Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The oxidation of solid graphite using a 5-kW CO2 laser

Identifieur interne : 000166 ( Istex/Corpus ); précédent : 000165; suivant : 000167

The oxidation of solid graphite using a 5-kW CO2 laser

Auteurs : P. Caminat ; E. Saatdjian

Source :

RBID : ISTEX:BD8A4AAA1C0626D7A45EF42BAE4D820C011115EE

English descriptors

Abstract

Abstract: The combustion of solid graphite was studied experimentally using a 5-kW CO2 laser to heat an 8-cm-diameter 4-cm-high cylindrical samples to temperatures of the order of 1200°C. The absence of volatile matter and the large size of the samples used here are main obstacles to the combustion of these very pure graphites. A simple model which takes into account the main heat transfer modes here as well as mass loss was developed and its validity checked against the obtained data. The experimental parameters that were varied were the laser power and flux, the aerodynamics and composition of the oxidizer flow. The contribution of each heat transfer mode to the total energy balance is followed during each run. Under certain conditions, the sample continues to burn even though the laser has been shut off.

Url:
DOI: 10.1016/0010-2180(91)90105-K

Links to Exploration step

ISTEX:BD8A4AAA1C0626D7A45EF42BAE4D820C011115EE

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>The oxidation of solid graphite using a 5-kW CO2 laser</title>
<author>
<name sortKey="Caminat, P" sort="Caminat, P" uniqKey="Caminat P" first="P." last="Caminat">P. Caminat</name>
<affiliation>
<mods:affiliation>I.M.T., Technopôle de Chateau-Gombert, 13451 Marseille, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Saatdjian, E" sort="Saatdjian, E" uniqKey="Saatdjian E" first="E." last="Saatdjian">E. Saatdjian</name>
<affiliation>
<mods:affiliation>ENSIC-LSGC, 54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:BD8A4AAA1C0626D7A45EF42BAE4D820C011115EE</idno>
<date when="1991" year="1991">1991</date>
<idno type="doi">10.1016/0010-2180(91)90105-K</idno>
<idno type="url">https://api.istex.fr/document/BD8A4AAA1C0626D7A45EF42BAE4D820C011115EE/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000166</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000166</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">The oxidation of solid graphite using a 5-kW CO2 laser</title>
<author>
<name sortKey="Caminat, P" sort="Caminat, P" uniqKey="Caminat P" first="P." last="Caminat">P. Caminat</name>
<affiliation>
<mods:affiliation>I.M.T., Technopôle de Chateau-Gombert, 13451 Marseille, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Saatdjian, E" sort="Saatdjian, E" uniqKey="Saatdjian E" first="E." last="Saatdjian">E. Saatdjian</name>
<affiliation>
<mods:affiliation>ENSIC-LSGC, 54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Combustion and Flame</title>
<title level="j" type="abbrev">CNF</title>
<idno type="ISSN">0010-2180</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1991">1991</date>
<biblScope unit="volume">86</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="249">249</biblScope>
<biblScope unit="page" to="250">250</biblScope>
</imprint>
<idno type="ISSN">0010-2180</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0010-2180</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Boundary conditions</term>
<term>Combust</term>
<term>Combustion rate</term>
<term>Combustion reactions</term>
<term>Convection</term>
<term>Cylindrical samples</term>
<term>Experimental setup</term>
<term>First approximation</term>
<term>Graphite</term>
<term>Graphite oxidation</term>
<term>Graphite samples</term>
<term>Heat flux</term>
<term>Heat losses</term>
<term>Heat transfer coefficient</term>
<term>Heterogeneous reaction</term>
<term>High value</term>
<term>Kinetic data</term>
<term>Larger samples</term>
<term>Laser</term>
<term>Laser beam</term>
<term>Laser power</term>
<term>Longitudinal direction</term>
<term>Mass loss</term>
<term>Mass loss rate</term>
<term>Natural convection</term>
<term>Numerical values</term>
<term>Oxidizer</term>
<term>Oxidizer flow</term>
<term>Oxidizer flow rate</term>
<term>Oxygen flow</term>
<term>Oxygen flow rate</term>
<term>Reaction mechanism</term>
<term>Reaction order</term>
<term>Reaction rate</term>
<term>Response time</term>
<term>Simple model</term>
<term>Solid graphite</term>
<term>Solid line</term>
<term>Solid lines</term>
<term>Surface temperature</term>
<term>Thermal conductivity</term>
<term>Thermal diffusivity</term>
<term>Time step</term>
<term>Total mass loss</term>
<term>Transverse direction</term>
<term>Variable oxidizer flow rate</term>
<term>Water vapor</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Boundary conditions</term>
<term>Combust</term>
<term>Combustion rate</term>
<term>Combustion reactions</term>
<term>Convection</term>
<term>Cylindrical samples</term>
<term>Experimental setup</term>
<term>First approximation</term>
<term>Graphite</term>
<term>Graphite oxidation</term>
<term>Graphite samples</term>
<term>Heat flux</term>
<term>Heat losses</term>
<term>Heat transfer coefficient</term>
<term>Heterogeneous reaction</term>
<term>High value</term>
<term>Kinetic data</term>
<term>Larger samples</term>
<term>Laser</term>
<term>Laser beam</term>
<term>Laser power</term>
<term>Longitudinal direction</term>
<term>Mass loss</term>
<term>Mass loss rate</term>
<term>Natural convection</term>
<term>Numerical values</term>
<term>Oxidizer</term>
<term>Oxidizer flow</term>
<term>Oxidizer flow rate</term>
<term>Oxygen flow</term>
<term>Oxygen flow rate</term>
<term>Reaction mechanism</term>
<term>Reaction order</term>
<term>Reaction rate</term>
<term>Response time</term>
<term>Simple model</term>
<term>Solid graphite</term>
<term>Solid line</term>
<term>Solid lines</term>
<term>Surface temperature</term>
<term>Thermal conductivity</term>
<term>Thermal diffusivity</term>
<term>Time step</term>
<term>Total mass loss</term>
<term>Transverse direction</term>
<term>Variable oxidizer flow rate</term>
<term>Water vapor</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: The combustion of solid graphite was studied experimentally using a 5-kW CO2 laser to heat an 8-cm-diameter 4-cm-high cylindrical samples to temperatures of the order of 1200°C. The absence of volatile matter and the large size of the samples used here are main obstacles to the combustion of these very pure graphites. A simple model which takes into account the main heat transfer modes here as well as mass loss was developed and its validity checked against the obtained data. The experimental parameters that were varied were the laser power and flux, the aerodynamics and composition of the oxidizer flow. The contribution of each heat transfer mode to the total energy balance is followed during each run. Under certain conditions, the sample continues to burn even though the laser has been shut off.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>laser</json:string>
<json:string>mass loss rate</json:string>
<json:string>surface temperature</json:string>
<json:string>combust</json:string>
<json:string>oxidizer</json:string>
<json:string>heat flux</json:string>
<json:string>mass loss</json:string>
<json:string>numerical values</json:string>
<json:string>oxygen flow rate</json:string>
<json:string>reaction rate</json:string>
<json:string>solid line</json:string>
<json:string>solid graphite</json:string>
<json:string>oxygen flow</json:string>
<json:string>kinetic data</json:string>
<json:string>laser beam</json:string>
<json:string>thermal conductivity</json:string>
<json:string>graphite</json:string>
<json:string>response time</json:string>
<json:string>total mass loss</json:string>
<json:string>natural convection</json:string>
<json:string>time step</json:string>
<json:string>graphite oxidation</json:string>
<json:string>reaction mechanism</json:string>
<json:string>combustion rate</json:string>
<json:string>longitudinal direction</json:string>
<json:string>water vapor</json:string>
<json:string>experimental setup</json:string>
<json:string>combustion reactions</json:string>
<json:string>high value</json:string>
<json:string>heat transfer coefficient</json:string>
<json:string>thermal diffusivity</json:string>
<json:string>transverse direction</json:string>
<json:string>graphite samples</json:string>
<json:string>solid lines</json:string>
<json:string>oxidizer flow</json:string>
<json:string>heat losses</json:string>
<json:string>laser power</json:string>
<json:string>heterogeneous reaction</json:string>
<json:string>larger samples</json:string>
<json:string>simple model</json:string>
<json:string>oxidizer flow rate</json:string>
<json:string>cylindrical samples</json:string>
<json:string>first approximation</json:string>
<json:string>reaction order</json:string>
<json:string>variable oxidizer flow rate</json:string>
<json:string>boundary conditions</json:string>
<json:string>convection</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>P. Caminat</name>
<affiliations>
<json:string>I.M.T., Technopôle de Chateau-Gombert, 13451 Marseille, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>E. Saatdjian</name>
<affiliations>
<json:string>ENSIC-LSGC, 54001 Nancy, France</json:string>
</affiliations>
</json:item>
</author>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>The combustion of solid graphite was studied experimentally using a 5-kW CO2 laser to heat an 8-cm-diameter 4-cm-high cylindrical samples to temperatures of the order of 1200°C. The absence of volatile matter and the large size of the samples used here are main obstacles to the combustion of these very pure graphites. A simple model which takes into account the main heat transfer modes here as well as mass loss was developed and its validity checked against the obtained data. The experimental parameters that were varied were the laser power and flux, the aerodynamics and composition of the oxidizer flow. The contribution of each heat transfer mode to the total energy balance is followed during each run. Under certain conditions, the sample continues to burn even though the laser has been shut off.</abstract>
<qualityIndicators>
<score>5.602</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>504 x 720 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>808</abstractCharCount>
<pdfWordCount>3506</pdfWordCount>
<pdfCharCount>18835</pdfCharCount>
<pdfPageCount>10</pdfPageCount>
<abstractWordCount>133</abstractWordCount>
</qualityIndicators>
<title>The oxidation of solid graphite using a 5-kW CO2 laser</title>
<pii>
<json:string>0010-2180(91)90105-K</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Combustion and Flame</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1991</publicationDate>
<issn>
<json:string>0010-2180</json:string>
</issn>
<pii>
<json:string>S0010-2180(00)X0249-0</json:string>
</pii>
<volume>86</volume>
<issue>3</issue>
<pages>
<first>249</first>
<last>250</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>thermodynamics</json:string>
<json:string>engineering, multidisciplinary</json:string>
<json:string>engineering, mechanical</json:string>
<json:string>engineering, chemical</json:string>
<json:string>energy & fuels</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>enabling & strategic technologies</json:string>
<json:string>energy</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences exactes et technologie</json:string>
<json:string>terre, ocean, espace</json:string>
<json:string>geophysique externe</json:string>
</inist>
</categories>
<publicationDate>1991</publicationDate>
<copyrightDate>1991</copyrightDate>
<doi>
<json:string>10.1016/0010-2180(91)90105-K</json:string>
</doi>
<id>BD8A4AAA1C0626D7A45EF42BAE4D820C011115EE</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/BD8A4AAA1C0626D7A45EF42BAE4D820C011115EE/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/BD8A4AAA1C0626D7A45EF42BAE4D820C011115EE/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/BD8A4AAA1C0626D7A45EF42BAE4D820C011115EE/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">The oxidation of solid graphite using a 5-kW CO2 laser</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>1991</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">The oxidation of solid graphite using a 5-kW CO2 laser</title>
<author xml:id="author-0000">
<persName>
<forename type="first">P.</forename>
<surname>Caminat</surname>
</persName>
<affiliation>I.M.T., Technopôle de Chateau-Gombert, 13451 Marseille, France</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">E.</forename>
<surname>Saatdjian</surname>
</persName>
<affiliation>Author to whom correspondence should be addressed.</affiliation>
<affiliation>ENSIC-LSGC, 54001 Nancy, France</affiliation>
</author>
<idno type="istex">BD8A4AAA1C0626D7A45EF42BAE4D820C011115EE</idno>
<idno type="DOI">10.1016/0010-2180(91)90105-K</idno>
<idno type="PII">0010-2180(91)90105-K</idno>
</analytic>
<monogr>
<title level="j">Combustion and Flame</title>
<title level="j" type="abbrev">CNF</title>
<idno type="pISSN">0010-2180</idno>
<idno type="PII">S0010-2180(00)X0249-0</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1991"></date>
<biblScope unit="volume">86</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="249">249</biblScope>
<biblScope unit="page" to="250">250</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1991</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The combustion of solid graphite was studied experimentally using a 5-kW CO2 laser to heat an 8-cm-diameter 4-cm-high cylindrical samples to temperatures of the order of 1200°C. The absence of volatile matter and the large size of the samples used here are main obstacles to the combustion of these very pure graphites. A simple model which takes into account the main heat transfer modes here as well as mass loss was developed and its validity checked against the obtained data. The experimental parameters that were varied were the laser power and flux, the aerodynamics and composition of the oxidizer flow. The contribution of each heat transfer mode to the total energy balance is followed during each run. Under certain conditions, the sample continues to burn even though the laser has been shut off.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1991-02-22">Modified</change>
<change when="1991">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/BD8A4AAA1C0626D7A45EF42BAE4D820C011115EE/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>CNF</jid>
<aid>9190105K</aid>
<ce:pii>0010-2180(91)90105-K</ce:pii>
<ce:doi>10.1016/0010-2180(91)90105-K</ce:doi>
<ce:copyright type="unknown" year="1991"></ce:copyright>
</item-info>
<head>
<ce:title>The oxidation of solid graphite using a 5-kW CO
<ce:inf>2</ce:inf>
laser</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>P.</ce:given-name>
<ce:surname>Caminat</ce:surname>
</ce:author>
<ce:affiliation>
<ce:textfn>I.M.T., Technopôle de Chateau-Gombert, 13451 Marseille, France</ce:textfn>
</ce:affiliation>
</ce:author-group>
<ce:author-group>
<ce:author>
<ce:given-name>E.</ce:given-name>
<ce:surname>Saatdjian</ce:surname>
<ce:cross-ref refid="COR1">
<ce:sup></ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation>
<ce:textfn>ENSIC-LSGC, 54001 Nancy, France</ce:textfn>
</ce:affiliation>
<ce:correspondence id="COR1">
<ce:label></ce:label>
<ce:text>Author to whom correspondence should be addressed.</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="7" month="3" year="1990"></ce:date-received>
<ce:date-revised day="22" month="2" year="1991"></ce:date-revised>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>The combustion of solid graphite was studied experimentally using a 5-kW CO
<ce:inf>2</ce:inf>
laser to heat an 8-cm-diameter 4-cm-high cylindrical samples to temperatures of the order of 1200°C. The absence of volatile matter and the large size of the samples used here are main obstacles to the combustion of these very pure graphites. A simple model which takes into account the main heat transfer modes here as well as mass loss was developed and its validity checked against the obtained data. The experimental parameters that were varied were the laser power and flux, the aerodynamics and composition of the oxidizer flow. The contribution of each heat transfer mode to the total energy balance is followed during each run. Under certain conditions, the sample continues to burn even though the laser has been shut off.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>The oxidation of solid graphite using a 5-kW CO2 laser</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>The oxidation of solid graphite using a 5-kW CO</title>
</titleInfo>
<name type="personal">
<namePart type="given">P.</namePart>
<namePart type="family">Caminat</namePart>
<affiliation>I.M.T., Technopôle de Chateau-Gombert, 13451 Marseille, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">E.</namePart>
<namePart type="family">Saatdjian</namePart>
<affiliation>ENSIC-LSGC, 54001 Nancy, France</affiliation>
<description>Author to whom correspondence should be addressed.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1991</dateIssued>
<dateModified encoding="w3cdtf">1991-02-22</dateModified>
<copyrightDate encoding="w3cdtf">1991</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: The combustion of solid graphite was studied experimentally using a 5-kW CO2 laser to heat an 8-cm-diameter 4-cm-high cylindrical samples to temperatures of the order of 1200°C. The absence of volatile matter and the large size of the samples used here are main obstacles to the combustion of these very pure graphites. A simple model which takes into account the main heat transfer modes here as well as mass loss was developed and its validity checked against the obtained data. The experimental parameters that were varied were the laser power and flux, the aerodynamics and composition of the oxidizer flow. The contribution of each heat transfer mode to the total energy balance is followed during each run. Under certain conditions, the sample continues to burn even though the laser has been shut off.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Combustion and Flame</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>CNF</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">199108</dateIssued>
</originInfo>
<identifier type="ISSN">0010-2180</identifier>
<identifier type="PII">S0010-2180(00)X0249-0</identifier>
<part>
<date>199108</date>
<detail type="volume">
<number>86</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>3</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>189</start>
<end>295</end>
</extent>
<extent unit="pages">
<start>249</start>
<end>250</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">BD8A4AAA1C0626D7A45EF42BAE4D820C011115EE</identifier>
<identifier type="ark">ark:/67375/6H6-B7B12M20-5</identifier>
<identifier type="DOI">10.1016/0010-2180(91)90105-K</identifier>
<identifier type="PII">0010-2180(91)90105-K</identifier>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/BD8A4AAA1C0626D7A45EF42BAE4D820C011115EE/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000166 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000166 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:BD8A4AAA1C0626D7A45EF42BAE4D820C011115EE
   |texte=   The oxidation of solid graphite using a 5-kW CO2 laser
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024