Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Carbon dioxide absorption by monoethanolamine in hollow fiber membrane contactors: A parametric investigation

Identifieur interne : 000464 ( Istex/Corpus ); précédent : 000463; suivant : 000465

Carbon dioxide absorption by monoethanolamine in hollow fiber membrane contactors: A parametric investigation

Auteurs : Noureddine Boucif ; Jean Pierre Corriou ; Denis Roizard ; Eric Favre

Source :

RBID : ISTEX:CDACA623488DED5FBF6D19091168C473C42030EC

English descriptors

Abstract

A mathematical and numerical investigations on the gas–liquid absorption of carbon dioxide in monoethanolamine solutions in a hollow fiber membrane contactor device is described. The reactive absorption mechanism was built based on momentum and mass transport conservation laws in all three compartments involved in the process, i.e., the gas phase, the membrane barrier, and the liquid phase. The liquid absorbing solution flows in the fiber bore in which the velocity is assumed to obey a fully developed laminar flow, and the gas mixture circulates counter‐currently to the liquid flow in the shell side where the velocity is characterized by the Navier‐Stokes momentum balance equations. The average outlet gas and liquid concentrations, the reactive absorption flux, and the gas removal efficiencies are parametrically simulated with operational parameters such as gas flow rate, fresh inlet amine concentrations, and fiber geometrical characteristics. The shell velocity was described by other flow hydrodynamics models besides Navier‐Stokes and their simulated results were favorably compared to experimental data. © 2011 American Institute of Chemical Engineers AIChE J, 2012

Url:
DOI: 10.1002/aic.12791

Links to Exploration step

ISTEX:CDACA623488DED5FBF6D19091168C473C42030EC

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Carbon dioxide absorption by monoethanolamine in hollow fiber membrane contactors: A parametric investigation</title>
<author>
<name sortKey="Boucif, Noureddine" sort="Boucif, Noureddine" uniqKey="Boucif N" first="Noureddine" last="Boucif">Noureddine Boucif</name>
<affiliation>
<mods:affiliation>Laboratoire Réactions et Génie des Procédés LRGP (UPR 3349 CNRS) Nancy Université, BP 20451 ‐ 1, rue Grandville, F‐54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: Noureddine.Boucif@ensic.u‐nancy.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Laboratoire Réactions et Génie des Procédés LRGP (UPR 3349 CNRS) Nancy Université, BP 20451 ‐ 1, rue Grandville, F‐54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Corriou, Jean Pierre" sort="Corriou, Jean Pierre" uniqKey="Corriou J" first="Jean Pierre" last="Corriou">Jean Pierre Corriou</name>
<affiliation>
<mods:affiliation>Laboratoire Réactions et Génie des Procédés LRGP (UPR 3349 CNRS) Nancy Université, BP 20451 ‐ 1, rue Grandville, F‐54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Roizard, Denis" sort="Roizard, Denis" uniqKey="Roizard D" first="Denis" last="Roizard">Denis Roizard</name>
<affiliation>
<mods:affiliation>Laboratoire Réactions et Génie des Procédés LRGP (UPR 3349 CNRS) Nancy Université, BP 20451 ‐ 1, rue Grandville, F‐54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Favre, Eric" sort="Favre, Eric" uniqKey="Favre E" first="Eric" last="Favre">Eric Favre</name>
<affiliation>
<mods:affiliation>Laboratoire Réactions et Génie des Procédés LRGP (UPR 3349 CNRS) Nancy Université, BP 20451 ‐ 1, rue Grandville, F‐54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:CDACA623488DED5FBF6D19091168C473C42030EC</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1002/aic.12791</idno>
<idno type="url">https://api.istex.fr/document/CDACA623488DED5FBF6D19091168C473C42030EC/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000464</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000464</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Carbon dioxide absorption by monoethanolamine in hollow fiber membrane contactors: A parametric investigation
<ref type="note" target="#fn2"></ref>
</title>
<author>
<name sortKey="Boucif, Noureddine" sort="Boucif, Noureddine" uniqKey="Boucif N" first="Noureddine" last="Boucif">Noureddine Boucif</name>
<affiliation>
<mods:affiliation>Laboratoire Réactions et Génie des Procédés LRGP (UPR 3349 CNRS) Nancy Université, BP 20451 ‐ 1, rue Grandville, F‐54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: Noureddine.Boucif@ensic.u‐nancy.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Laboratoire Réactions et Génie des Procédés LRGP (UPR 3349 CNRS) Nancy Université, BP 20451 ‐ 1, rue Grandville, F‐54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Corriou, Jean Pierre" sort="Corriou, Jean Pierre" uniqKey="Corriou J" first="Jean Pierre" last="Corriou">Jean Pierre Corriou</name>
<affiliation>
<mods:affiliation>Laboratoire Réactions et Génie des Procédés LRGP (UPR 3349 CNRS) Nancy Université, BP 20451 ‐ 1, rue Grandville, F‐54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Roizard, Denis" sort="Roizard, Denis" uniqKey="Roizard D" first="Denis" last="Roizard">Denis Roizard</name>
<affiliation>
<mods:affiliation>Laboratoire Réactions et Génie des Procédés LRGP (UPR 3349 CNRS) Nancy Université, BP 20451 ‐ 1, rue Grandville, F‐54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Favre, Eric" sort="Favre, Eric" uniqKey="Favre E" first="Eric" last="Favre">Eric Favre</name>
<affiliation>
<mods:affiliation>Laboratoire Réactions et Génie des Procédés LRGP (UPR 3349 CNRS) Nancy Université, BP 20451 ‐ 1, rue Grandville, F‐54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">AIChE Journal</title>
<title level="j" type="alt">AICHE JOURNAL</title>
<idno type="ISSN">0001-1541</idno>
<idno type="eISSN">1547-5905</idno>
<imprint>
<biblScope unit="vol">58</biblScope>
<biblScope unit="issue">9</biblScope>
<biblScope unit="page" from="2843">2843</biblScope>
<biblScope unit="page" to="2855">2855</biblScope>
<biblScope unit="page-count">13</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2012-09">2012-09</date>
</imprint>
<idno type="ISSN">0001-1541</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0001-1541</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aiche</term>
<term>Aiche journal</term>
<term>Aiche journal september</term>
<term>Aiche september</term>
<term>American institute</term>
<term>Amine</term>
<term>Bers</term>
<term>Boucif</term>
<term>Boundary conditions</term>
<term>Carbon dioxide</term>
<term>Carbon dioxide absorption</term>
<term>Carbon dioxide removal</term>
<term>Chem</term>
<term>Chemical absorption</term>
<term>Chemical reaction</term>
<term>Comsol multiphysics modeling</term>
<term>Concentration gradients</term>
<term>Contact area</term>
<term>Contactor</term>
<term>Contactor exit</term>
<term>Contactor length</term>
<term>Contactor performance</term>
<term>Contactor shell</term>
<term>Contactors</term>
<term>Countercurrent</term>
<term>Dco2</term>
<term>Dense membrane</term>
<term>Dense membrane contactor</term>
<term>Dependent velocity</term>
<term>Diffusivity</term>
<term>Dimensionless</term>
<term>Dimensionless form</term>
<term>Dimensionless groupings</term>
<term>Dioxide</term>
<term>Enhancement</term>
<term>Enhancement factor</term>
<term>Experimental data</term>
<term>Experimental results</term>
<term>Fossil fuels</term>
<term>Free surface model</term>
<term>Hco2</term>
<term>Hco2 kco2</term>
<term>Hydrophobic membrane</term>
<term>Hydrophobic microporous membrane</term>
<term>Kco2</term>
<term>Liquid concentrations</term>
<term>Liquid phase</term>
<term>Liquid solution</term>
<term>Liquid velocity</term>
<term>Lled pores</term>
<term>Lumen</term>
<term>Many researchers</term>
<term>Mass transfer</term>
<term>Mass transfer zone</term>
<term>Mass transport</term>
<term>Membr</term>
<term>Membrane</term>
<term>Membrane barrier</term>
<term>Membrane contactor</term>
<term>Membrane contactors</term>
<term>Membrane material</term>
<term>Membrane module</term>
<term>Membrane modules</term>
<term>Membrane oxygenator</term>
<term>Membrane pores</term>
<term>Membrane wall</term>
<term>Microporous</term>
<term>Microporous membrane</term>
<term>Microporous membrane contactor</term>
<term>Microporous membrane module</term>
<term>Modeling</term>
<term>Module</term>
<term>Nancy universite</term>
<term>Noticeable effect</term>
<term>Numerical simulations</term>
<term>Online issue</term>
<term>Pdms</term>
<term>Pdms membrane</term>
<term>Polymeric membrane domain</term>
<term>Pore</term>
<term>Process equipments</term>
<term>Reaction parameter</term>
<term>Reaction rate</term>
<term>Reactive absorption</term>
<term>Residence time</term>
<term>Retention time</term>
<term>Reynolds number</term>
<term>Rigorous model</term>
<term>Second order reaction rate</term>
<term>September</term>
<term>Shell compartment</term>
<term>Shell domain</term>
<term>Shell side</term>
<term>Shell sides</term>
<term>Shell solute concentration</term>
<term>Shell velocity</term>
<term>Simulation</term>
<term>Solute</term>
<term>Solute concentration</term>
<term>Steady state</term>
<term>Stream waso</term>
<term>Theoretical models</term>
<term>Theoretical studies</term>
<term>Typical amine solutions</term>
<term>Wide range</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Aiche</term>
<term>Aiche journal</term>
<term>Aiche journal september</term>
<term>Aiche september</term>
<term>American institute</term>
<term>Amine</term>
<term>Bers</term>
<term>Boucif</term>
<term>Boundary conditions</term>
<term>Carbon dioxide</term>
<term>Carbon dioxide absorption</term>
<term>Carbon dioxide removal</term>
<term>Chem</term>
<term>Chemical absorption</term>
<term>Chemical reaction</term>
<term>Comsol multiphysics modeling</term>
<term>Concentration gradients</term>
<term>Contact area</term>
<term>Contactor</term>
<term>Contactor exit</term>
<term>Contactor length</term>
<term>Contactor performance</term>
<term>Contactor shell</term>
<term>Contactors</term>
<term>Countercurrent</term>
<term>Dco2</term>
<term>Dense membrane</term>
<term>Dense membrane contactor</term>
<term>Dependent velocity</term>
<term>Diffusivity</term>
<term>Dimensionless</term>
<term>Dimensionless form</term>
<term>Dimensionless groupings</term>
<term>Dioxide</term>
<term>Enhancement</term>
<term>Enhancement factor</term>
<term>Experimental data</term>
<term>Experimental results</term>
<term>Fossil fuels</term>
<term>Free surface model</term>
<term>Hco2</term>
<term>Hco2 kco2</term>
<term>Hydrophobic membrane</term>
<term>Hydrophobic microporous membrane</term>
<term>Kco2</term>
<term>Liquid concentrations</term>
<term>Liquid phase</term>
<term>Liquid solution</term>
<term>Liquid velocity</term>
<term>Lled pores</term>
<term>Lumen</term>
<term>Many researchers</term>
<term>Mass transfer</term>
<term>Mass transfer zone</term>
<term>Mass transport</term>
<term>Membr</term>
<term>Membrane</term>
<term>Membrane barrier</term>
<term>Membrane contactor</term>
<term>Membrane contactors</term>
<term>Membrane material</term>
<term>Membrane module</term>
<term>Membrane modules</term>
<term>Membrane oxygenator</term>
<term>Membrane pores</term>
<term>Membrane wall</term>
<term>Microporous</term>
<term>Microporous membrane</term>
<term>Microporous membrane contactor</term>
<term>Microporous membrane module</term>
<term>Modeling</term>
<term>Module</term>
<term>Nancy universite</term>
<term>Noticeable effect</term>
<term>Numerical simulations</term>
<term>Online issue</term>
<term>Pdms</term>
<term>Pdms membrane</term>
<term>Polymeric membrane domain</term>
<term>Pore</term>
<term>Process equipments</term>
<term>Reaction parameter</term>
<term>Reaction rate</term>
<term>Reactive absorption</term>
<term>Residence time</term>
<term>Retention time</term>
<term>Reynolds number</term>
<term>Rigorous model</term>
<term>Second order reaction rate</term>
<term>September</term>
<term>Shell compartment</term>
<term>Shell domain</term>
<term>Shell side</term>
<term>Shell sides</term>
<term>Shell solute concentration</term>
<term>Shell velocity</term>
<term>Simulation</term>
<term>Solute</term>
<term>Solute concentration</term>
<term>Steady state</term>
<term>Stream waso</term>
<term>Theoretical models</term>
<term>Theoretical studies</term>
<term>Typical amine solutions</term>
<term>Wide range</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A mathematical and numerical investigations on the gas–liquid absorption of carbon dioxide in monoethanolamine solutions in a hollow fiber membrane contactor device is described. The reactive absorption mechanism was built based on momentum and mass transport conservation laws in all three compartments involved in the process, i.e., the gas phase, the membrane barrier, and the liquid phase. The liquid absorbing solution flows in the fiber bore in which the velocity is assumed to obey a fully developed laminar flow, and the gas mixture circulates counter‐currently to the liquid flow in the shell side where the velocity is characterized by the Navier‐Stokes momentum balance equations. The average outlet gas and liquid concentrations, the reactive absorption flux, and the gas removal efficiencies are parametrically simulated with operational parameters such as gas flow rate, fresh inlet amine concentrations, and fiber geometrical characteristics. The shell velocity was described by other flow hydrodynamics models besides Navier‐Stokes and their simulated results were favorably compared to experimental data. © 2011 American Institute of Chemical Engineers AIChE J, 2012</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>contactor</json:string>
<json:string>solute</json:string>
<json:string>module</json:string>
<json:string>dimensionless</json:string>
<json:string>dco2</json:string>
<json:string>microporous</json:string>
<json:string>shell side</json:string>
<json:string>mass transfer</json:string>
<json:string>contactors</json:string>
<json:string>carbon dioxide</json:string>
<json:string>hco2</json:string>
<json:string>aiche</json:string>
<json:string>amine</json:string>
<json:string>september</json:string>
<json:string>kco2</json:string>
<json:string>membrane contactor</json:string>
<json:string>membrane</json:string>
<json:string>chem</json:string>
<json:string>countercurrent</json:string>
<json:string>membr</json:string>
<json:string>bers</json:string>
<json:string>diffusivity</json:string>
<json:string>solute concentration</json:string>
<json:string>dioxide</json:string>
<json:string>dense membrane</json:string>
<json:string>pdms</json:string>
<json:string>boucif</json:string>
<json:string>liquid phase</json:string>
<json:string>enhancement</json:string>
<json:string>modeling</json:string>
<json:string>boundary conditions</json:string>
<json:string>aiche journal</json:string>
<json:string>dense membrane contactor</json:string>
<json:string>chemical reaction</json:string>
<json:string>shell domain</json:string>
<json:string>numerical simulations</json:string>
<json:string>enhancement factor</json:string>
<json:string>dimensionless form</json:string>
<json:string>online issue</json:string>
<json:string>liquid concentrations</json:string>
<json:string>chemical absorption</json:string>
<json:string>carbon dioxide removal</json:string>
<json:string>shell compartment</json:string>
<json:string>aiche journal september</json:string>
<json:string>membrane contactors</json:string>
<json:string>mass transport</json:string>
<json:string>membrane modules</json:string>
<json:string>carbon dioxide absorption</json:string>
<json:string>simulation</json:string>
<json:string>pore</json:string>
<json:string>steady state</json:string>
<json:string>membrane module</json:string>
<json:string>microporous membrane contactor</json:string>
<json:string>residence time</json:string>
<json:string>microporous membrane</json:string>
<json:string>contactor exit</json:string>
<json:string>liquid solution</json:string>
<json:string>membrane pores</json:string>
<json:string>contactor performance</json:string>
<json:string>aiche september</json:string>
<json:string>lumen</json:string>
<json:string>many researchers</json:string>
<json:string>liquid velocity</json:string>
<json:string>hydrophobic microporous membrane</json:string>
<json:string>polymeric membrane domain</json:string>
<json:string>membrane wall</json:string>
<json:string>rigorous model</json:string>
<json:string>hydrophobic membrane</json:string>
<json:string>lled pores</json:string>
<json:string>hco2 kco2</json:string>
<json:string>free surface model</json:string>
<json:string>contactor shell</json:string>
<json:string>concentration gradients</json:string>
<json:string>theoretical models</json:string>
<json:string>typical amine solutions</json:string>
<json:string>theoretical studies</json:string>
<json:string>comsol multiphysics modeling</json:string>
<json:string>mass transfer zone</json:string>
<json:string>reactive absorption</json:string>
<json:string>contact area</json:string>
<json:string>wide range</json:string>
<json:string>retention time</json:string>
<json:string>reaction rate</json:string>
<json:string>fossil fuels</json:string>
<json:string>shell sides</json:string>
<json:string>process equipments</json:string>
<json:string>american institute</json:string>
<json:string>shell solute concentration</json:string>
<json:string>experimental data</json:string>
<json:string>stream waso</json:string>
<json:string>pdms membrane</json:string>
<json:string>noticeable effect</json:string>
<json:string>experimental results</json:string>
<json:string>microporous membrane module</json:string>
<json:string>contactor length</json:string>
<json:string>membrane material</json:string>
<json:string>shell velocity</json:string>
<json:string>second order reaction rate</json:string>
<json:string>reynolds number</json:string>
<json:string>dependent velocity</json:string>
<json:string>membrane oxygenator</json:string>
<json:string>membrane barrier</json:string>
<json:string>nancy universite</json:string>
<json:string>dimensionless groupings</json:string>
<json:string>reaction parameter</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Noureddine Boucif</name>
<affiliations>
<json:string>Laboratoire Réactions et Génie des Procédés LRGP (UPR 3349 CNRS) Nancy Université, BP 20451 ‐ 1, rue Grandville, F‐54001 Nancy Cedex, France</json:string>
<json:string>Laboratoire Réactions et Génie des Procédés LRGP (UPR 3349 CNRS) Nancy Université, BP 20451 ‐ 1, rue Grandville, F‐54001 Nancy Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jean Pierre Corriou</name>
<affiliations>
<json:string>Laboratoire Réactions et Génie des Procédés LRGP (UPR 3349 CNRS) Nancy Université, BP 20451 ‐ 1, rue Grandville, F‐54001 Nancy Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Denis Roizard</name>
<affiliations>
<json:string>Laboratoire Réactions et Génie des Procédés LRGP (UPR 3349 CNRS) Nancy Université, BP 20451 ‐ 1, rue Grandville, F‐54001 Nancy Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Eric Favre</name>
<affiliations>
<json:string>Laboratoire Réactions et Génie des Procédés LRGP (UPR 3349 CNRS) Nancy Université, BP 20451 ‐ 1, rue Grandville, F‐54001 Nancy Cedex, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>absorption</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>mathematical modeling</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>membrane separations</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Navier‐Stokes equations</value>
</json:item>
</subject>
<articleId>
<json:string>AIC12791</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>A mathematical and numerical investigations on the gas–liquid absorption of carbon dioxide in monoethanolamine solutions in a hollow fiber membrane contactor device is described. The reactive absorption mechanism was built based on momentum and mass transport conservation laws in all three compartments involved in the process, i.e., the gas phase, the membrane barrier, and the liquid phase. The liquid absorbing solution flows in the fiber bore in which the velocity is assumed to obey a fully developed laminar flow, and the gas mixture circulates counter‐currently to the liquid flow in the shell side where the velocity is characterized by the Navier‐Stokes momentum balance equations. The average outlet gas and liquid concentrations, the reactive absorption flux, and the gas removal efficiencies are parametrically simulated with operational parameters such as gas flow rate, fresh inlet amine concentrations, and fiber geometrical characteristics. The shell velocity was described by other flow hydrodynamics models besides Navier‐Stokes and their simulated results were favorably compared to experimental data. © 2011 American Institute of Chemical Engineers AIChE J, 2012</abstract>
<qualityIndicators>
<score>7.552</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>612 x 810 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1183</abstractCharCount>
<pdfWordCount>7389</pdfWordCount>
<pdfCharCount>44487</pdfCharCount>
<pdfPageCount>13</pdfPageCount>
<abstractWordCount>171</abstractWordCount>
</qualityIndicators>
<title>Carbon dioxide absorption by monoethanolamine in hollow fiber membrane contactors: A parametric investigation</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>AIChE Journal</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1547-5905</json:string>
</doi>
<issn>
<json:string>0001-1541</json:string>
</issn>
<eissn>
<json:string>1547-5905</json:string>
</eissn>
<publisherId>
<json:string>AIC</json:string>
</publisherId>
<volume>58</volume>
<issue>9</issue>
<pages>
<first>2843</first>
<last>2855</last>
<total>13</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Separations: Materials, Devices, and Processes</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>engineering, chemical</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>engineering</json:string>
<json:string>chemical engineering</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences exactes et technologie</json:string>
<json:string>chimie</json:string>
<json:string>chimie analytique</json:string>
</inist>
</categories>
<publicationDate>2012</publicationDate>
<copyrightDate>2012</copyrightDate>
<doi>
<json:string>10.1002/aic.12791</json:string>
</doi>
<id>CDACA623488DED5FBF6D19091168C473C42030EC</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/CDACA623488DED5FBF6D19091168C473C42030EC/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/CDACA623488DED5FBF6D19091168C473C42030EC/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/CDACA623488DED5FBF6D19091168C473C42030EC/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Carbon dioxide absorption by monoethanolamine in hollow fiber membrane contactors: A parametric investigation
<ref type="note" target="#fn2"></ref>
</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<licence>Copyright © 2011 American Institute of Chemical Engineers (AIChE)</licence>
</availability>
<date type="published" when="2012-09"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Carbon dioxide absorption by monoethanolamine in hollow fiber membrane contactors: A parametric investigation
<ref type="note" target="#fn2"></ref>
</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">Noureddine</forename>
<surname>Boucif</surname>
</persName>
<email>Noureddine.Boucif@ensic.u‐nancy.fr</email>
<affiliation>Laboratoire Réactions et Génie des Procédés LRGP (UPR 3349 CNRS) Nancy Université, BP 20451 ‐ 1, rue Grandville, F‐54001 Nancy Cedex, France
<address>
<country key="FR"></country>
</address>
</affiliation>
<affiliation>Laboratoire Réactions et Génie des Procédés LRGP (UPR 3349 CNRS) Nancy Université, BP 20451 ‐ 1, rue Grandville, F‐54001 Nancy Cedex, France</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Jean Pierre</forename>
<surname>Corriou</surname>
</persName>
<affiliation>Laboratoire Réactions et Génie des Procédés LRGP (UPR 3349 CNRS) Nancy Université, BP 20451 ‐ 1, rue Grandville, F‐54001 Nancy Cedex, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Denis</forename>
<surname>Roizard</surname>
</persName>
<affiliation>Laboratoire Réactions et Génie des Procédés LRGP (UPR 3349 CNRS) Nancy Université, BP 20451 ‐ 1, rue Grandville, F‐54001 Nancy Cedex, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Eric</forename>
<surname>Favre</surname>
</persName>
<affiliation>Laboratoire Réactions et Génie des Procédés LRGP (UPR 3349 CNRS) Nancy Université, BP 20451 ‐ 1, rue Grandville, F‐54001 Nancy Cedex, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<idno type="istex">CDACA623488DED5FBF6D19091168C473C42030EC</idno>
<idno type="ark">ark:/67375/WNG-7SWNQRJH-S</idno>
<idno type="DOI">10.1002/aic.12791</idno>
<idno type="unit">AIC12791</idno>
<idno type="toTypesetVersion">file:AIC.AIC12791.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">AIChE Journal</title>
<title level="j" type="alt">AICHE JOURNAL</title>
<idno type="pISSN">0001-1541</idno>
<idno type="eISSN">1547-5905</idno>
<idno type="book-DOI">10.1002/(ISSN)1547-5905</idno>
<idno type="book-part-DOI">10.1002/aic.v58.9</idno>
<idno type="product">AIC</idno>
<imprint>
<biblScope unit="vol">58</biblScope>
<biblScope unit="issue">9</biblScope>
<biblScope unit="page" from="2843">2843</biblScope>
<biblScope unit="page" to="2855">2855</biblScope>
<biblScope unit="page-count">13</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2012-09"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>A mathematical and numerical investigations on the gas–liquid absorption of carbon dioxide in monoethanolamine solutions in a hollow fiber membrane contactor device is described. The reactive absorption mechanism was built based on momentum and mass transport conservation laws in all three compartments involved in the process, i.e., the gas phase, the membrane barrier, and the liquid phase. The liquid absorbing solution flows in the fiber bore in which the velocity is assumed to obey a fully developed laminar flow, and the gas mixture circulates counter‐currently to the liquid flow in the shell side where the velocity is characterized by the Navier‐Stokes momentum balance equations. The average outlet gas and liquid concentrations, the reactive absorption flux, and the gas removal efficiencies are parametrically simulated with operational parameters such as gas flow rate, fresh inlet amine concentrations, and fiber geometrical characteristics. The shell velocity was described by other flow hydrodynamics models besides Navier‐Stokes and their simulated results were favorably compared to experimental data. © 2011 American Institute of Chemical Engineers AIChE J, 2012</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">absorption</term>
<term xml:id="kwd2">mathematical modeling</term>
<term xml:id="kwd3">membrane separations</term>
<term xml:id="kwd4">Navier‐Stokes equations</term>
</keywords>
<keywords rend="articleCategory">
<term>Separations: Materials, Devices, and Processes</term>
</keywords>
<keywords rend="tocHeading1">
<term>Separations: Materials, Devices, and Processes</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/CDACA623488DED5FBF6D19091168C473C42030EC/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1547-5905</doi>
<issn type="print">0001-1541</issn>
<issn type="electronic">1547-5905</issn>
<idGroup>
<id type="product" value="AIC"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="AICHE JOURNAL">AIChE Journal</title>
<title type="short">AIChE J.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="90">
<doi origin="wiley" registered="yes">10.1002/aic.v58.9</doi>
<numberingGroup>
<numbering type="journalVolume" number="58">58</numbering>
<numbering type="journalIssue">9</numbering>
</numberingGroup>
<coverDate startDate="2012-09">September 2012</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="200" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/aic.12791</doi>
<idGroup>
<id type="unit" value="AIC12791"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="13"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Separations: Materials, Devices, and Processes</title>
<title type="tocHeading1">Separations: Materials, Devices, and Processes</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright © 2011 American Institute of Chemical Engineers (AIChE)</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2010-10-26"></event>
<event type="manuscriptRevised" date="2011-10-05"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:3.1.6 mode:FullText mathml2tex" date="2012-08-08"></event>
<event type="publishedOnlineAccepted" date="2011-10-11"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2011-11-07"></event>
<event type="publishedOnlineFinalForm" date="2012-08-08"></event>
<event type="firstOnline" date="2011-11-07"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-01"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.3.4 mode:FullText" date="2015-02-24"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">2843</numbering>
<numbering type="pageLast">2855</numbering>
</numberingGroup>
<correspondenceTo>Laboratoire Réactions et Génie des Procédés LRGP (UPR 3349 CNRS) Nancy Université, BP 20451 ‐ 1, rue Grandville, F‐54001 Nancy Cedex, France</correspondenceTo>
<objectNameGroup>
<objectName elementName="appendix">Appendix</objectName>
</objectNameGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:AIC.AIC12791.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="14"></count>
<count type="tableTotal" number="3"></count>
<count type="referenceTotal" number="41"></count>
<count type="wordTotal" number="10699"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Carbon dioxide absorption by monoethanolamine in hollow fiber membrane contactors: A parametric investigation
<link href="#fn2"></link>
</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Noureddine</givenNames>
<familyName>Boucif</familyName>
</personName>
<contactDetails>
<email normalForm="Noureddine.Boucif@ensic.u-nancy.fr">Noureddine.Boucif@ensic.u‐nancy.fr</email>
</contactDetails>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Jean Pierre</givenNames>
<familyName>Corriou</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Denis</givenNames>
<familyName>Roizard</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Eric</givenNames>
<familyName>Favre</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="FR" type="organization">
<unparsedAffiliation>Laboratoire Réactions et Génie des Procédés LRGP (UPR 3349 CNRS) Nancy Université, BP 20451 ‐ 1, rue Grandville, F‐54001 Nancy Cedex, France</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">absorption</keyword>
<keyword xml:id="kwd2">mathematical modeling</keyword>
<keyword xml:id="kwd3">membrane separations</keyword>
<keyword xml:id="kwd4">Navier‐Stokes equations</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>A mathematical and numerical investigations on the gas–liquid absorption of carbon dioxide in monoethanolamine solutions in a hollow fiber membrane contactor device is described. The reactive absorption mechanism was built based on momentum and mass transport conservation laws in all three compartments involved in the process, i.e., the gas phase, the membrane barrier, and the liquid phase. The liquid absorbing solution flows in the fiber bore in which the velocity is assumed to obey a fully developed laminar flow, and the gas mixture circulates counter‐currently to the liquid flow in the shell side where the velocity is characterized by the Navier‐Stokes momentum balance equations. The average outlet gas and liquid concentrations, the reactive absorption flux, and the gas removal efficiencies are parametrically simulated with operational parameters such as gas flow rate, fresh inlet amine concentrations, and fiber geometrical characteristics. The shell velocity was described by other flow hydrodynamics models besides Navier‐Stokes and their simulated results were favorably compared to experimental data. © 2011 American Institute of Chemical Engineers AIChE J, 2012</p>
</abstract>
</abstractGroup>
</contentMeta>
<noteGroup>
<note xml:id="fn2">
<p>Noureddine. B: On leave from the Département de Chimie Industrielle, Faculté des Sciences de l'Ingénieur, Université de Mascara, Mascara 29000, Algeria</p>
</note>
</noteGroup>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Carbon dioxide absorption by monoethanolamine in hollow fiber membrane contactors: A parametric investigation</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Carbon dioxide absorption by monoethanolamine in hollow fiber membrane contactors: A parametric investigation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Noureddine</namePart>
<namePart type="family">Boucif</namePart>
<affiliation>Laboratoire Réactions et Génie des Procédés LRGP (UPR 3349 CNRS) Nancy Université, BP 20451 ‐ 1, rue Grandville, F‐54001 Nancy Cedex, France</affiliation>
<affiliation>E-mail: Noureddine.Boucif@ensic.u‐nancy.fr</affiliation>
<affiliation>Correspondence address: Laboratoire Réactions et Génie des Procédés LRGP (UPR 3349 CNRS) Nancy Université, BP 20451 ‐ 1, rue Grandville, F‐54001 Nancy Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jean Pierre</namePart>
<namePart type="family">Corriou</namePart>
<affiliation>Laboratoire Réactions et Génie des Procédés LRGP (UPR 3349 CNRS) Nancy Université, BP 20451 ‐ 1, rue Grandville, F‐54001 Nancy Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Denis</namePart>
<namePart type="family">Roizard</namePart>
<affiliation>Laboratoire Réactions et Génie des Procédés LRGP (UPR 3349 CNRS) Nancy Université, BP 20451 ‐ 1, rue Grandville, F‐54001 Nancy Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eric</namePart>
<namePart type="family">Favre</namePart>
<affiliation>Laboratoire Réactions et Génie des Procédés LRGP (UPR 3349 CNRS) Nancy Université, BP 20451 ‐ 1, rue Grandville, F‐54001 Nancy Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2012-09</dateIssued>
<dateCaptured encoding="w3cdtf">2010-10-26</dateCaptured>
<copyrightDate encoding="w3cdtf">2012</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">14</extent>
<extent unit="tables">3</extent>
<extent unit="references">41</extent>
<extent unit="words">10699</extent>
</physicalDescription>
<abstract lang="en">A mathematical and numerical investigations on the gas–liquid absorption of carbon dioxide in monoethanolamine solutions in a hollow fiber membrane contactor device is described. The reactive absorption mechanism was built based on momentum and mass transport conservation laws in all three compartments involved in the process, i.e., the gas phase, the membrane barrier, and the liquid phase. The liquid absorbing solution flows in the fiber bore in which the velocity is assumed to obey a fully developed laminar flow, and the gas mixture circulates counter‐currently to the liquid flow in the shell side where the velocity is characterized by the Navier‐Stokes momentum balance equations. The average outlet gas and liquid concentrations, the reactive absorption flux, and the gas removal efficiencies are parametrically simulated with operational parameters such as gas flow rate, fresh inlet amine concentrations, and fiber geometrical characteristics. The shell velocity was described by other flow hydrodynamics models besides Navier‐Stokes and their simulated results were favorably compared to experimental data. © 2011 American Institute of Chemical Engineers AIChE J, 2012</abstract>
<note type="content">*Noureddine. B: On leave from the Département de Chimie Industrielle, Faculté des Sciences de l'Ingénieur, Université de Mascara, Mascara 29000, Algeria</note>
<subject lang="en">
<genre>keywords</genre>
<topic>absorption</topic>
<topic>mathematical modeling</topic>
<topic>membrane separations</topic>
<topic>Navier‐Stokes equations</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>AIChE Journal</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>AIChE J.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Separations: Materials, Devices, and Processes</topic>
</subject>
<identifier type="ISSN">0001-1541</identifier>
<identifier type="eISSN">1547-5905</identifier>
<identifier type="DOI">10.1002/(ISSN)1547-5905</identifier>
<identifier type="PublisherID">AIC</identifier>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>58</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>9</number>
</detail>
<extent unit="pages">
<start>2843</start>
<end>2855</end>
<total>13</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">CDACA623488DED5FBF6D19091168C473C42030EC</identifier>
<identifier type="ark">ark:/67375/WNG-7SWNQRJH-S</identifier>
<identifier type="DOI">10.1002/aic.12791</identifier>
<identifier type="ArticleID">AIC12791</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2011 American Institute of Chemical Engineers (AIChE)</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/CDACA623488DED5FBF6D19091168C473C42030EC/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000464 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000464 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:CDACA623488DED5FBF6D19091168C473C42030EC
   |texte=   Carbon dioxide absorption by monoethanolamine in hollow fiber membrane contactors: A parametric investigation
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024