Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modeling of hydrogen isotopes separation in a metal hydride bed

Identifieur interne : 000137 ( Istex/Corpus ); précédent : 000136; suivant : 000138

Modeling of hydrogen isotopes separation in a metal hydride bed

Auteurs : S. Charton ; J. P. Corriou ; D. Chweich

Source :

RBID : ISTEX:89482B14ADEB9D627B74D5CF063FF630420C6F20

English descriptors

Abstract

Abstract: A predictive model for hydrogen isotopes separation in a non-isothermal bed of unsupported palladium hydride particles is derived. It accounts for the non-linear adsorption–dissociation equilibrium, hydrodynamic dispersion, pressure drop, mass transfer kinetics, heat of sorption and heat losses at the bed wall. Using parameters from the literature or estimated with classical correlations, the model gives simulated curves in agreement with previously published experiments without any parameter fit. The non-isothermal behavior is shown to be responsible for drastic changes of the mass transfer rate which is controlled by diffusion in the solid-phase lattice. For a feed at 300K and atmospheric pressure, the endothermic hydride-to-deuteride exchange is kinetically controlled, whereas the reverse exothermic exchange is nearly at equilibrium. Finally, a simple and efficient thermodynamic model for the dissociative equilibrium between a metal and a diatomic gas is proposed.

Url:
DOI: 10.1016/S0009-2509(98)00205-X

Links to Exploration step

ISTEX:89482B14ADEB9D627B74D5CF063FF630420C6F20

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modeling of hydrogen isotopes separation in a metal hydride bed</title>
<author>
<name sortKey="Charton, S" sort="Charton, S" uniqKey="Charton S" first="S." last="Charton">S. Charton</name>
<affiliation>
<mods:affiliation>LSGC-CNRS-ENSIC, BP 451, 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Corriou, J P" sort="Corriou, J P" uniqKey="Corriou J" first="J. P." last="Corriou">J. P. Corriou</name>
<affiliation>
<mods:affiliation>E-mail: corriou@ensic.u-nancy.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>LSGC-CNRS-ENSIC, BP 451, 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chweich, D" sort="Chweich, D" uniqKey="Chweich D" first="D." last="Chweich">D. Chweich</name>
<affiliation>
<mods:affiliation>CPE-LGCP, BP2077, 69916 Villeurbanne Cedex, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:89482B14ADEB9D627B74D5CF063FF630420C6F20</idno>
<date when="1998" year="1998">1998</date>
<idno type="doi">10.1016/S0009-2509(98)00205-X</idno>
<idno type="url">https://api.istex.fr/document/89482B14ADEB9D627B74D5CF063FF630420C6F20/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000137</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000137</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Modeling of hydrogen isotopes separation in a metal hydride bed</title>
<author>
<name sortKey="Charton, S" sort="Charton, S" uniqKey="Charton S" first="S." last="Charton">S. Charton</name>
<affiliation>
<mods:affiliation>LSGC-CNRS-ENSIC, BP 451, 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Corriou, J P" sort="Corriou, J P" uniqKey="Corriou J" first="J. P." last="Corriou">J. P. Corriou</name>
<affiliation>
<mods:affiliation>E-mail: corriou@ensic.u-nancy.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>LSGC-CNRS-ENSIC, BP 451, 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chweich, D" sort="Chweich, D" uniqKey="Chweich D" first="D." last="Chweich">D. Chweich</name>
<affiliation>
<mods:affiliation>CPE-LGCP, BP2077, 69916 Villeurbanne Cedex, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Chemical Engineering Science</title>
<title level="j" type="abbrev">CES</title>
<idno type="ISSN">0009-2509</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1998">1998</date>
<biblScope unit="volume">54</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="103">103</biblScope>
<biblScope unit="page" to="113">113</biblScope>
</imprint>
<idno type="ISSN">0009-2509</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0009-2509</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Activation energy</term>
<term>Andreev</term>
<term>Atmospheric pressure</term>
<term>Atomic fraction</term>
<term>Atomic fractions</term>
<term>Axial</term>
<term>Axial dispersion</term>
<term>Charton</term>
<term>Chemical engineering science</term>
<term>Chromatographic processes</term>
<term>Chromatography</term>
<term>Classical correlations</term>
<term>Common metals</term>
<term>Constant stoichiometry</term>
<term>Diffusion</term>
<term>Dimensionless</term>
<term>Dispersion</term>
<term>Elsevier science</term>
<term>Endothermic</term>
<term>Endothermic exchange</term>
<term>Enthalpy</term>
<term>Equilibrium</term>
<term>Equilibrium model</term>
<term>Exothermic</term>
<term>Exothermic exchange</term>
<term>Experimental conditions</term>
<term>Experimental measurements</term>
<term>Experimental results</term>
<term>External mass transfer</term>
<term>External mass transfer control</term>
<term>Foltz</term>
<term>Force model</term>
<term>Full model</term>
<term>Gaseous hydrogen</term>
<term>Heat balance equation</term>
<term>Heat capacities</term>
<term>Heat capacity</term>
<term>Hydride</term>
<term>Hydride phase</term>
<term>Hydrogen isotope</term>
<term>Hydrogen isotope exchange</term>
<term>Hydrogen isotopes</term>
<term>Hydrogen isotopes separation</term>
<term>Internal energy</term>
<term>Isotope</term>
<term>Isotopic</term>
<term>Isotopic equilibrium</term>
<term>Isotopic exchange</term>
<term>Kinetic theory</term>
<term>Kinetics</term>
<term>Local equilibrium</term>
<term>Mass balance</term>
<term>Mass transfer</term>
<term>Mass transfer kinetics</term>
<term>Mass transfer resistance</term>
<term>Melius</term>
<term>Melius model</term>
<term>Metal hydride</term>
<term>Metal hydride beds</term>
<term>Metal powder</term>
<term>Model accounting</term>
<term>Mole fraction</term>
<term>Mole fractions</term>
<term>Palladium</term>
<term>Palladium hydride</term>
<term>Palladium hydride powder</term>
<term>Partial equations</term>
<term>Pressure drop</term>
<term>Pure isotopes</term>
<term>Separation factor</term>
<term>Solid phase</term>
<term>Stoichiometry</term>
<term>Technical report department</term>
<term>Thermal conductivity</term>
<term>Thermodynamic model</term>
<term>Total number</term>
<term>Unit mass</term>
<term>Upwind approximations</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Activation energy</term>
<term>Andreev</term>
<term>Atmospheric pressure</term>
<term>Atomic fraction</term>
<term>Atomic fractions</term>
<term>Axial</term>
<term>Axial dispersion</term>
<term>Charton</term>
<term>Chemical engineering science</term>
<term>Chromatographic processes</term>
<term>Classical correlations</term>
<term>Common metals</term>
<term>Constant stoichiometry</term>
<term>Dimensionless</term>
<term>Dispersion</term>
<term>Elsevier science</term>
<term>Endothermic</term>
<term>Endothermic exchange</term>
<term>Enthalpy</term>
<term>Equilibrium model</term>
<term>Exothermic</term>
<term>Exothermic exchange</term>
<term>Experimental conditions</term>
<term>Experimental measurements</term>
<term>Experimental results</term>
<term>External mass transfer</term>
<term>External mass transfer control</term>
<term>Foltz</term>
<term>Force model</term>
<term>Full model</term>
<term>Gaseous hydrogen</term>
<term>Heat balance equation</term>
<term>Heat capacities</term>
<term>Heat capacity</term>
<term>Hydride</term>
<term>Hydride phase</term>
<term>Hydrogen isotope exchange</term>
<term>Hydrogen isotopes</term>
<term>Hydrogen isotopes separation</term>
<term>Internal energy</term>
<term>Isotope</term>
<term>Isotopic</term>
<term>Isotopic equilibrium</term>
<term>Isotopic exchange</term>
<term>Kinetic theory</term>
<term>Local equilibrium</term>
<term>Mass balance</term>
<term>Mass transfer</term>
<term>Mass transfer kinetics</term>
<term>Mass transfer resistance</term>
<term>Melius</term>
<term>Melius model</term>
<term>Metal hydride</term>
<term>Metal hydride beds</term>
<term>Metal powder</term>
<term>Model accounting</term>
<term>Mole fraction</term>
<term>Mole fractions</term>
<term>Palladium</term>
<term>Palladium hydride</term>
<term>Palladium hydride powder</term>
<term>Partial equations</term>
<term>Pressure drop</term>
<term>Pure isotopes</term>
<term>Separation factor</term>
<term>Solid phase</term>
<term>Stoichiometry</term>
<term>Technical report department</term>
<term>Thermal conductivity</term>
<term>Thermodynamic model</term>
<term>Total number</term>
<term>Unit mass</term>
<term>Upwind approximations</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: A predictive model for hydrogen isotopes separation in a non-isothermal bed of unsupported palladium hydride particles is derived. It accounts for the non-linear adsorption–dissociation equilibrium, hydrodynamic dispersion, pressure drop, mass transfer kinetics, heat of sorption and heat losses at the bed wall. Using parameters from the literature or estimated with classical correlations, the model gives simulated curves in agreement with previously published experiments without any parameter fit. The non-isothermal behavior is shown to be responsible for drastic changes of the mass transfer rate which is controlled by diffusion in the solid-phase lattice. For a feed at 300K and atmospheric pressure, the endothermic hydride-to-deuteride exchange is kinetically controlled, whereas the reverse exothermic exchange is nearly at equilibrium. Finally, a simple and efficient thermodynamic model for the dissociative equilibrium between a metal and a diatomic gas is proposed.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>isotope</json:string>
<json:string>melius</json:string>
<json:string>foltz</json:string>
<json:string>stoichiometry</json:string>
<json:string>chemical engineering science</json:string>
<json:string>charton</json:string>
<json:string>dimensionless</json:string>
<json:string>palladium</json:string>
<json:string>hydrogen isotopes</json:string>
<json:string>axial dispersion</json:string>
<json:string>thermal conductivity</json:string>
<json:string>andreev</json:string>
<json:string>separation factor</json:string>
<json:string>solid phase</json:string>
<json:string>mole fractions</json:string>
<json:string>common metals</json:string>
<json:string>hydride</json:string>
<json:string>pressure drop</json:string>
<json:string>endothermic exchange</json:string>
<json:string>heat capacity</json:string>
<json:string>mass transfer</json:string>
<json:string>experimental results</json:string>
<json:string>exothermic exchange</json:string>
<json:string>isotopic exchange</json:string>
<json:string>mass transfer resistance</json:string>
<json:string>exothermic</json:string>
<json:string>atomic fractions</json:string>
<json:string>experimental measurements</json:string>
<json:string>force model</json:string>
<json:string>mass transfer kinetics</json:string>
<json:string>heat capacities</json:string>
<json:string>technical report department</json:string>
<json:string>internal energy</json:string>
<json:string>heat balance equation</json:string>
<json:string>isotopic equilibrium</json:string>
<json:string>gaseous hydrogen</json:string>
<json:string>equilibrium model</json:string>
<json:string>pure isotopes</json:string>
<json:string>constant stoichiometry</json:string>
<json:string>isotopic</json:string>
<json:string>axial</json:string>
<json:string>dispersion</json:string>
<json:string>enthalpy</json:string>
<json:string>chromatographic processes</json:string>
<json:string>mass balance</json:string>
<json:string>atmospheric pressure</json:string>
<json:string>palladium hydride</json:string>
<json:string>metal powder</json:string>
<json:string>melius model</json:string>
<json:string>experimental conditions</json:string>
<json:string>metal hydride</json:string>
<json:string>hydride phase</json:string>
<json:string>external mass transfer control</json:string>
<json:string>partial equations</json:string>
<json:string>upwind approximations</json:string>
<json:string>local equilibrium</json:string>
<json:string>hydrogen isotopes separation</json:string>
<json:string>full model</json:string>
<json:string>activation energy</json:string>
<json:string>kinetic theory</json:string>
<json:string>metal hydride beds</json:string>
<json:string>model accounting</json:string>
<json:string>unit mass</json:string>
<json:string>atomic fraction</json:string>
<json:string>total number</json:string>
<json:string>mole fraction</json:string>
<json:string>classical correlations</json:string>
<json:string>hydrogen isotope exchange</json:string>
<json:string>thermodynamic model</json:string>
<json:string>elsevier science</json:string>
<json:string>palladium hydride powder</json:string>
<json:string>external mass transfer</json:string>
<json:string>endothermic</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>S. Charton</name>
<affiliations>
<json:string>LSGC-CNRS-ENSIC, BP 451, 54001 Nancy Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>J.P. Corriou</name>
<affiliations>
<json:string>E-mail: corriou@ensic.u-nancy.fr</json:string>
<json:string>LSGC-CNRS-ENSIC, BP 451, 54001 Nancy Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>D. chweich</name>
<affiliations>
<json:string>CPE-LGCP, BP2077, 69916 Villeurbanne Cedex, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Hydrogen isotope</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Palladium</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Chromatography</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Equilibrium</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Kinetics</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Diffusion</value>
</json:item>
</subject>
<articleId>
<json:string>2279</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>A predictive model for hydrogen isotopes separation in a non-isothermal bed of unsupported palladium hydride particles is derived. It accounts for the non-linear adsorption–dissociation equilibrium, hydrodynamic dispersion, pressure drop, mass transfer kinetics, heat of sorption and heat losses at the bed wall. Using parameters from the literature or estimated with classical correlations, the model gives simulated curves in agreement with previously published experiments without any parameter fit. The non-isothermal behavior is shown to be responsible for drastic changes of the mass transfer rate which is controlled by diffusion in the solid-phase lattice. For a feed at 300K and atmospheric pressure, the endothermic hydride-to-deuteride exchange is kinetically controlled, whereas the reverse exothermic exchange is nearly at equilibrium. Finally, a simple and efficient thermodynamic model for the dissociative equilibrium between a metal and a diatomic gas is proposed.</abstract>
<qualityIndicators>
<score>6.241</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>552 x 775 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<keywordCount>6</keywordCount>
<abstractCharCount>981</abstractCharCount>
<pdfWordCount>4609</pdfWordCount>
<pdfCharCount>27718</pdfCharCount>
<pdfPageCount>11</pdfPageCount>
<abstractWordCount>136</abstractWordCount>
</qualityIndicators>
<title>Modeling of hydrogen isotopes separation in a metal hydride bed</title>
<pii>
<json:string>S0009-2509(98)00205-X</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Chemical Engineering Science</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1999</publicationDate>
<issn>
<json:string>0009-2509</json:string>
</issn>
<pii>
<json:string>S0009-2509(00)X0093-0</json:string>
</pii>
<volume>54</volume>
<issue>1</issue>
<pages>
<first>103</first>
<last>113</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>engineering, chemical</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>engineering</json:string>
<json:string>chemical engineering</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences exactes et technologie</json:string>
<json:string>chimie</json:string>
<json:string>chimie generale et chimie physique</json:string>
</inist>
</categories>
<publicationDate>1998</publicationDate>
<copyrightDate>1998</copyrightDate>
<doi>
<json:string>10.1016/S0009-2509(98)00205-X</json:string>
</doi>
<id>89482B14ADEB9D627B74D5CF063FF630420C6F20</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/89482B14ADEB9D627B74D5CF063FF630420C6F20/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/89482B14ADEB9D627B74D5CF063FF630420C6F20/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/89482B14ADEB9D627B74D5CF063FF630420C6F20/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Modeling of hydrogen isotopes separation in a metal hydride bed</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©1998 Elsevier Science Ltd</p>
</availability>
<date>1998</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Modeling of hydrogen isotopes separation in a metal hydride bed</title>
<author xml:id="author-0000">
<persName>
<forename type="first">S.</forename>
<surname>Charton</surname>
</persName>
<affiliation>LSGC-CNRS-ENSIC, BP 451, 54001 Nancy Cedex, France</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">J.P.</forename>
<surname>Corriou</surname>
</persName>
<email>corriou@ensic.u-nancy.fr</email>
<note type="correspondence">
<p>Corresponding author</p>
</note>
<affiliation>LSGC-CNRS-ENSIC, BP 451, 54001 Nancy Cedex, France</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">D.</forename>
<surname>chweich</surname>
</persName>
<affiliation>CPE-LGCP, BP2077, 69916 Villeurbanne Cedex, France</affiliation>
</author>
<idno type="istex">89482B14ADEB9D627B74D5CF063FF630420C6F20</idno>
<idno type="DOI">10.1016/S0009-2509(98)00205-X</idno>
<idno type="PII">S0009-2509(98)00205-X</idno>
<idno type="ArticleID">2279</idno>
</analytic>
<monogr>
<title level="j">Chemical Engineering Science</title>
<title level="j" type="abbrev">CES</title>
<idno type="pISSN">0009-2509</idno>
<idno type="PII">S0009-2509(00)X0093-0</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1998"></date>
<biblScope unit="volume">54</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="103">103</biblScope>
<biblScope unit="page" to="113">113</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1998</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>A predictive model for hydrogen isotopes separation in a non-isothermal bed of unsupported palladium hydride particles is derived. It accounts for the non-linear adsorption–dissociation equilibrium, hydrodynamic dispersion, pressure drop, mass transfer kinetics, heat of sorption and heat losses at the bed wall. Using parameters from the literature or estimated with classical correlations, the model gives simulated curves in agreement with previously published experiments without any parameter fit. The non-isothermal behavior is shown to be responsible for drastic changes of the mass transfer rate which is controlled by diffusion in the solid-phase lattice. For a feed at 300K and atmospheric pressure, the endothermic hydride-to-deuteride exchange is kinetically controlled, whereas the reverse exothermic exchange is nearly at equilibrium. Finally, a simple and efficient thermodynamic model for the dissociative equilibrium between a metal and a diatomic gas is proposed.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Hydrogen isotope</term>
</item>
<item>
<term>Palladium</term>
</item>
<item>
<term>Chromatography</term>
</item>
<item>
<term>Equilibrium</term>
</item>
<item>
<term>Kinetics</term>
</item>
<item>
<term>Diffusion</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1998">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2017-09-29">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/89482B14ADEB9D627B74D5CF063FF630420C6F20/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier converted-article found">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="en">
<item-info>
<jid>CES</jid>
<aid>2279</aid>
<ce:pii>S0009-2509(98)00205-X</ce:pii>
<ce:doi>10.1016/S0009-2509(98)00205-X</ce:doi>
<ce:copyright type="full-transfer" year="1998">Elsevier Science Ltd</ce:copyright>
</item-info>
<head>
<ce:title>Modeling of hydrogen isotopes separation in a metal hydride bed</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>S.</ce:given-name>
<ce:surname>Charton</ce:surname>
<ce:cross-ref refid="ORFA">
<ce:sup loc="post">a</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="ORFB">
<ce:sup loc="post">b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>J.P.</ce:given-name>
<ce:surname>Corriou</ce:surname>
<ce:cross-ref refid="ORFA">
<ce:sup loc="post">a</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
<ce:e-address type="email">corriou@ensic.u-nancy.fr</ce:e-address>
</ce:author>
<ce:author>
<ce:given-name>D.</ce:given-name>
<ce:surname>chweich</ce:surname>
<ce:cross-ref refid="ORFC">
<ce:sup loc="post">c</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="ORFA">
<ce:label>a</ce:label>
<ce:textfn>LSGC-CNRS-ENSIC, BP 451, 54001 Nancy Cedex, France</ce:textfn>
</ce:affiliation>
<ce:affiliation id="ORFB">
<ce:label>b</ce:label>
<ce:textfn>CEA, 21120 Is sur Tille, France</ce:textfn>
</ce:affiliation>
<ce:affiliation id="ORFC">
<ce:label>c</ce:label>
<ce:textfn>CPE-LGCP, BP2077, 69916 Villeurbanne Cedex, France</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="20" month="12" year="1997"></ce:date-received>
<ce:date-accepted day="30" month="6" year="1998"></ce:date-accepted>
<ce:abstract class="author">
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para view="all" id="simple-para.0010">A predictive model for hydrogen isotopes separation in a non-isothermal bed of unsupported palladium hydride particles is derived. It accounts for the non-linear adsorption–dissociation equilibrium, hydrodynamic dispersion, pressure drop, mass transfer kinetics, heat of sorption and heat losses at the bed wall. Using parameters from the literature or estimated with classical correlations, the model gives simulated curves in agreement with previously published experiments without any parameter fit. The non-isothermal behavior is shown to be responsible for drastic changes of the mass transfer rate which is controlled by diffusion in the solid-phase lattice. For a feed at 300
<ce:hsp sp="0.25"></ce:hsp>
K and atmospheric pressure, the endothermic hydride-to-deuteride exchange is kinetically controlled, whereas the reverse exothermic exchange is nearly at equilibrium. Finally, a simple and efficient thermodynamic model for the dissociative equilibrium between a metal and a diatomic gas is proposed.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Hydrogen isotope</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Palladium</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Chromatography</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Equilibrium</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Kinetics</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Diffusion</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Modeling of hydrogen isotopes separation in a metal hydride bed</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Modeling of hydrogen isotopes separation in a metal hydride bed</title>
</titleInfo>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">Charton</namePart>
<affiliation>LSGC-CNRS-ENSIC, BP 451, 54001 Nancy Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J.P.</namePart>
<namePart type="family">Corriou</namePart>
<affiliation>E-mail: corriou@ensic.u-nancy.fr</affiliation>
<affiliation>LSGC-CNRS-ENSIC, BP 451, 54001 Nancy Cedex, France</affiliation>
<description>Corresponding author</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D.</namePart>
<namePart type="family">chweich</namePart>
<affiliation>CPE-LGCP, BP2077, 69916 Villeurbanne Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1998</dateIssued>
<copyrightDate encoding="w3cdtf">1998</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: A predictive model for hydrogen isotopes separation in a non-isothermal bed of unsupported palladium hydride particles is derived. It accounts for the non-linear adsorption–dissociation equilibrium, hydrodynamic dispersion, pressure drop, mass transfer kinetics, heat of sorption and heat losses at the bed wall. Using parameters from the literature or estimated with classical correlations, the model gives simulated curves in agreement with previously published experiments without any parameter fit. The non-isothermal behavior is shown to be responsible for drastic changes of the mass transfer rate which is controlled by diffusion in the solid-phase lattice. For a feed at 300K and atmospheric pressure, the endothermic hydride-to-deuteride exchange is kinetically controlled, whereas the reverse exothermic exchange is nearly at equilibrium. Finally, a simple and efficient thermodynamic model for the dissociative equilibrium between a metal and a diatomic gas is proposed.</abstract>
<subject lang="en">
<genre>Keywords</genre>
<topic>Hydrogen isotope</topic>
<topic>Palladium</topic>
<topic>Chromatography</topic>
<topic>Equilibrium</topic>
<topic>Kinetics</topic>
<topic>Diffusion</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Chemical Engineering Science</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>CES</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">199901</dateIssued>
</originInfo>
<identifier type="ISSN">0009-2509</identifier>
<identifier type="PII">S0009-2509(00)X0093-0</identifier>
<part>
<date>199901</date>
<detail type="volume">
<number>54</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>1</start>
<end>148</end>
</extent>
<extent unit="pages">
<start>103</start>
<end>113</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">89482B14ADEB9D627B74D5CF063FF630420C6F20</identifier>
<identifier type="ark">ark:/67375/6H6-RQBGZXSM-9</identifier>
<identifier type="DOI">10.1016/S0009-2509(98)00205-X</identifier>
<identifier type="PII">S0009-2509(98)00205-X</identifier>
<identifier type="ArticleID">2279</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©1998 Elsevier Science Ltd</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Elsevier Science Ltd, ©1998</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/89482B14ADEB9D627B74D5CF063FF630420C6F20/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000137 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000137 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:89482B14ADEB9D627B74D5CF063FF630420C6F20
   |texte=   Modeling of hydrogen isotopes separation in a metal hydride bed
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024