term>
<term>Composite membrane</term>
<term>Constant temperature</term>
<term>Different compositions</term>
<term>Different times</term>
<term>Differential permeation</term>
<term>Differential permeation method</term>
<term>Differential permeations</term>
<term>Diffusion coefficient</term>
<term>Diffusion coefficients</term>
<term>Early stage</term>
<term>Experimental fluxes</term>
<term>Experimental points</term>
<term>Feed mixture</term>
<term>Flow rate</term>
<term>Gassweeping pervaporation</term>
<term>High vacuum</term>
<term>John wiley sons</term>
<term>Liquid mixture</term>
<term>Lute stage</term>
<term>Membrane</term>
<term>Membrane characteristics</term>
<term>Membrane permeability</term>
<term>Membrane selectivity</term>
<term>Membrane surface</term>
<term>Meoh</term>
<term>Methanol</term>
<term>Methanol content</term>
<term>Methanol contents</term>
<term>Methanol molecules</term>
<term>Nguyen</term>
<term>Permeability</term>
<term>Permeability coefficient</term>
<term>Permeant</term>
<term>Permeant concentration</term>
<term>Permeation</term>
<term>Permeation flux</term>
<term>Permeation fluxes</term>
<term>Permeation parameters</term>
<term>Permeation rate</term>
<term>Permeation rates</term>
<term>Permeation selectivity</term>
<term>Pervaporation</term>
<term>Pervaporation process</term>
<term>Pervaporation temperature</term>
<term>Polymer</term>
<term>Polymer chains</term>
<term>Polymer film</term>
<term>Polymer material</term>
<term>Propanol</term>
<term>Propanol molecules</term>
<term>Pure methanol</term>
<term>Rational thermodynamics</term>
<term>Retentate</term>
<term>Retentate figure</term>
<term>Same membrane</term>
<term>Second fick</term>
<term>Selectivity</term>
<term>Solvent mixtures</term>
<term>Solvent permeation</term>
<term>Solvent transport</term>
<term>State regime</term>
<term>Surface area</term>
<term>Time dependence</term>
<term>Total flux</term>
<term>Total permeation flux</term>
<term>Transient diffusion regime</term>
<term>Transient regime</term>
<term>Transport parameters</term>
<term>Triacetate</term>
<term>Typical time dependence</term>
<term>Useful information</term>
<term>Vacuum pervaporation</term>
<term>Vapor permeation</term>
<term>Vapor pressure</term>
<term>Weight fraction</term>
<term>Weight fractions</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A new method using a batch gas‐sweeping pervaporation was proposed for the measurement of different transport parameters of a polymer film to a solvent mixture. In addition to the total permeation flux and the selectivity of the film to the mixture, the diffusion coefficients and the permeation coefficients of the components can be determined. The method, which is based on new solutions of the second Fick law in which the upstream concentration is time‐dependent, was applied to the transport of methanol‐propan‐1‐ol mixtures through a cellulose triacetate membrane and their results were compared with those obtained in vacuum pervaporation. Both the methods give equivalent selectivity and permeation fluxes at all methanol contents. The diffusion coefficient of methanol, which was ca. 10−7 cm2/s in cellulose triacetate when pure methanol was used, was found to be much smaller when methanol was mixed with propan‐1‐ol (ca. 10−9cm2/s). From the practical viewpoint, the cellulose triacetate membrane shows a high permeation flux with a rather good selectivity to methanol. © 1994 John Wiley & Sons, Inc.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>permeation</json:string>
<json:string>methanol</json:string>
<json:string>pervaporation</json:string>
<json:string>diffusion coefficient</json:string>
<json:string>permeability</json:string>
<json:string>vacuum pervaporation</json:string>
<json:string>nguyen</json:string>
<json:string>propanol</json:string>
<json:string>polymer</json:string>
<json:string>selectivity</json:string>
<json:string>permeant</json:string>
<json:string>triacetate</json:string>
<json:string>retentate</json:string>
<json:string>meoh</json:string>
<json:string>composite membrane</json:string>
<json:string>membrane</json:string>
<json:string>membrane selectivity</json:string>
<json:string>feed mixture</json:string>
<json:string>flow rate</json:string>
<json:string>cellulose triacetate membrane</json:string>
<json:string>liquid mixture</json:string>
<json:string>coefficient</json:string>
<json:string>permeability coefficient</json:string>
<json:string>time dependence</json:string>
<json:string>polymer chains</json:string>
<json:string>polymer material</json:string>
<json:string>polymer film</json:string>
<json:string>weight fraction</json:string>
<json:string>permeation fluxes</json:string>
<json:string>permeant concentration</json:string>
<json:string>second fick</json:string>
<json:string>permeation flux</json:string>
<json:string>membrane surface</json:string>
<json:string>surface area</json:string>
<json:string>different times</json:string>
<json:string>total flux</json:string>
<json:string>total permeation flux</json:string>
<json:string>methanol contents</json:string>
<json:string>atmospheric pressure</json:string>
<json:string>differential permeation</json:string>
<json:string>vapor permeation</json:string>
<json:string>diffusion coefficients</json:string>
<json:string>transport parameters</json:string>
<json:string>cellulose triacetate</json:string>
<json:string>rational thermodynamics</json:string>
<json:string>methanol content</json:string>
<json:string>same membrane</json:string>
<json:string>pervaporation temperature</json:string>
<json:string>membrane characteristics</json:string>
<json:string>solvent transport</json:string>
<json:string>differential permeation method</json:string>
<json:string>permeation parameters</json:string>
<json:string>classical vacuum pervaporation</json:string>
<json:string>john wiley sons</json:string>
<json:string>pure methanol</json:string>
<json:string>state regime</json:string>
<json:string>transient regime</json:string>
<json:string>weight fractions</json:string>
<json:string>constant temperature</json:string>
<json:string>boundary conditions</json:string>
<json:string>solvent permeation</json:string>
<json:string>high vacuum</json:string>
<json:string>different compositions</json:string>
<json:string>permeation selectivity</json:string>
<json:string>chromatographic analysis</json:string>
<json:string>batch pervaporation</json:string>
<json:string>useful information</json:string>
<json:string>transient diffusion regime</json:string>
<json:string>typical time dependence</json:string>
<json:string>component permeation fluxes</json:string>
<json:string>solvent mixtures</json:string>
<json:string>differential permeations</json:string>
<json:string>permeation rate</json:string>
<json:string>chromatographic peaks</json:string>
<json:string>experimental points</json:string>
<json:string>membrane permeability</json:string>
<json:string>gassweeping pervaporation</json:string>
<json:string>methanol molecules</json:string>
<json:string>propanol molecules</json:string>
<json:string>early stage</json:string>
<json:string>permeation rates</json:string>
<json:string>retentate figure</json:string>
<json:string>pervaporation process</json:string>
<json:string>lute stage</json:string>
<json:string>experimental fluxes</json:string>
<json:string>vapor pressure</json:string>
<json:string>colloid polym</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>X. Q. Nguyen</name>
<affiliations>
<json:string>LCPM‐URA 494, ENSIC, 1 rue Grandville, B. P. 451, 54001 Nancy Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Q. T. Nguyen</name>
<affiliations>
<json:string>LCPM‐URA 494, ENSIC, 1 rue Grandville, B. P. 451, 54001 Nancy Cedex, France</json:string>
<json:string>LCPM‐URA 494, ENSIC, 1 rue Grandville, B. P. 451, 54001 Nancy Cedex, France===</json:string>
</affiliations>
</json:item>
<json:item>
<name>R. Clement</name>
<affiliations>
<json:string>LCPM‐URA 494, ENSIC, 1 rue Grandville, B. P. 451, 54001 Nancy Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>P. Uchytil</name>
<affiliations>
<json:string>LCPM‐URA 494, ENSIC, 1 rue Grandville, B. P. 451, 54001 Nancy Cedex, France</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>APP070541304</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>A new method using a batch gas‐sweeping pervaporation was proposed for the measurement of different transport parameters of a polymer film to a solvent mixture. In addition to the total permeation flux and the selectivity of the film to the mixture, the diffusion coefficients and the permeation coefficients of the components can be determined. The method, which is based on new solutions of the second Fick law in which the upstream concentration is time‐dependent, was applied to the transport of methanol‐propan‐1‐ol mixtures through a cellulose triacetate membrane and their results were compared with those obtained in vacuum pervaporation. Both the methods give equivalent selectivity and permeation fluxes at all methanol contents. The diffusion coefficient of methanol, which was ca. 10−7 cm2/s in cellulose triacetate when pure methanol was used, was found to be much smaller when methanol was mixed with propan‐1‐ol (ca. 10−9cm2/s). From the practical viewpoint, the cellulose triacetate membrane shows a high permeation flux with a rather good selectivity to methanol. © 1994 John Wiley & Sons, Inc.</abstract>
<qualityIndicators>
<score>6.804</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>612 x 791.759 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1111</abstractCharCount>
<pdfWordCount>4764</pdfWordCount>
<pdfCharCount>27620</pdfCharCount>
<pdfPageCount>10</pdfPageCount>
<abstractWordCount>170</abstractWordCount>
</qualityIndicators>
<title>Gas‐sweeping pervaporation: A method for studying the transport of solvent mixtures in polymers: Application to the methanol–propan‐1‐ol‐cellulose triacetate system</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Applied Polymer Science</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1097-4628</json:string>
</doi>
<issn>
<json:string>0021-8995</json:string>
</issn>
<eissn>
<json:string>1097-4628</json:string>
</eissn>
<publisherId>
<json:string>APP</json:string>
</publisherId>
<volume>54</volume>
<issue>13</issue>
<pages>
<first>2023</first>
<last>2032</last>
<total>10</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Article</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>polymer science</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>chemistry</json:string>
<json:string>polymers</json:string>
</scienceMetrix>
</categories>
<publicationDate>1994</publicationDate>
<copyrightDate>1994</copyrightDate>
<doi>
<json:string>10.1002/app.1994.070541304</json:string>
</doi>
<id>C6C3D54B91CAD2D8C511B1374012103464127C3E</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/C6C3D54B91CAD2D8C511B1374012103464127C3E/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/C6C3D54B91CAD2D8C511B1374012103464127C3E/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/C6C3D54B91CAD2D8C511B1374012103464127C3E/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Gas‐sweeping pervaporation: A method for studying the transport of solvent mixtures in polymers: Application to the methanol–propan‐1‐ol‐cellulose triacetate system</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>New York</pubPlace>
<availability>
<licence>Copyright © 1994 John Wiley & Sons, Inc.</licence>
</availability>
<date type="published" when="1994-12-26"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Gas‐sweeping pervaporation: A method for studying the transport of solvent mixtures in polymers: Application to the methanol–propan‐1‐ol‐cellulose triacetate system</title>
<title level="a" type="short" xml:lang="en">GAS‐SWEEPING PERVAPORATION</title>
<author xml:id="author-0000">
<persName>
<forename type="first">X. Q.</forename>
<surname>Nguyen</surname>
</persName>
<affiliation>LCPM‐URA 494, ENSIC, 1 rue Grandville, B. P. 451, 54001 Nancy Cedex, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001" role="corresp">
<persName>
<forename type="first">Q. T.</forename>
<surname>Nguyen</surname>
</persName>
<affiliation>LCPM‐URA 494, ENSIC, 1 rue Grandville, B. P. 451, 54001 Nancy Cedex, France
<address>
<country key="FR"></country>
</address>
</affiliation>
<affiliation>LCPM‐URA 494, ENSIC, 1 rue Grandville, B. P. 451, 54001 Nancy Cedex, France===</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">R.</forename>
<surname>Clement</surname>
</persName>
<affiliation>LCPM‐URA 494, ENSIC, 1 rue Grandville, B. P. 451, 54001 Nancy Cedex, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">P.</forename>
<surname>Uchytil</surname>
</persName>
<affiliation>LCPM‐URA 494, ENSIC, 1 rue Grandville, B. P. 451, 54001 Nancy Cedex, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<idno type="istex">C6C3D54B91CAD2D8C511B1374012103464127C3E</idno>
<idno type="ark">ark:/67375/WNG-X77FX1RC-0</idno>
<idno type="DOI">10.1002/app.1994.070541304</idno>
<idno type="unit">APP070541304</idno>
<idno type="toTypesetVersion">file:APP.APP070541304.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of Applied Polymer Science</title>
<title level="j" type="alt">JOURNAL OF APPLIED POLYMER SCIENCE</title>
<idno type="pISSN">0021-8995</idno>
<idno type="eISSN">1097-4628</idno>
<idno type="book-DOI">10.1002/(ISSN)1097-4628</idno>
<idno type="book-part-DOI">10.1002/app.07.v54:13</idno>
<idno type="product">APP</idno>
<imprint>
<biblScope unit="vol">54</biblScope>
<biblScope unit="issue">13</biblScope>
<biblScope unit="page" from="2023">2023</biblScope>
<biblScope unit="page" to="2032">2032</biblScope>
<biblScope unit="page-count">10</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="1994-12-26"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>A new method using a batch gas‐sweeping pervaporation was proposed for the measurement of different transport parameters of a polymer film to a solvent mixture. In addition to the total permeation flux and the selectivity of the film to the mixture, the diffusion coefficients and the permeation coefficients of the components can be determined. The method, which is based on new solutions of the second Fick law in which the upstream concentration is time‐dependent, was applied to the transport of methanol‐propan‐1‐ol mixtures through a cellulose triacetate membrane and their results were compared with those obtained in vacuum pervaporation. Both the methods give equivalent selectivity and permeation fluxes at all methanol contents. The diffusion coefficient of methanol, which was ca. 10
<hi rend="superscript">−7</hi>
cm
<hi rend="superscript">2</hi>
/s in cellulose triacetate when pure methanol was used, was found to be much smaller when methanol was mixed with propan‐1‐ol (ca. 10
<hi rend="superscript">−9</hi>
cm
<hi rend="superscript">2</hi>
/s). From the practical viewpoint, the cellulose triacetate membrane shows a high permeation flux with a rather good selectivity to methanol. © 1994 John Wiley & Sons, Inc.</p>
</abstract>
<textClass>
<keywords rend="articleCategory">
<term>Article</term>
</keywords>
<keywords rend="tocHeading1">
<term>Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/C6C3D54B91CAD2D8C511B1374012103464127C3E/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>New York</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1097-4628</doi>
<issn type="print">0021-8995</issn>
<issn type="electronic">1097-4628</issn>
<idGroup>
<id type="product" value="APP"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF APPLIED POLYMER SCIENCE">Journal of Applied Polymer Science</title>
<title type="short">J. Appl. Polym. Sci.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="130">
<doi origin="wiley" registered="yes">10.1002/app.07.v54:13</doi>
<numberingGroup>
<numbering type="journalVolume" number="54">54</numbering>
<numbering type="journalIssue">13</numbering>
</numberingGroup>
<coverDate startDate="1994-12-26">26 December 1994</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="4" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/app.1994.070541304</doi>
<idGroup>
<id type="unit" value="APP070541304"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="10"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Article</title>
<title type="tocHeading1">Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 1994 John Wiley & Sons, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="1994-01-25"></event>
<event type="manuscriptAccepted" date="1994-05-30"></event>
<event type="firstOnline" date="2003-03-10"></event>
<event type="publishedOnlineFinalForm" date="2003-03-10"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.18.1 mode:FullText source:HeaderRef result:HeaderRef" date="2010-09-09"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-24"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-24"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">2023</numbering>
<numbering type="pageLast">2032</numbering>
</numberingGroup>
<correspondenceTo>LCPM‐URA 494, ENSIC, 1 rue Grandville, B. P. 451, 54001 Nancy Cedex, France===</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:APP.APP070541304.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="9"></count>
<count type="tableTotal" number="1"></count>
<count type="referenceTotal" number="11"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Gas‐sweeping pervaporation: A method for studying the transport of solvent mixtures in polymers: Application to the methanol–propan‐1‐ol‐cellulose triacetate system</title>
<title type="short" xml:lang="en">GAS‐SWEEPING PERVAPORATION</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>X. Q.</givenNames>
<familyName>Nguyen</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Q. T.</givenNames>
<familyName>Nguyen</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>R.</givenNames>
<familyName>Clement</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>P.</givenNames>
<familyName>Uchytil</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="FR" type="organization">
<unparsedAffiliation>LCPM‐URA 494, ENSIC, 1 rue Grandville, B. P. 451, 54001 Nancy Cedex, France</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>A new method using a batch gas‐sweeping pervaporation was proposed for the measurement of different transport parameters of a polymer film to a solvent mixture. In addition to the total permeation flux and the selectivity of the film to the mixture, the diffusion coefficients and the permeation coefficients of the components can be determined. The method, which is based on new solutions of the second Fick law in which the upstream concentration is time‐dependent, was applied to the transport of methanol‐propan‐1‐ol mixtures through a cellulose triacetate membrane and their results were compared with those obtained in vacuum pervaporation. Both the methods give equivalent selectivity and permeation fluxes at all methanol contents. The diffusion coefficient of methanol, which was ca. 10
<sup>−7</sup>
cm
<sup>2</sup>
/s in cellulose triacetate when pure methanol was used, was found to be much smaller when methanol was mixed with propan‐1‐ol (ca. 10
<sup>−9</sup>
cm
<sup>2</sup>
/s). From the practical viewpoint, the cellulose triacetate membrane shows a high permeation flux with a rather good selectivity to methanol. © 1994 John Wiley & Sons, Inc.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Gas‐sweeping pervaporation: A method for studying the transport of solvent mixtures in polymers: Application to the methanol–propan‐1‐ol‐cellulose triacetate system</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>GAS‐SWEEPING PERVAPORATION</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Gas‐sweeping pervaporation: A method for studying the transport of solvent mixtures in polymers: Application to the methanol–propan‐1‐ol‐cellulose triacetate system</title>
</titleInfo>
<name type="personal">
<namePart type="given">X. Q.</namePart>
<namePart type="family">Nguyen</namePart>
<affiliation>LCPM‐URA 494, ENSIC, 1 rue Grandville, B. P. 451, 54001 Nancy Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Q. T.</namePart>
<namePart type="family">Nguyen</namePart>
<affiliation>LCPM‐URA 494, ENSIC, 1 rue Grandville, B. P. 451, 54001 Nancy Cedex, France</affiliation>
<affiliation>Correspondence address: LCPM‐URA 494, ENSIC, 1 rue Grandville, B. P. 451, 54001 Nancy Cedex, France===</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">Clement</namePart>
<affiliation>LCPM‐URA 494, ENSIC, 1 rue Grandville, B. P. 451, 54001 Nancy Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P.</namePart>
<namePart type="family">Uchytil</namePart>
<affiliation>LCPM‐URA 494, ENSIC, 1 rue Grandville, B. P. 451, 54001 Nancy Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">New York</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1994-12-26</dateIssued>
<dateCaptured encoding="w3cdtf">1994-01-25</dateCaptured>
<dateValid encoding="w3cdtf">1994-05-30</dateValid>
<copyrightDate encoding="w3cdtf">1994</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">9</extent>
<extent unit="tables">1</extent>
<extent unit="references">11</extent>
</physicalDescription>
<abstract lang="en">A new method using a batch gas‐sweeping pervaporation was proposed for the measurement of different transport parameters of a polymer film to a solvent mixture. In addition to the total permeation flux and the selectivity of the film to the mixture, the diffusion coefficients and the permeation coefficients of the components can be determined. The method, which is based on new solutions of the second Fick law in which the upstream concentration is time‐dependent, was applied to the transport of methanol‐propan‐1‐ol mixtures through a cellulose triacetate membrane and their results were compared with those obtained in vacuum pervaporation. Both the methods give equivalent selectivity and permeation fluxes at all methanol contents. The diffusion coefficient of methanol, which was ca. 10−7 cm2/s in cellulose triacetate when pure methanol was used, was found to be much smaller when methanol was mixed with propan‐1‐ol (ca. 10−9cm2/s). From the practical viewpoint, the cellulose triacetate membrane shows a high permeation flux with a rather good selectivity to methanol. © 1994 John Wiley & Sons, Inc.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Journal of Applied Polymer Science</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Appl. Polym. Sci.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Article</topic>
</subject>
<identifier type="ISSN">0021-8995</identifier>
<identifier type="eISSN">1097-4628</identifier>
<identifier type="DOI">10.1002/(ISSN)1097-4628</identifier>
<identifier type="PublisherID">APP</identifier>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>54</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>13</number>
</detail>
<extent unit="pages">
<start>2023</start>
<end>2032</end>
<total>10</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">C6C3D54B91CAD2D8C511B1374012103464127C3E</identifier>
<identifier type="ark">ark:/67375/WNG-X77FX1RC-0</identifier>
<identifier type="DOI">10.1002/app.1994.070541304</identifier>
<identifier type="ArticleID">APP070541304</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 1994 John Wiley & Sons, Inc.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/C6C3D54B91CAD2D8C511B1374012103464127C3E/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000732 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000732 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:C6C3D54B91CAD2D8C511B1374012103464127C3E
   |texte=   Gas‐sweeping pervaporation: A method for studying the transport of solvent mixtures in polymers: Application to the methanol–propan‐1‐ol‐cellulose triacetate system
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024