Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bite Force Estimation and the Fiber Architecture of Felid Masticatory Muscles

Identifieur interne : 000502 ( Istex/Corpus ); précédent : 000501; suivant : 000503

Bite Force Estimation and the Fiber Architecture of Felid Masticatory Muscles

Auteurs : Adam Hartstone-Rose ; Jonathan M. G. Perry ; Caroline J. Morrow

Source :

RBID : ISTEX:3E3BA4407BBF256C59DE33F8C499A365DB84A81C

English descriptors

Abstract

Increasingly, analyses of craniodental dietary adaptations take into account mechanical properties of foods. However, masticatory muscle fiber architecture has been described for relatively few lineages, even though an understanding of the scaling of this anatomy can yield important information about adaptations for stretch and strength in the masticatory system. Data on the mandibular adductors of 28 specimens from nine species of felids representing nearly the entire body size range of the family allow us to evaluate the influence of body size and diet on the masticatory apparatus within this lineage. Masticatory muscle masses scale isometrically, tending toward positive allometry, with body mass and jaw length. This allometry becomes significant when the independent variable is a geometric mean of cranial variables. For all three body size proxies, the physiological cross‐sectional area and predicted bite forces scale with significant positive allometry. Average fiber lengths (FL) tend toward negative allometry though with wide confidence intervals resulting from substantial scatter. We believe that these FL residuals are affected by dietary signals within the sample; though the mechanical properties of felid diets are relatively similar across species, the most durophagous species in our sample (the jaguar) appears to have relatively higher force production capabilities. The more notable dietary trend in our sample is the relationship between FL and relative prey size: felid species that predominantly consume relatively small prey have short masticatory muscle fibers, and species that regularly consume relatively large prey have relatively long fibers. This suggests an adaptive signal related to gape. Anat Rec, 2012. © 2012 Wiley Periodicals, Inc.

Url:
DOI: 10.1002/ar.22518

Links to Exploration step

ISTEX:3E3BA4407BBF256C59DE33F8C499A365DB84A81C

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bite Force Estimation and the Fiber Architecture of Felid Masticatory Muscles</title>
<author>
<name sortKey="Hartstone Ose, Adam" sort="Hartstone Ose, Adam" uniqKey="Hartstone Ose A" first="Adam" last="Hartstone-Rose">Adam Hartstone-Rose</name>
<affiliation>
<mods:affiliation>Department of Biology and Anthropology, Penn State Altoona, Altoona, Pennsylvania</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: Adam.Hartstone‐Rose@psu.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Department of Biology and Anthropology, Penn State Altoona, 3000 Ivyside Park, Altoona, PA, 16601</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Perry, Jonathan M G" sort="Perry, Jonathan M G" uniqKey="Perry J" first="Jonathan M. G." last="Perry">Jonathan M. G. Perry</name>
<affiliation>
<mods:affiliation>Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Morrow, Caroline J" sort="Morrow, Caroline J" uniqKey="Morrow C" first="Caroline J." last="Morrow">Caroline J. Morrow</name>
<affiliation>
<mods:affiliation>Department of Physical Therapy, Thomas Jefferson University School of Health Professions, Philadelphia, Pennsylvania</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:3E3BA4407BBF256C59DE33F8C499A365DB84A81C</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1002/ar.22518</idno>
<idno type="url">https://api.istex.fr/document/3E3BA4407BBF256C59DE33F8C499A365DB84A81C/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000502</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000502</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Bite Force Estimation and the Fiber Architecture of Felid Masticatory Muscles</title>
<author>
<name sortKey="Hartstone Ose, Adam" sort="Hartstone Ose, Adam" uniqKey="Hartstone Ose A" first="Adam" last="Hartstone-Rose">Adam Hartstone-Rose</name>
<affiliation>
<mods:affiliation>Department of Biology and Anthropology, Penn State Altoona, Altoona, Pennsylvania</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: Adam.Hartstone‐Rose@psu.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Department of Biology and Anthropology, Penn State Altoona, 3000 Ivyside Park, Altoona, PA, 16601</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Perry, Jonathan M G" sort="Perry, Jonathan M G" uniqKey="Perry J" first="Jonathan M. G." last="Perry">Jonathan M. G. Perry</name>
<affiliation>
<mods:affiliation>Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Morrow, Caroline J" sort="Morrow, Caroline J" uniqKey="Morrow C" first="Caroline J." last="Morrow">Caroline J. Morrow</name>
<affiliation>
<mods:affiliation>Department of Physical Therapy, Thomas Jefferson University School of Health Professions, Philadelphia, Pennsylvania</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology</title>
<title level="j" type="alt">ANATOMICAL RECORD, THE</title>
<idno type="ISSN">1932-8486</idno>
<idno type="eISSN">1932-8494</idno>
<imprint>
<biblScope unit="vol">295</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="1336">1336</biblScope>
<biblScope unit="page" to="1351">1351</biblScope>
<biblScope unit="page-count">16</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2012-08">2012-08</date>
</imprint>
<idno type="ISSN">1932-8486</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1932-8486</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abbreviation</term>
<term>Adductor</term>
<term>Adductor dimensions</term>
<term>Allometry</term>
<term>Anapol</term>
<term>Anat</term>
<term>Biol</term>
<term>Bobcat</term>
<term>Body mass</term>
<term>Body size</term>
<term>Body size proxies</term>
<term>Canine</term>
<term>Caracal</term>
<term>Carnassial</term>
<term>Carnassial notch</term>
<term>Condyle</term>
<term>Cranial</term>
<term>Cube root</term>
<term>Deep masseter</term>
<term>Deep temporalis</term>
<term>Dependent variables</term>
<term>Descriptive statistics</term>
<term>Dietary</term>
<term>Dietary prey size</term>
<term>Dietary signal</term>
<term>Dietary signals</term>
<term>Digastric</term>
<term>Digastric mass</term>
<term>Durophagous</term>
<term>Durophagous species</term>
<term>Etmp qtmp ltmp</term>
<term>Fascicle</term>
<term>Fascicle length</term>
<term>Felid</term>
<term>Felid species</term>
<term>Felidae</term>
<term>Fiber architecture</term>
<term>Food properties</term>
<term>Fossil</term>
<term>Functional anatomy</term>
<term>Functional significance</term>
<term>Gape</term>
<term>Geometric similarity</term>
<term>Gorniak</term>
<term>Hylander</term>
<term>Independent variables</term>
<term>Insertion</term>
<term>Isometry</term>
<term>Large prey</term>
<term>Lateral</term>
<term>Lateral pterygoid</term>
<term>Leopard</term>
<term>Leverage</term>
<term>Load arms</term>
<term>Long canines</term>
<term>Ltmp</term>
<term>Lynx</term>
<term>Lynx rufus</term>
<term>Mamm</term>
<term>Mammal</term>
<term>Mandible</term>
<term>Mandibular</term>
<term>Mandibular adductors</term>
<term>Mandibular condyle</term>
<term>Mandibular symphysis</term>
<term>Masseter</term>
<term>Masseter mass</term>
<term>Mastication</term>
<term>Masticatory</term>
<term>Masticatory muscle architecture</term>
<term>Masticatory muscles</term>
<term>Mechanical properties</term>
<term>Medial</term>
<term>Medial pterygoid</term>
<term>Moment arms</term>
<term>Muscle architecture</term>
<term>Muscle group</term>
<term>Muscle mass</term>
<term>Musculature</term>
<term>Nebulosa</term>
<term>Neofelis</term>
<term>Onca</term>
<term>Organisation architecturale</term>
<term>Osteological</term>
<term>Osteological correlates</term>
<term>Other species</term>
<term>Panthera</term>
<term>Panthera onca</term>
<term>Pardalis</term>
<term>Pcsa</term>
<term>Phys</term>
<term>Phys anthropol</term>
<term>Pinnation</term>
<term>Positive allometry</term>
<term>Premolar</term>
<term>Prey</term>
<term>Prey items</term>
<term>Prey size</term>
<term>Primate</term>
<term>Primates</term>
<term>Pterygoid</term>
<term>Qtmp</term>
<term>Qtmp ltmp</term>
<term>Regression lines</term>
<term>Relative prey size</term>
<term>Residual</term>
<term>Rufus</term>
<term>Same individuals</term>
<term>Sample sizes</term>
<term>Serval</term>
<term>Small prey</term>
<term>Smallest prey</term>
<term>Species names</term>
<term>Sunquist</term>
<term>Superficial masseter</term>
<term>Superficial temporalis</term>
<term>Taxon</term>
<term>Temp mass</term>
<term>Temporalis</term>
<term>Temporomandibular</term>
<term>Third premolar</term>
<term>Tigris</term>
<term>Toldt</term>
<term>Total adductor mass</term>
<term>Total pcsa</term>
<term>Turnbull</term>
<term>Vinyard</term>
<term>Wider gape</term>
<term>Zygomatic</term>
<term>Zygomatic temporalis</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Abbreviation</term>
<term>Adductor</term>
<term>Adductor dimensions</term>
<term>Allometry</term>
<term>Anapol</term>
<term>Anat</term>
<term>Biol</term>
<term>Bobcat</term>
<term>Body mass</term>
<term>Body size</term>
<term>Body size proxies</term>
<term>Canine</term>
<term>Caracal</term>
<term>Carnassial</term>
<term>Carnassial notch</term>
<term>Condyle</term>
<term>Cranial</term>
<term>Cube root</term>
<term>Deep masseter</term>
<term>Deep temporalis</term>
<term>Dependent variables</term>
<term>Descriptive statistics</term>
<term>Dietary</term>
<term>Dietary prey size</term>
<term>Dietary signal</term>
<term>Dietary signals</term>
<term>Digastric</term>
<term>Digastric mass</term>
<term>Durophagous</term>
<term>Durophagous species</term>
<term>Etmp qtmp ltmp</term>
<term>Fascicle</term>
<term>Fascicle length</term>
<term>Felid</term>
<term>Felid species</term>
<term>Felidae</term>
<term>Fiber architecture</term>
<term>Food properties</term>
<term>Fossil</term>
<term>Functional anatomy</term>
<term>Functional significance</term>
<term>Gape</term>
<term>Geometric similarity</term>
<term>Gorniak</term>
<term>Hylander</term>
<term>Independent variables</term>
<term>Insertion</term>
<term>Isometry</term>
<term>Large prey</term>
<term>Lateral</term>
<term>Lateral pterygoid</term>
<term>Leopard</term>
<term>Leverage</term>
<term>Load arms</term>
<term>Long canines</term>
<term>Ltmp</term>
<term>Lynx</term>
<term>Lynx rufus</term>
<term>Mamm</term>
<term>Mammal</term>
<term>Mandible</term>
<term>Mandibular</term>
<term>Mandibular adductors</term>
<term>Mandibular condyle</term>
<term>Mandibular symphysis</term>
<term>Masseter</term>
<term>Masseter mass</term>
<term>Mastication</term>
<term>Masticatory</term>
<term>Masticatory muscle architecture</term>
<term>Masticatory muscles</term>
<term>Mechanical properties</term>
<term>Medial</term>
<term>Medial pterygoid</term>
<term>Moment arms</term>
<term>Muscle architecture</term>
<term>Muscle group</term>
<term>Muscle mass</term>
<term>Musculature</term>
<term>Nebulosa</term>
<term>Neofelis</term>
<term>Onca</term>
<term>Organisation architecturale</term>
<term>Osteological</term>
<term>Osteological correlates</term>
<term>Other species</term>
<term>Panthera</term>
<term>Panthera onca</term>
<term>Pardalis</term>
<term>Pcsa</term>
<term>Phys</term>
<term>Phys anthropol</term>
<term>Pinnation</term>
<term>Positive allometry</term>
<term>Premolar</term>
<term>Prey</term>
<term>Prey items</term>
<term>Prey size</term>
<term>Primate</term>
<term>Primates</term>
<term>Pterygoid</term>
<term>Qtmp</term>
<term>Qtmp ltmp</term>
<term>Regression lines</term>
<term>Relative prey size</term>
<term>Residual</term>
<term>Rufus</term>
<term>Same individuals</term>
<term>Sample sizes</term>
<term>Serval</term>
<term>Small prey</term>
<term>Smallest prey</term>
<term>Species names</term>
<term>Sunquist</term>
<term>Superficial masseter</term>
<term>Superficial temporalis</term>
<term>Taxon</term>
<term>Temp mass</term>
<term>Temporalis</term>
<term>Temporomandibular</term>
<term>Third premolar</term>
<term>Tigris</term>
<term>Toldt</term>
<term>Total adductor mass</term>
<term>Total pcsa</term>
<term>Turnbull</term>
<term>Vinyard</term>
<term>Wider gape</term>
<term>Zygomatic</term>
<term>Zygomatic temporalis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Increasingly, analyses of craniodental dietary adaptations take into account mechanical properties of foods. However, masticatory muscle fiber architecture has been described for relatively few lineages, even though an understanding of the scaling of this anatomy can yield important information about adaptations for stretch and strength in the masticatory system. Data on the mandibular adductors of 28 specimens from nine species of felids representing nearly the entire body size range of the family allow us to evaluate the influence of body size and diet on the masticatory apparatus within this lineage. Masticatory muscle masses scale isometrically, tending toward positive allometry, with body mass and jaw length. This allometry becomes significant when the independent variable is a geometric mean of cranial variables. For all three body size proxies, the physiological cross‐sectional area and predicted bite forces scale with significant positive allometry. Average fiber lengths (FL) tend toward negative allometry though with wide confidence intervals resulting from substantial scatter. We believe that these FL residuals are affected by dietary signals within the sample; though the mechanical properties of felid diets are relatively similar across species, the most durophagous species in our sample (the jaguar) appears to have relatively higher force production capabilities. The more notable dietary trend in our sample is the relationship between FL and relative prey size: felid species that predominantly consume relatively small prey have short masticatory muscle fibers, and species that regularly consume relatively large prey have relatively long fibers. This suggests an adaptive signal related to gape. Anat Rec, 2012. © 2012 Wiley Periodicals, Inc.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>felid</json:string>
<json:string>masticatory</json:string>
<json:string>pcsa</json:string>
<json:string>masseter</json:string>
<json:string>adductor</json:string>
<json:string>pterygoid</json:string>
<json:string>body mass</json:string>
<json:string>temporalis</json:string>
<json:string>gape</json:string>
<json:string>panthera</json:string>
<json:string>mandibular</json:string>
<json:string>sunquist</json:string>
<json:string>turnbull</json:string>
<json:string>cranial</json:string>
<json:string>medial</json:string>
<json:string>allometry</json:string>
<json:string>taxon</json:string>
<json:string>caracal</json:string>
<json:string>fascicle</json:string>
<json:string>masticatory muscles</json:string>
<json:string>toldt</json:string>
<json:string>nebulosa</json:string>
<json:string>masticatory muscle architecture</json:string>
<json:string>onca</json:string>
<json:string>body size</json:string>
<json:string>hylander</json:string>
<json:string>medial pterygoid</json:string>
<json:string>condyle</json:string>
<json:string>lateral pterygoid</json:string>
<json:string>pinnation</json:string>
<json:string>digastric</json:string>
<json:string>carnassial</json:string>
<json:string>anapol</json:string>
<json:string>mandible</json:string>
<json:string>mastication</json:string>
<json:string>isometry</json:string>
<json:string>superficial masseter</json:string>
<json:string>anat</json:string>
<json:string>fiber architecture</json:string>
<json:string>descriptive statistics</json:string>
<json:string>zygomatic</json:string>
<json:string>gorniak</json:string>
<json:string>vinyard</json:string>
<json:string>premolar</json:string>
<json:string>lateral</json:string>
<json:string>ltmp</json:string>
<json:string>biol</json:string>
<json:string>serval</json:string>
<json:string>qtmp</json:string>
<json:string>osteological</json:string>
<json:string>phys</json:string>
<json:string>temporomandibular</json:string>
<json:string>mamm</json:string>
<json:string>pardalis</json:string>
<json:string>lynx</json:string>
<json:string>fossil</json:string>
<json:string>bobcat</json:string>
<json:string>neofelis</json:string>
<json:string>felidae</json:string>
<json:string>durophagous</json:string>
<json:string>insertion</json:string>
<json:string>leverage</json:string>
<json:string>mechanical properties</json:string>
<json:string>zygomatic temporalis</json:string>
<json:string>species names</json:string>
<json:string>deep masseter</json:string>
<json:string>moment arms</json:string>
<json:string>positive allometry</json:string>
<json:string>muscle mass</json:string>
<json:string>canine</json:string>
<json:string>primates</json:string>
<json:string>mandibular condyle</json:string>
<json:string>food properties</json:string>
<json:string>load arms</json:string>
<json:string>residual</json:string>
<json:string>mammal</json:string>
<json:string>cube root</json:string>
<json:string>superficial temporalis</json:string>
<json:string>deep temporalis</json:string>
<json:string>felid species</json:string>
<json:string>long canines</json:string>
<json:string>body size proxies</json:string>
<json:string>geometric similarity</json:string>
<json:string>muscle group</json:string>
<json:string>prey size</json:string>
<json:string>dietary signal</json:string>
<json:string>muscle architecture</json:string>
<json:string>carnassial notch</json:string>
<json:string>total pcsa</json:string>
<json:string>relative prey size</json:string>
<json:string>abbreviation</json:string>
<json:string>rufus</json:string>
<json:string>musculature</json:string>
<json:string>tigris</json:string>
<json:string>primate</json:string>
<json:string>leopard</json:string>
<json:string>smallest prey</json:string>
<json:string>panthera onca</json:string>
<json:string>prey items</json:string>
<json:string>mandibular symphysis</json:string>
<json:string>wider gape</json:string>
<json:string>same individuals</json:string>
<json:string>qtmp ltmp</json:string>
<json:string>third premolar</json:string>
<json:string>adductor dimensions</json:string>
<json:string>etmp qtmp ltmp</json:string>
<json:string>fascicle length</json:string>
<json:string>other species</json:string>
<json:string>dietary prey size</json:string>
<json:string>large prey</json:string>
<json:string>small prey</json:string>
<json:string>organisation architecturale</json:string>
<json:string>dependent variables</json:string>
<json:string>lynx rufus</json:string>
<json:string>sample sizes</json:string>
<json:string>regression lines</json:string>
<json:string>masseter mass</json:string>
<json:string>temp mass</json:string>
<json:string>digastric mass</json:string>
<json:string>total adductor mass</json:string>
<json:string>durophagous species</json:string>
<json:string>independent variables</json:string>
<json:string>dietary signals</json:string>
<json:string>osteological correlates</json:string>
<json:string>functional anatomy</json:string>
<json:string>mandibular adductors</json:string>
<json:string>functional significance</json:string>
<json:string>phys anthropol</json:string>
<json:string>dietary</json:string>
<json:string>prey</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Adam Hartstone‐Rose</name>
<affiliations>
<json:string>Department of Biology and Anthropology, Penn State Altoona, Altoona, Pennsylvania</json:string>
<json:string>Department of Biology and Anthropology, Penn State Altoona, 3000 Ivyside Park, Altoona, PA, 16601</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jonathan M. G. Perry</name>
<affiliations>
<json:string>Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland</json:string>
</affiliations>
</json:item>
<json:item>
<name>Caroline J. Morrow</name>
<affiliations>
<json:string>Department of Physical Therapy, Thomas Jefferson University School of Health Professions, Philadelphia, Pennsylvania</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Felidae</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>bite force</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>fiber length</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>physiological cross‐sectional area</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>mastication</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>muscle architecture</value>
</json:item>
</subject>
<articleId>
<json:string>AR22518</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Increasingly, analyses of craniodental dietary adaptations take into account mechanical properties of foods. However, masticatory muscle fiber architecture has been described for relatively few lineages, even though an understanding of the scaling of this anatomy can yield important information about adaptations for stretch and strength in the masticatory system. Data on the mandibular adductors of 28 specimens from nine species of felids representing nearly the entire body size range of the family allow us to evaluate the influence of body size and diet on the masticatory apparatus within this lineage. Masticatory muscle masses scale isometrically, tending toward positive allometry, with body mass and jaw length. This allometry becomes significant when the independent variable is a geometric mean of cranial variables. For all three body size proxies, the physiological cross‐sectional area and predicted bite forces scale with significant positive allometry. Average fiber lengths (FL) tend toward negative allometry though with wide confidence intervals resulting from substantial scatter. We believe that these FL residuals are affected by dietary signals within the sample; though the mechanical properties of felid diets are relatively similar across species, the most durophagous species in our sample (the jaguar) appears to have relatively higher force production capabilities. The more notable dietary trend in our sample is the relationship between FL and relative prey size: felid species that predominantly consume relatively small prey have short masticatory muscle fibers, and species that regularly consume relatively large prey have relatively long fibers. This suggests an adaptive signal related to gape. Anat Rec, 2012. © 2012 Wiley Periodicals, Inc.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>612 x 810 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1781</abstractCharCount>
<pdfWordCount>10034</pdfWordCount>
<pdfCharCount>63578</pdfCharCount>
<pdfPageCount>16</pdfPageCount>
<abstractWordCount>257</abstractWordCount>
</qualityIndicators>
<title>Bite Force Estimation and the Fiber Architecture of Felid Masticatory Muscles</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1932-8494</json:string>
</doi>
<issn>
<json:string>1932-8486</json:string>
</issn>
<eissn>
<json:string>1932-8494</json:string>
</eissn>
<publisherId>
<json:string>AR</json:string>
</publisherId>
<volume>295</volume>
<issue>8</issue>
<pages>
<first>1336</first>
<last>1351</last>
<total>16</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Oral Biology</value>
</json:item>
</subject>
</host>
<categories>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences biologiques et medicales</json:string>
<json:string>sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2012</publicationDate>
<copyrightDate>2012</copyrightDate>
<doi>
<json:string>10.1002/ar.22518</json:string>
</doi>
<id>3E3BA4407BBF256C59DE33F8C499A365DB84A81C</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/3E3BA4407BBF256C59DE33F8C499A365DB84A81C/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/3E3BA4407BBF256C59DE33F8C499A365DB84A81C/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/3E3BA4407BBF256C59DE33F8C499A365DB84A81C/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Bite Force Estimation and the Fiber Architecture of Felid Masticatory Muscles</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<licence>Copyright © 2012 Wiley Periodicals, Inc.</licence>
</availability>
<date type="published" when="2012-08"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Bite Force Estimation and the Fiber Architecture of Felid Masticatory Muscles</title>
<title level="a" type="short" xml:lang="en">The Masticatory Muscle Architecture of Felids</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">Adam</forename>
<surname>Hartstone‐Rose</surname>
</persName>
<email>Adam.Hartstone‐Rose@psu.edu</email>
<affiliation>Department of Biology and Anthropology, Penn State Altoona, Altoona, Pennsylvania
<address>
<country key="US"></country>
</address>
</affiliation>
<note type="foot">Fax: (814) 949‐5547.</note>
<affiliation>Department of Biology and Anthropology, Penn State Altoona, 3000 Ivyside Park, Altoona, PA, 16601</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Jonathan M. G.</forename>
<surname>Perry</surname>
</persName>
<affiliation>Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Caroline J.</forename>
<surname>Morrow</surname>
</persName>
<affiliation>Department of Physical Therapy, Thomas Jefferson University School of Health Professions, Philadelphia, Pennsylvania
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<idno type="istex">3E3BA4407BBF256C59DE33F8C499A365DB84A81C</idno>
<idno type="ark">ark:/67375/WNG-V976R60L-N</idno>
<idno type="DOI">10.1002/ar.22518</idno>
<idno type="unit">AR22518</idno>
<idno type="toTypesetVersion">file:AR.AR22518.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology</title>
<title level="j" type="alt">ANATOMICAL RECORD, THE</title>
<idno type="pISSN">1932-8486</idno>
<idno type="eISSN">1932-8494</idno>
<idno type="book-DOI">10.1002/(ISSN)1932-8494</idno>
<idno type="book-part-DOI">10.1002/ar.v295.8</idno>
<idno type="product">AR</idno>
<imprint>
<biblScope unit="vol">295</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="1336">1336</biblScope>
<biblScope unit="page" to="1351">1351</biblScope>
<biblScope unit="page-count">16</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2012-08"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>Increasingly, analyses of craniodental dietary adaptations take into account mechanical properties of foods. However, masticatory muscle fiber architecture has been described for relatively few lineages, even though an understanding of the scaling of this anatomy can yield important information about adaptations for stretch and strength in the masticatory system. Data on the mandibular adductors of 28 specimens from nine species of felids representing nearly the entire body size range of the family allow us to evaluate the influence of body size and diet on the masticatory apparatus within this lineage. Masticatory muscle masses scale isometrically, tending toward positive allometry, with body mass and jaw length. This allometry becomes significant when the independent variable is a geometric mean of cranial variables. For all three body size proxies, the physiological cross‐sectional area and predicted bite forces scale with significant positive allometry. Average fiber lengths (FL) tend toward negative allometry though with wide confidence intervals resulting from substantial scatter. We believe that these FL residuals are affected by dietary signals within the sample; though the mechanical properties of felid diets are relatively similar across species, the most durophagous species in our sample (the jaguar) appears to have relatively higher force production capabilities. The more notable dietary trend in our sample is the relationship between FL and relative prey size: felid species that predominantly consume relatively small prey have short masticatory muscle fibers, and species that regularly consume relatively large prey have relatively long fibers. This suggests an adaptive signal related to gape. Anat Rec, 2012. © 2012 Wiley Periodicals, Inc.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">Felidae</term>
<term xml:id="kwd2">bite force</term>
<term xml:id="kwd3">fiber length</term>
<term xml:id="kwd4">physiological cross‐sectional area</term>
<term xml:id="kwd5">mastication</term>
<term xml:id="kwd6">muscle architecture</term>
</keywords>
<keywords rend="articleCategory">
<term>Oral Biology</term>
</keywords>
<keywords rend="tocHeading1">
<term>Oral Biology</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/3E3BA4407BBF256C59DE33F8C499A365DB84A81C/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1932-8494</doi>
<issn type="print">1932-8486</issn>
<issn type="electronic">1932-8494</issn>
<idGroup>
<id type="product" value="AR"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="ANATOMICAL RECORD, THE">The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology</title>
<title type="short">Anat Rec</title>
</titleGroup>
<selfCitationGroup>
<citation type="ancestor" xml:id="cit1">
<journalTitle>The Anatomical Record</journalTitle>
<accessionId ref="info:x-wiley/issn/15524884">1552-4884</accessionId>
<accessionId ref="info:x-wiley/issn/15524892">1552-4892</accessionId>
<pubYear year="2004">2004</pubYear>
</citation>
</selfCitationGroup>
</publicationMeta>
<publicationMeta level="part" position="80">
<doi origin="wiley" registered="yes">10.1002/ar.v295.8</doi>
<numberingGroup>
<numbering type="journalVolume" number="295">295</numbering>
<numbering type="journalIssue">8</numbering>
</numberingGroup>
<coverDate startDate="2012-08">August 2012</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="130" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/ar.22518</doi>
<idGroup>
<id type="unit" value="AR22518"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="16"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Oral Biology</title>
<title type="tocHeading1">Oral Biology</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2012 Wiley Periodicals, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2011-11-21"></event>
<event type="manuscriptAccepted" date="2012-05-18"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:3.1.5.1 mode:FullText mathml2tex" date="2012-07-03"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2012-06-15"></event>
<event type="firstOnline" date="2012-06-15"></event>
<event type="publishedOnlineFinalForm" date="2012-07-03"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-06"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.3.7 mode:FullText" date="2015-03-24"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">1336</numbering>
<numbering type="pageLast">1351</numbering>
</numberingGroup>
<correspondenceTo>Department of Biology and Anthropology, Penn State Altoona, 3000 Ivyside Park, Altoona, PA, 16601</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:AR.AR22518.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="10"></count>
<count type="tableTotal" number="8"></count>
<count type="referenceTotal" number="75"></count>
<count type="wordTotal" number="13998"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Bite Force Estimation and the Fiber Architecture of Felid Masticatory Muscles</title>
<title type="short" xml:lang="en">The Masticatory Muscle Architecture of Felids</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1" corresponding="yes" noteRef="#fn17">
<personName>
<givenNames>Adam</givenNames>
<familyName>Hartstone‐Rose</familyName>
</personName>
<contactDetails>
<email normalForm="Adam.Hartstone-Rose@psu.edu">Adam.Hartstone‐Rose@psu.edu</email>
</contactDetails>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Jonathan M. G.</givenNames>
<familyName>Perry</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>Caroline J.</givenNames>
<familyName>Morrow</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="US" type="organization">
<unparsedAffiliation>Department of Biology and Anthropology, Penn State Altoona, Altoona, Pennsylvania</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="US" type="organization">
<unparsedAffiliation>Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="US" type="organization">
<unparsedAffiliation>Department of Physical Therapy, Thomas Jefferson University School of Health Professions, Philadelphia, Pennsylvania</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">Felidae</keyword>
<keyword xml:id="kwd2">bite force</keyword>
<keyword xml:id="kwd3">fiber length</keyword>
<keyword xml:id="kwd4">physiological cross‐sectional area</keyword>
<keyword xml:id="kwd5">mastication</keyword>
<keyword xml:id="kwd6">muscle architecture</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Increasingly, analyses of craniodental dietary adaptations take into account mechanical properties of foods. However, masticatory muscle fiber architecture has been described for relatively few lineages, even though an understanding of the scaling of this anatomy can yield important information about adaptations for stretch and strength in the masticatory system. Data on the mandibular adductors of 28 specimens from nine species of felids representing nearly the entire body size range of the family allow us to evaluate the influence of body size and diet on the masticatory apparatus within this lineage. Masticatory muscle masses scale isometrically, tending toward positive allometry, with body mass and jaw length. This allometry becomes significant when the independent variable is a geometric mean of cranial variables. For all three body size proxies, the physiological cross‐sectional area and predicted bite forces scale with significant positive allometry. Average fiber lengths (FL) tend toward negative allometry though with wide confidence intervals resulting from substantial scatter. We believe that these FL residuals are affected by dietary signals within the sample; though the mechanical properties of felid diets are relatively similar across species, the most durophagous species in our sample (the jaguar) appears to have relatively higher force production capabilities. The more notable dietary trend in our sample is the relationship between FL and relative prey size: felid species that predominantly consume relatively small prey have short masticatory muscle fibers, and species that regularly consume relatively large prey have relatively long fibers. This suggests an adaptive signal related to gape. Anat Rec, 2012. © 2012 Wiley Periodicals, Inc.</p>
</abstract>
</abstractGroup>
</contentMeta>
<noteGroup>
<note xml:id="fn17">
<p>Fax: (814) 949‐5547.</p>
</note>
</noteGroup>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Bite Force Estimation and the Fiber Architecture of Felid Masticatory Muscles</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>The Masticatory Muscle Architecture of Felids</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Bite Force Estimation and the Fiber Architecture of Felid Masticatory Muscles</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Hartstone‐Rose</namePart>
<affiliation>Department of Biology and Anthropology, Penn State Altoona, Altoona, Pennsylvania</affiliation>
<description>Fax: (814) 949‐5547.</description>
<affiliation>E-mail: Adam.Hartstone‐Rose@psu.edu</affiliation>
<affiliation>Correspondence address: Department of Biology and Anthropology, Penn State Altoona, 3000 Ivyside Park, Altoona, PA, 16601</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan M. G.</namePart>
<namePart type="family">Perry</namePart>
<affiliation>Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Caroline J.</namePart>
<namePart type="family">Morrow</namePart>
<affiliation>Department of Physical Therapy, Thomas Jefferson University School of Health Professions, Philadelphia, Pennsylvania</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2012-08</dateIssued>
<dateCaptured encoding="w3cdtf">2011-11-21</dateCaptured>
<dateValid encoding="w3cdtf">2012-05-18</dateValid>
<copyrightDate encoding="w3cdtf">2012</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">10</extent>
<extent unit="tables">8</extent>
<extent unit="references">75</extent>
<extent unit="words">13998</extent>
</physicalDescription>
<abstract lang="en">Increasingly, analyses of craniodental dietary adaptations take into account mechanical properties of foods. However, masticatory muscle fiber architecture has been described for relatively few lineages, even though an understanding of the scaling of this anatomy can yield important information about adaptations for stretch and strength in the masticatory system. Data on the mandibular adductors of 28 specimens from nine species of felids representing nearly the entire body size range of the family allow us to evaluate the influence of body size and diet on the masticatory apparatus within this lineage. Masticatory muscle masses scale isometrically, tending toward positive allometry, with body mass and jaw length. This allometry becomes significant when the independent variable is a geometric mean of cranial variables. For all three body size proxies, the physiological cross‐sectional area and predicted bite forces scale with significant positive allometry. Average fiber lengths (FL) tend toward negative allometry though with wide confidence intervals resulting from substantial scatter. We believe that these FL residuals are affected by dietary signals within the sample; though the mechanical properties of felid diets are relatively similar across species, the most durophagous species in our sample (the jaguar) appears to have relatively higher force production capabilities. The more notable dietary trend in our sample is the relationship between FL and relative prey size: felid species that predominantly consume relatively small prey have short masticatory muscle fibers, and species that regularly consume relatively large prey have relatively long fibers. This suggests an adaptive signal related to gape. Anat Rec, 2012. © 2012 Wiley Periodicals, Inc.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>Felidae</topic>
<topic>bite force</topic>
<topic>fiber length</topic>
<topic>physiological cross‐sectional area</topic>
<topic>mastication</topic>
<topic>muscle architecture</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Anat Rec</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Oral Biology</topic>
</subject>
<identifier type="ISSN">1932-8486</identifier>
<identifier type="eISSN">1932-8494</identifier>
<identifier type="DOI">10.1002/(ISSN)1932-8494</identifier>
<identifier type="PublisherID">AR</identifier>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>295</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>8</number>
</detail>
<extent unit="pages">
<start>1336</start>
<end>1351</end>
<total>16</total>
</extent>
</part>
</relatedItem>
<relatedItem type="preceding">
<titleInfo>
<title>The Anatomical Record</title>
</titleInfo>
<identifier type="ISSN">1552-4884</identifier>
<identifier type="ISSN">1552-4892</identifier>
<part>
<date point="end">2004</date>
</part>
</relatedItem>
<identifier type="istex">3E3BA4407BBF256C59DE33F8C499A365DB84A81C</identifier>
<identifier type="ark">ark:/67375/WNG-V976R60L-N</identifier>
<identifier type="DOI">10.1002/ar.22518</identifier>
<identifier type="ArticleID">AR22518</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2012 Wiley Periodicals, Inc.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/3E3BA4407BBF256C59DE33F8C499A365DB84A81C/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000502 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000502 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:3E3BA4407BBF256C59DE33F8C499A365DB84A81C
   |texte=   Bite Force Estimation and the Fiber Architecture of Felid Masticatory Muscles
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024