Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modeling of an industrial alcohol fermentation and simuiation of the plant by a process simulator

Identifieur interne : 000081 ( Istex/Corpus ); précédent : 000080; suivant : 000082

Modeling of an industrial alcohol fermentation and simuiation of the plant by a process simulator

Auteurs : F. Pascal ; C. Dagot ; H. Pingaud ; J. P. Corriou ; M. N. Pons ; J. M. Engasser

Source :

RBID : ISTEX:87D15B3B041FF2D47BA3F975AE806C2726A9961A

English descriptors

Abstract

The aim of the present study was the development of a general simulation module for fermentation within the framework of existing chemical process simulators. This module has been applied to an industrial plant which produces ethanol from beet molasses and fresh beet juice by Saccharomyces cerevisiae. An unstructured mechanistic model has been developed with kinetic laws that are based on a chemically defined reaction scheme which satisfies stoichiometric constraints. This model can be applied to different culture conditions and takes into account secondary byproducts such as higher alcohols. These byproducts are of prime importance and need to be correctly estimated because a sequence of distillation columns follow the fermentor in the plant. Important measurement campaigns have been performed on the plant to validate the model. Plant operation has been successfully simulated using the same kinetic model for both continuous and fed‐batch modes of production. © 1995 John Wiley & Sons, Inc.

Url:
DOI: 10.1002/bit.260460304

Links to Exploration step

ISTEX:87D15B3B041FF2D47BA3F975AE806C2726A9961A

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modeling of an industrial alcohol fermentation and simuiation of the plant by a process simulator</title>
<author>
<name sortKey="Pascal, F" sort="Pascal, F" uniqKey="Pascal F" first="F." last="Pascal">F. Pascal</name>
<affiliation>
<mods:affiliation>LSGC‐ENSIC 1, rue Grandville BP 451, F. 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dagot, C" sort="Dagot, C" uniqKey="Dagot C" first="C." last="Dagot">C. Dagot</name>
<affiliation>
<mods:affiliation>LSGC‐ENSAIA 2, allée de la forêt de Haye, F. 54500 Vandoeuvre, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pingaud, H" sort="Pingaud, H" uniqKey="Pingaud H" first="H." last="Pingaud">H. Pingaud</name>
<affiliation>
<mods:affiliation>ENSIGC, Chemin de la Loge, F. 31078 Toulouse, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Corriou, J P" sort="Corriou, J P" uniqKey="Corriou J" first="J. P." last="Corriou">J. P. Corriou</name>
<affiliation>
<mods:affiliation>LSGC‐ENSIC 1, rue Grandville BP 451, F. 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: LSGC‐ENSIC 1, rue Grandville BP 451, F. 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pons, M N" sort="Pons, M N" uniqKey="Pons M" first="M. N." last="Pons">M. N. Pons</name>
<affiliation>
<mods:affiliation>LSGC‐ENSIC 1, rue Grandville BP 451, F. 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Engasser, J M" sort="Engasser, J M" uniqKey="Engasser J" first="J. M." last="Engasser">J. M. Engasser</name>
<affiliation>
<mods:affiliation>LSGC‐ENSAIA 2, allée de la forêt de Haye, F. 54500 Vandoeuvre, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:87D15B3B041FF2D47BA3F975AE806C2726A9961A</idno>
<date when="1995" year="1995">1995</date>
<idno type="doi">10.1002/bit.260460304</idno>
<idno type="url">https://api.istex.fr/document/87D15B3B041FF2D47BA3F975AE806C2726A9961A/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000081</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000081</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Modeling of an industrial alcohol fermentation and simuiation of the plant by a process simulator</title>
<author>
<name sortKey="Pascal, F" sort="Pascal, F" uniqKey="Pascal F" first="F." last="Pascal">F. Pascal</name>
<affiliation>
<mods:affiliation>LSGC‐ENSIC 1, rue Grandville BP 451, F. 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dagot, C" sort="Dagot, C" uniqKey="Dagot C" first="C." last="Dagot">C. Dagot</name>
<affiliation>
<mods:affiliation>LSGC‐ENSAIA 2, allée de la forêt de Haye, F. 54500 Vandoeuvre, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pingaud, H" sort="Pingaud, H" uniqKey="Pingaud H" first="H." last="Pingaud">H. Pingaud</name>
<affiliation>
<mods:affiliation>ENSIGC, Chemin de la Loge, F. 31078 Toulouse, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Corriou, J P" sort="Corriou, J P" uniqKey="Corriou J" first="J. P." last="Corriou">J. P. Corriou</name>
<affiliation>
<mods:affiliation>LSGC‐ENSIC 1, rue Grandville BP 451, F. 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: LSGC‐ENSIC 1, rue Grandville BP 451, F. 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pons, M N" sort="Pons, M N" uniqKey="Pons M" first="M. N." last="Pons">M. N. Pons</name>
<affiliation>
<mods:affiliation>LSGC‐ENSIC 1, rue Grandville BP 451, F. 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Engasser, J M" sort="Engasser, J M" uniqKey="Engasser J" first="J. M." last="Engasser">J. M. Engasser</name>
<affiliation>
<mods:affiliation>LSGC‐ENSAIA 2, allée de la forêt de Haye, F. 54500 Vandoeuvre, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Biotechnology and Bioengineering</title>
<title level="j" type="alt">BIOTECHNOLOGY AND BIOENGINEERING</title>
<idno type="ISSN">0006-3592</idno>
<idno type="eISSN">1097-0290</idno>
<imprint>
<biblScope unit="vol">46</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="202">202</biblScope>
<biblScope unit="page" to="217">217</biblScope>
<biblScope unit="page-count">16</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="1995-05-05">1995-05-05</date>
</imprint>
<idno type="ISSN">0006-3592</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0006-3592</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algebraic equations</term>
<term>Amino</term>
<term>Amino acids</term>
<term>Ammonia</term>
<term>Amyl alcohol</term>
<term>Aspen technology</term>
<term>Batch</term>
<term>Beet</term>
<term>Beet molasses</term>
<term>Bioengineering</term>
<term>Biological reaction</term>
<term>Biomass</term>
<term>Biomass concentration</term>
<term>Biomass production</term>
<term>Biotechnol</term>
<term>Biotechnology</term>
<term>Carbon dioxide</term>
<term>Carbon dioxide production</term>
<term>Carbon recovery</term>
<term>Carbon skeleton</term>
<term>Cglucose kglucose</term>
<term>Chemical industries</term>
<term>Chemical process simulator</term>
<term>Chemical species</term>
<term>Coefficient</term>
<term>Complex medium</term>
<term>Constraint</term>
<term>Continuous mode</term>
<term>Conversion fluxes</term>
<term>Dioxide</term>
<term>Discrete events</term>
<term>Distillation columns</term>
<term>Dynamic simulation results</term>
<term>Elemental balances</term>
<term>Elementary reaction</term>
<term>Elementary reactions</term>
<term>Energy balances</term>
<term>Ethanol</term>
<term>Ethanol production</term>
<term>Experimental data</term>
<term>Fermentation</term>
<term>Fermentation alcoolique</term>
<term>Fermentation modeling</term>
<term>Flow rate</term>
<term>Flow rates</term>
<term>Fresh beet juice</term>
<term>Fructose</term>
<term>General case</term>
<term>General model</term>
<term>Glucose</term>
<term>Glucose fructose</term>
<term>Glycerol</term>
<term>Glycerol production</term>
<term>Heavy broth</term>
<term>Hexose</term>
<term>Higher alcohols</term>
<term>Independent reactions</term>
<term>Industrial plant</term>
<term>Initial values</term>
<term>Input streams</term>
<term>Isoamyl alcohol</term>
<term>John wiley sons</term>
<term>Kinetic laws</term>
<term>Kinetic model</term>
<term>Kinetics</term>
<term>Laboratory experiments</term>
<term>Linear combination</term>
<term>Liquid phase</term>
<term>Macroscopic</term>
<term>Macroscopic balances</term>
<term>Macroscopic level</term>
<term>Macroscopic theory</term>
<term>Main difficulty</term>
<term>Many reactions</term>
<term>Mass balance</term>
<term>Mass balances</term>
<term>Mathematical functions</term>
<term>Matrix form</term>
<term>Metabolic</term>
<term>Metabolic pathway</term>
<term>Metabolic pathway method</term>
<term>Metabolic pathways</term>
<term>Metabolism</term>
<term>Microbial growth</term>
<term>Modeling</term>
<term>Module</term>
<term>Molasses</term>
<term>Mole volume</term>
<term>Monod model</term>
<term>Nitrogen metabolism</term>
<term>Numerical solution</term>
<term>Other hand</term>
<term>Output streams</term>
<term>Pascal</term>
<term>Pathway</term>
<term>Prime importance</term>
<term>Process simulator</term>
<term>Process simulators</term>
<term>Product formation</term>
<term>Pure components</term>
<term>Reactant</term>
<term>Reaction rates</term>
<term>Reaction scheme</term>
<term>Reactor</term>
<term>Reactor model</term>
<term>Recherche scientifique</term>
<term>Recovery rate</term>
<term>Research program</term>
<term>Seed reactor</term>
<term>Seed tank</term>
<term>Simulation</term>
<term>Simulation results</term>
<term>Simulator</term>
<term>Specific rates</term>
<term>Splitting ratios</term>
<term>Stoichiometric</term>
<term>Stoichiometric coefficient</term>
<term>Stoichiometric coefficients</term>
<term>Stoichiometric matrix</term>
<term>Stoichiometric reactions</term>
<term>Succharomyces cerevisiue</term>
<term>Succinic</term>
<term>Succinic acid</term>
<term>Sucrose</term>
<term>Sucrose hydrolysis</term>
<term>Thermodynamic models</term>
<term>Total nitrogen</term>
<term>Unique solution</term>
<term>Upper limit</term>
<term>Volatile compounds</term>
<term>Yeast</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Algebraic equations</term>
<term>Amino</term>
<term>Amino acids</term>
<term>Ammonia</term>
<term>Amyl alcohol</term>
<term>Aspen technology</term>
<term>Batch</term>
<term>Beet</term>
<term>Beet molasses</term>
<term>Bioengineering</term>
<term>Biological reaction</term>
<term>Biomass</term>
<term>Biomass concentration</term>
<term>Biomass production</term>
<term>Biotechnol</term>
<term>Biotechnology</term>
<term>Carbon dioxide</term>
<term>Carbon dioxide production</term>
<term>Carbon recovery</term>
<term>Carbon skeleton</term>
<term>Cglucose kglucose</term>
<term>Chemical industries</term>
<term>Chemical process simulator</term>
<term>Chemical species</term>
<term>Coefficient</term>
<term>Complex medium</term>
<term>Constraint</term>
<term>Continuous mode</term>
<term>Conversion fluxes</term>
<term>Dioxide</term>
<term>Discrete events</term>
<term>Distillation columns</term>
<term>Dynamic simulation results</term>
<term>Elemental balances</term>
<term>Elementary reaction</term>
<term>Elementary reactions</term>
<term>Energy balances</term>
<term>Ethanol</term>
<term>Ethanol production</term>
<term>Experimental data</term>
<term>Fermentation</term>
<term>Fermentation alcoolique</term>
<term>Fermentation modeling</term>
<term>Flow rate</term>
<term>Flow rates</term>
<term>Fresh beet juice</term>
<term>Fructose</term>
<term>General case</term>
<term>General model</term>
<term>Glucose</term>
<term>Glucose fructose</term>
<term>Glycerol</term>
<term>Glycerol production</term>
<term>Heavy broth</term>
<term>Hexose</term>
<term>Higher alcohols</term>
<term>Independent reactions</term>
<term>Industrial plant</term>
<term>Initial values</term>
<term>Input streams</term>
<term>Isoamyl alcohol</term>
<term>John wiley sons</term>
<term>Kinetic laws</term>
<term>Kinetic model</term>
<term>Kinetics</term>
<term>Laboratory experiments</term>
<term>Linear combination</term>
<term>Liquid phase</term>
<term>Macroscopic</term>
<term>Macroscopic balances</term>
<term>Macroscopic level</term>
<term>Macroscopic theory</term>
<term>Main difficulty</term>
<term>Many reactions</term>
<term>Mass balance</term>
<term>Mass balances</term>
<term>Mathematical functions</term>
<term>Matrix form</term>
<term>Metabolic</term>
<term>Metabolic pathway</term>
<term>Metabolic pathway method</term>
<term>Metabolic pathways</term>
<term>Metabolism</term>
<term>Microbial growth</term>
<term>Modeling</term>
<term>Module</term>
<term>Molasses</term>
<term>Mole volume</term>
<term>Monod model</term>
<term>Nitrogen metabolism</term>
<term>Numerical solution</term>
<term>Other hand</term>
<term>Output streams</term>
<term>Pascal</term>
<term>Pathway</term>
<term>Prime importance</term>
<term>Process simulator</term>
<term>Process simulators</term>
<term>Product formation</term>
<term>Pure components</term>
<term>Reactant</term>
<term>Reaction rates</term>
<term>Reaction scheme</term>
<term>Reactor</term>
<term>Reactor model</term>
<term>Recherche scientifique</term>
<term>Recovery rate</term>
<term>Research program</term>
<term>Seed reactor</term>
<term>Seed tank</term>
<term>Simulation</term>
<term>Simulation results</term>
<term>Simulator</term>
<term>Specific rates</term>
<term>Splitting ratios</term>
<term>Stoichiometric</term>
<term>Stoichiometric coefficient</term>
<term>Stoichiometric coefficients</term>
<term>Stoichiometric matrix</term>
<term>Stoichiometric reactions</term>
<term>Succharomyces cerevisiue</term>
<term>Succinic</term>
<term>Succinic acid</term>
<term>Sucrose</term>
<term>Sucrose hydrolysis</term>
<term>Thermodynamic models</term>
<term>Total nitrogen</term>
<term>Unique solution</term>
<term>Upper limit</term>
<term>Volatile compounds</term>
<term>Yeast</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The aim of the present study was the development of a general simulation module for fermentation within the framework of existing chemical process simulators. This module has been applied to an industrial plant which produces ethanol from beet molasses and fresh beet juice by Saccharomyces cerevisiae. An unstructured mechanistic model has been developed with kinetic laws that are based on a chemically defined reaction scheme which satisfies stoichiometric constraints. This model can be applied to different culture conditions and takes into account secondary byproducts such as higher alcohols. These byproducts are of prime importance and need to be correctly estimated because a sequence of distillation columns follow the fermentor in the plant. Important measurement campaigns have been performed on the plant to validate the model. Plant operation has been successfully simulated using the same kinetic model for both continuous and fed‐batch modes of production. © 1995 John Wiley & Sons, Inc.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>biomass</json:string>
<json:string>simulator</json:string>
<json:string>glucose</json:string>
<json:string>sucrose</json:string>
<json:string>fructose</json:string>
<json:string>ethanol</json:string>
<json:string>hexose</json:string>
<json:string>stoichiometric</json:string>
<json:string>pathway</json:string>
<json:string>amino acids</json:string>
<json:string>module</json:string>
<json:string>ammonia</json:string>
<json:string>beet</json:string>
<json:string>simulation</json:string>
<json:string>higher alcohols</json:string>
<json:string>ethanol production</json:string>
<json:string>macroscopic</json:string>
<json:string>amino</json:string>
<json:string>succinic</json:string>
<json:string>liquid phase</json:string>
<json:string>biotechnology</json:string>
<json:string>reactant</json:string>
<json:string>bioengineering</json:string>
<json:string>biotechnol</json:string>
<json:string>molasses</json:string>
<json:string>kinetics</json:string>
<json:string>reaction scheme</json:string>
<json:string>fermentation modeling</json:string>
<json:string>flow rate</json:string>
<json:string>modeling</json:string>
<json:string>beet molasses</json:string>
<json:string>succinic acid</json:string>
<json:string>seed tank</json:string>
<json:string>process simulator</json:string>
<json:string>carbon dioxide</json:string>
<json:string>fresh beet juice</json:string>
<json:string>pascal</json:string>
<json:string>glycerol</json:string>
<json:string>metabolism</json:string>
<json:string>fermentation</json:string>
<json:string>nitrogen metabolism</json:string>
<json:string>distillation columns</json:string>
<json:string>seed reactor</json:string>
<json:string>independent reactions</json:string>
<json:string>kinetic model</json:string>
<json:string>industrial plant</json:string>
<json:string>kinetic laws</json:string>
<json:string>simulation results</json:string>
<json:string>mass balances</json:string>
<json:string>carbon skeleton</json:string>
<json:string>stoichiometric coefficients</json:string>
<json:string>other hand</json:string>
<json:string>reaction rates</json:string>
<json:string>mathematical functions</json:string>
<json:string>input streams</json:string>
<json:string>product formation</json:string>
<json:string>laboratory experiments</json:string>
<json:string>metabolic pathway method</json:string>
<json:string>biological reaction</json:string>
<json:string>conversion fluxes</json:string>
<json:string>elemental balances</json:string>
<json:string>linear combination</json:string>
<json:string>stoichiometric coefficient</json:string>
<json:string>algebraic equations</json:string>
<json:string>output streams</json:string>
<json:string>elementary reactions</json:string>
<json:string>dynamic simulation results</json:string>
<json:string>heavy broth</json:string>
<json:string>glucose fructose</json:string>
<json:string>glycerol production</json:string>
<json:string>continuous mode</json:string>
<json:string>specific rates</json:string>
<json:string>biomass concentration</json:string>
<json:string>microbial growth</json:string>
<json:string>metabolic</json:string>
<json:string>constraint</json:string>
<json:string>yeast</json:string>
<json:string>reactor</json:string>
<json:string>fermentation alcoolique</json:string>
<json:string>john wiley sons</json:string>
<json:string>chemical species</json:string>
<json:string>aspen technology</json:string>
<json:string>amyl alcohol</json:string>
<json:string>isoamyl alcohol</json:string>
<json:string>flow rates</json:string>
<json:string>process simulators</json:string>
<json:string>macroscopic level</json:string>
<json:string>prime importance</json:string>
<json:string>macroscopic balances</json:string>
<json:string>matrix form</json:string>
<json:string>stoichiometric matrix</json:string>
<json:string>metabolic pathway</json:string>
<json:string>metabolic pathways</json:string>
<json:string>unique solution</json:string>
<json:string>numerical solution</json:string>
<json:string>upper limit</json:string>
<json:string>chemical process simulator</json:string>
<json:string>total nitrogen</json:string>
<json:string>general case</json:string>
<json:string>initial values</json:string>
<json:string>experimental data</json:string>
<json:string>thermodynamic models</json:string>
<json:string>volatile compounds</json:string>
<json:string>main difficulty</json:string>
<json:string>biomass production</json:string>
<json:string>many reactions</json:string>
<json:string>discrete events</json:string>
<json:string>carbon dioxide production</json:string>
<json:string>chemical industries</json:string>
<json:string>cglucose kglucose</json:string>
<json:string>recherche scientifique</json:string>
<json:string>monod model</json:string>
<json:string>sucrose hydrolysis</json:string>
<json:string>complex medium</json:string>
<json:string>reactor model</json:string>
<json:string>mass balance</json:string>
<json:string>mole volume</json:string>
<json:string>pure components</json:string>
<json:string>energy balances</json:string>
<json:string>splitting ratios</json:string>
<json:string>research program</json:string>
<json:string>elementary reaction</json:string>
<json:string>carbon recovery</json:string>
<json:string>recovery rate</json:string>
<json:string>macroscopic theory</json:string>
<json:string>stoichiometric reactions</json:string>
<json:string>general model</json:string>
<json:string>succharomyces cerevisiue</json:string>
<json:string>dioxide</json:string>
<json:string>batch</json:string>
<json:string>coefficient</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>F. Pascal</name>
<affiliations>
<json:string>LSGC‐ENSIC 1, rue Grandville BP 451, F. 54001 Nancy Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>C. Dagot</name>
<affiliations>
<json:string>LSGC‐ENSAIA 2, allée de la forêt de Haye, F. 54500 Vandoeuvre, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>H. Pingaud</name>
<affiliations>
<json:string>ENSIGC, Chemin de la Loge, F. 31078 Toulouse, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>J. P. Corriou</name>
<affiliations>
<json:string>LSGC‐ENSIC 1, rue Grandville BP 451, F. 54001 Nancy Cedex, France</json:string>
<json:string>LSGC‐ENSIC 1, rue Grandville BP 451, F. 54001 Nancy Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>M. N. Pons</name>
<affiliations>
<json:string>LSGC‐ENSIC 1, rue Grandville BP 451, F. 54001 Nancy Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>J. M. Engasser</name>
<affiliations>
<json:string>LSGC‐ENSAIA 2, allée de la forêt de Haye, F. 54500 Vandoeuvre, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>batch process</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>steady‐stage process</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>fermentation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>modeling</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>simulation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>ethanol</value>
</json:item>
</subject>
<articleId>
<json:string>BIT260460304</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>The aim of the present study was the development of a general simulation module for fermentation within the framework of existing chemical process simulators. This module has been applied to an industrial plant which produces ethanol from beet molasses and fresh beet juice by Saccharomyces cerevisiae. An unstructured mechanistic model has been developed with kinetic laws that are based on a chemically defined reaction scheme which satisfies stoichiometric constraints. This model can be applied to different culture conditions and takes into account secondary byproducts such as higher alcohols. These byproducts are of prime importance and need to be correctly estimated because a sequence of distillation columns follow the fermentor in the plant. Important measurement campaigns have been performed on the plant to validate the model. Plant operation has been successfully simulated using the same kinetic model for both continuous and fed‐batch modes of production. © 1995 John Wiley & Sons, Inc.</abstract>
<qualityIndicators>
<score>6.812</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>594 x 792 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1004</abstractCharCount>
<pdfWordCount>8180</pdfWordCount>
<pdfCharCount>49574</pdfCharCount>
<pdfPageCount>16</pdfPageCount>
<abstractWordCount>151</abstractWordCount>
</qualityIndicators>
<title>Modeling of an industrial alcohol fermentation and simuiation of the plant by a process simulator</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Biotechnology and Bioengineering</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1097-0290</json:string>
</doi>
<issn>
<json:string>0006-3592</json:string>
</issn>
<eissn>
<json:string>1097-0290</json:string>
</eissn>
<publisherId>
<json:string>BIT</json:string>
</publisherId>
<volume>46</volume>
<issue>3</issue>
<pages>
<first>202</first>
<last>217</last>
<total>16</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Article</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>biotechnology & applied microbiology</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>enabling & strategic technologies</json:string>
<json:string>biotechnology</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences biologiques et medicales</json:string>
<json:string>sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>1995</publicationDate>
<copyrightDate>1995</copyrightDate>
<doi>
<json:string>10.1002/bit.260460304</json:string>
</doi>
<id>87D15B3B041FF2D47BA3F975AE806C2726A9961A</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/87D15B3B041FF2D47BA3F975AE806C2726A9961A/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/87D15B3B041FF2D47BA3F975AE806C2726A9961A/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/87D15B3B041FF2D47BA3F975AE806C2726A9961A/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Modeling of an industrial alcohol fermentation and simuiation of the plant by a process simulator</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<licence>Copyright © 1995 John Wiley & Sons, Inc.</licence>
</availability>
<date type="published" when="1995-05-05"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Modeling of an industrial alcohol fermentation and simuiation of the plant by a process simulator</title>
<title level="a" type="short" xml:lang="en">FERMENTATION MODELING AND SIMUIATION</title>
<author xml:id="author-0000">
<persName>
<forename type="first">F.</forename>
<surname>Pascal</surname>
</persName>
<affiliation>LSGC‐ENSIC 1, rue Grandville BP 451, F. 54001 Nancy Cedex, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">C.</forename>
<surname>Dagot</surname>
</persName>
<affiliation>LSGC‐ENSAIA 2, allée de la forêt de Haye, F. 54500 Vandoeuvre, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">H.</forename>
<surname>Pingaud</surname>
</persName>
<affiliation>ENSIGC, Chemin de la Loge, F. 31078 Toulouse, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003" role="corresp">
<persName>
<forename type="first">J. P.</forename>
<surname>Corriou</surname>
</persName>
<affiliation>LSGC‐ENSIC 1, rue Grandville BP 451, F. 54001 Nancy Cedex, France
<address>
<country key="FR"></country>
</address>
</affiliation>
<affiliation>LSGC‐ENSIC 1, rue Grandville BP 451, F. 54001 Nancy Cedex, France</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">M. N.</forename>
<surname>Pons</surname>
</persName>
<affiliation>LSGC‐ENSIC 1, rue Grandville BP 451, F. 54001 Nancy Cedex, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">J. M.</forename>
<surname>Engasser</surname>
</persName>
<affiliation>LSGC‐ENSAIA 2, allée de la forêt de Haye, F. 54500 Vandoeuvre, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<idno type="istex">87D15B3B041FF2D47BA3F975AE806C2726A9961A</idno>
<idno type="ark">ark:/67375/WNG-GFKTG1JW-7</idno>
<idno type="DOI">10.1002/bit.260460304</idno>
<idno type="unit">BIT260460304</idno>
<idno type="toTypesetVersion">file:BIT.BIT260460304.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Biotechnology and Bioengineering</title>
<title level="j" type="alt">BIOTECHNOLOGY AND BIOENGINEERING</title>
<idno type="pISSN">0006-3592</idno>
<idno type="eISSN">1097-0290</idno>
<idno type="book-DOI">10.1002/(ISSN)1097-0290</idno>
<idno type="book-part-DOI">10.1002/bit.v46:3</idno>
<idno type="product">BIT</idno>
<imprint>
<biblScope unit="vol">46</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="202">202</biblScope>
<biblScope unit="page" to="217">217</biblScope>
<biblScope unit="page-count">16</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="1995-05-05"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>The aim of the present study was the development of a general simulation module for fermentation within the framework of existing chemical process simulators. This module has been applied to an industrial plant which produces ethanol from beet molasses and fresh beet juice by
<hi rend="italic">Saccharomyces cerevisiae</hi>
. An unstructured mechanistic model has been developed with kinetic laws that are based on a chemically defined reaction scheme which satisfies stoichiometric constraints. This model can be applied to different culture conditions and takes into account secondary byproducts such as higher alcohols. These byproducts are of prime importance and need to be correctly estimated because a sequence of distillation columns follow the fermentor in the plant. Important measurement campaigns have been performed on the plant to validate the model. Plant operation has been successfully simulated using the same kinetic model for both continuous and fed‐batch modes of production. © 1995 John Wiley & Sons, Inc.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">batch process</term>
<term xml:id="kwd2">steady‐stage process</term>
<term xml:id="kwd3">fermentation</term>
<term xml:id="kwd4">modeling</term>
<term xml:id="kwd5">simulation</term>
<term xml:id="kwd6">ethanol</term>
</keywords>
<keywords rend="articleCategory">
<term>Article</term>
</keywords>
<keywords rend="tocHeading1">
<term>Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/87D15B3B041FF2D47BA3F975AE806C2726A9961A/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1097-0290</doi>
<issn type="print">0006-3592</issn>
<issn type="electronic">1097-0290</issn>
<idGroup>
<id type="product" value="BIT"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="BIOTECHNOLOGY AND BIOENGINEERING">Biotechnology and Bioengineering</title>
<title type="short">Biotechnol. Bioeng.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="30">
<doi origin="wiley" registered="yes">10.1002/bit.v46:3</doi>
<numberingGroup>
<numbering type="journalVolume" number="46">46</numbering>
<numbering type="journalIssue">3</numbering>
</numberingGroup>
<coverDate startDate="1995-05-05">5 May 1995</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="4" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/bit.260460304</doi>
<idGroup>
<id type="unit" value="BIT260460304"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="16"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Article</title>
<title type="tocHeading1">Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 1995 John Wiley & Sons, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="1994-05-24"></event>
<event type="manuscriptAccepted" date="1994-12-12"></event>
<event type="firstOnline" date="2004-02-19"></event>
<event type="publishedOnlineFinalForm" date="2004-02-19"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-08"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-08"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-15"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">202</numbering>
<numbering type="pageLast">217</numbering>
</numberingGroup>
<correspondenceTo>LSGC‐ENSIC 1, rue Grandville BP 451, F. 54001 Nancy Cedex, France</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:BIT.BIT260460304.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="12"></count>
<count type="tableTotal" number="4"></count>
<count type="referenceTotal" number="33"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Modeling of an industrial alcohol fermentation and simuiation of the plant by a process simulator</title>
<title type="short" xml:lang="en">FERMENTATION MODELING AND SIMUIATION</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>F.</givenNames>
<familyName>Pascal</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>C.</givenNames>
<familyName>Dagot</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>H.</givenNames>
<familyName>Pingaud</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>J. P.</givenNames>
<familyName>Corriou</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>M. N.</givenNames>
<familyName>Pons</familyName>
</personName>
</creator>
<creator xml:id="au6" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>J. M.</givenNames>
<familyName>Engasser</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="FR" type="organization">
<unparsedAffiliation>LSGC‐ENSIC 1, rue Grandville BP 451, F. 54001 Nancy Cedex, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="FR" type="organization">
<unparsedAffiliation>LSGC‐ENSAIA 2, allée de la forêt de Haye, F. 54500 Vandoeuvre, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="FR" type="organization">
<unparsedAffiliation>ENSIGC, Chemin de la Loge, F. 31078 Toulouse, France</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">batch process</keyword>
<keyword xml:id="kwd2">steady‐stage process</keyword>
<keyword xml:id="kwd3">fermentation</keyword>
<keyword xml:id="kwd4">modeling</keyword>
<keyword xml:id="kwd5">simulation</keyword>
<keyword xml:id="kwd6">ethanol</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>The aim of the present study was the development of a general simulation module for fermentation within the framework of existing chemical process simulators. This module has been applied to an industrial plant which produces ethanol from beet molasses and fresh beet juice by
<i>Saccharomyces cerevisiae</i>
. An unstructured mechanistic model has been developed with kinetic laws that are based on a chemically defined reaction scheme which satisfies stoichiometric constraints. This model can be applied to different culture conditions and takes into account secondary byproducts such as higher alcohols. These byproducts are of prime importance and need to be correctly estimated because a sequence of distillation columns follow the fermentor in the plant. Important measurement campaigns have been performed on the plant to validate the model. Plant operation has been successfully simulated using the same kinetic model for both continuous and fed‐batch modes of production. © 1995 John Wiley & Sons, Inc.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Modeling of an industrial alcohol fermentation and simuiation of the plant by a process simulator</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>FERMENTATION MODELING AND SIMUIATION</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Modeling of an industrial alcohol fermentation and simuiation of the plant by a process simulator</title>
</titleInfo>
<name type="personal">
<namePart type="given">F.</namePart>
<namePart type="family">Pascal</namePart>
<affiliation>LSGC‐ENSIC 1, rue Grandville BP 451, F. 54001 Nancy Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C.</namePart>
<namePart type="family">Dagot</namePart>
<affiliation>LSGC‐ENSAIA 2, allée de la forêt de Haye, F. 54500 Vandoeuvre, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H.</namePart>
<namePart type="family">Pingaud</namePart>
<affiliation>ENSIGC, Chemin de la Loge, F. 31078 Toulouse, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J. P.</namePart>
<namePart type="family">Corriou</namePart>
<affiliation>LSGC‐ENSIC 1, rue Grandville BP 451, F. 54001 Nancy Cedex, France</affiliation>
<affiliation>Correspondence address: LSGC‐ENSIC 1, rue Grandville BP 451, F. 54001 Nancy Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M. N.</namePart>
<namePart type="family">Pons</namePart>
<affiliation>LSGC‐ENSIC 1, rue Grandville BP 451, F. 54001 Nancy Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J. M.</namePart>
<namePart type="family">Engasser</namePart>
<affiliation>LSGC‐ENSAIA 2, allée de la forêt de Haye, F. 54500 Vandoeuvre, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1995-05-05</dateIssued>
<dateCaptured encoding="w3cdtf">1994-05-24</dateCaptured>
<dateValid encoding="w3cdtf">1994-12-12</dateValid>
<copyrightDate encoding="w3cdtf">1995</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">12</extent>
<extent unit="tables">4</extent>
<extent unit="references">33</extent>
</physicalDescription>
<abstract lang="en">The aim of the present study was the development of a general simulation module for fermentation within the framework of existing chemical process simulators. This module has been applied to an industrial plant which produces ethanol from beet molasses and fresh beet juice by Saccharomyces cerevisiae. An unstructured mechanistic model has been developed with kinetic laws that are based on a chemically defined reaction scheme which satisfies stoichiometric constraints. This model can be applied to different culture conditions and takes into account secondary byproducts such as higher alcohols. These byproducts are of prime importance and need to be correctly estimated because a sequence of distillation columns follow the fermentor in the plant. Important measurement campaigns have been performed on the plant to validate the model. Plant operation has been successfully simulated using the same kinetic model for both continuous and fed‐batch modes of production. © 1995 John Wiley & Sons, Inc.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>batch process</topic>
<topic>steady‐stage process</topic>
<topic>fermentation</topic>
<topic>modeling</topic>
<topic>simulation</topic>
<topic>ethanol</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Biotechnology and Bioengineering</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Biotechnol. Bioeng.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Article</topic>
</subject>
<identifier type="ISSN">0006-3592</identifier>
<identifier type="eISSN">1097-0290</identifier>
<identifier type="DOI">10.1002/(ISSN)1097-0290</identifier>
<identifier type="PublisherID">BIT</identifier>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>46</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>202</start>
<end>217</end>
<total>16</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">87D15B3B041FF2D47BA3F975AE806C2726A9961A</identifier>
<identifier type="ark">ark:/67375/WNG-GFKTG1JW-7</identifier>
<identifier type="DOI">10.1002/bit.260460304</identifier>
<identifier type="ArticleID">BIT260460304</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 1995 John Wiley & Sons, Inc.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/87D15B3B041FF2D47BA3F975AE806C2726A9961A/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000081 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000081 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:87D15B3B041FF2D47BA3F975AE806C2726A9961A
   |texte=   Modeling of an industrial alcohol fermentation and simuiation of the plant by a process simulator
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024