Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gauss laws in the sense of Bernstein and uniqueness of embedding into convolution semigroups on quantum groups and braided groups

Identifieur interne : 000C47 ( PascalFrancis/Curation ); précédent : 000C46; suivant : 000C48

Gauss laws in the sense of Bernstein and uniqueness of embedding into convolution semigroups on quantum groups and braided groups

Auteurs : U. Franz [France, Allemagne] ; D. Neuenschwander [Suisse] ; R. Schott [France]

Source :

RBID : Pascal:97-0494440

Descripteurs français

English descriptors

Abstract

The goal of this paper is to characterise certain probability laws on a class of quantum groups or braided groups that we will call nilpotent. First we introduce a braided analogue of the Heisenberg-Weyl group, which shall serve as standard example. We introduce Gaussian functionals on quantum groups or braided groups as functionals that satisfy an analogue of the Bernstein property, i.e. that the sum and difference of independent random variables are also independent. The corresponding functionals on the braided line, braided plane and a braided q-Heisenberg-Weyl group are determined. Section 5 deals with continuous convolution semigroups on nilpotent quantum groups and braided groups. We extend recent results proving the uniqueness of the embedding of an infinitely divisible probability law into a continuous convolution semigroup for simply connected nilpotent Lie groups to nilpotent quantum groups and braided groups. Finally, in Section 6 we give some indications how the semigroup approach of Heyer and Hazod to the Bernstein theorem on groups can be extended to quantum groups and braided groups.
pA  
A01 01  1    @0 0178-8051
A02 01      @0 PTRFEU
A03   1    @0 Probab. theory relat. fields
A05       @2 109
A06       @2 1
A08 01  1  ENG  @1 Gauss laws in the sense of Bernstein and uniqueness of embedding into convolution semigroups on quantum groups and braided groups
A11 01  1    @1 FRANZ (U.)
A11 02  1    @1 NEUENSCHWANDER (D.)
A11 03  1    @1 SCHOTT (R.)
A14 01      @1 Institut Elie Cartan and CRIN-CNRS, BP 239, Université H. Poincaré-Nancy I @2 54506 Vandoeuvre-lès-Nancy @3 FRA @Z 1 aut. @Z 3 aut.
A14 02      @1 Arnold Sommerfeld Institut für math. Physik, Technische Universität Clausthal, Leibnitzstr. 10 @2 38678 Clausthal-Zellerfeld @3 DEU @Z 1 aut.
A14 03      @1 Université de Lausanne, Ecole des Hautes Etudes Commerciales, Institut de Sciences Actuarielles @2 1015 Lausanne @3 CHE @Z 2 aut.
A20       @1 101-127
A21       @1 1997
A23 01      @0 ENG
A43 01      @1 INIST @2 9653 @5 354000069352750060
A44       @0 0000 @1 © 1997 INIST-CNRS. All rights reserved.
A45       @0 21 ref.
A47 01  1    @0 97-0494440
A60       @1 P
A61       @0 A
A64 01  1    @0 Probability theory and related fields
A66 01      @0 DEU
C01 01    ENG  @0 The goal of this paper is to characterise certain probability laws on a class of quantum groups or braided groups that we will call nilpotent. First we introduce a braided analogue of the Heisenberg-Weyl group, which shall serve as standard example. We introduce Gaussian functionals on quantum groups or braided groups as functionals that satisfy an analogue of the Bernstein property, i.e. that the sum and difference of independent random variables are also independent. The corresponding functionals on the braided line, braided plane and a braided q-Heisenberg-Weyl group are determined. Section 5 deals with continuous convolution semigroups on nilpotent quantum groups and braided groups. We extend recent results proving the uniqueness of the embedding of an infinitely divisible probability law into a continuous convolution semigroup for simply connected nilpotent Lie groups to nilpotent quantum groups and braided groups. Finally, in Section 6 we give some indications how the semigroup approach of Heyer and Hazod to the Bernstein theorem on groups can be extended to quantum groups and braided groups.
C02 01  X    @0 001A02H01C
C02 02  X    @0 001A02C07
C03 01  X  FRE  @0 Plongement @5 01
C03 01  X  ENG  @0 Embedding @5 01
C03 01  X  SPA  @0 Inmersión @5 01
C03 02  X  FRE  @0 Semigroupe @5 02
C03 02  X  ENG  @0 Semigroup @5 02
C03 02  X  SPA  @0 Semigrupo @5 02
C03 03  X  FRE  @0 Groupe quantique @5 03
C03 03  X  ENG  @0 Quantum group @5 03
C03 03  X  SPA  @0 Grupo cuántico @5 03
C03 04  X  FRE  @0 Loi probabilité @5 04
C03 04  X  ENG  @0 Probability distribution @5 04
C03 04  X  SPA  @0 Ley probabilidad @5 04
C03 05  X  FRE  @0 Groupe Heisenberg @5 05
C03 05  X  ENG  @0 Heisenberg group @5 05
C03 05  X  SPA  @0 Grupo Heisenberg @5 05
C03 06  X  FRE  @0 Groupe Weyl @5 06
C03 06  X  ENG  @0 Weyl group @5 06
C03 06  X  SPA  @0 Grupo Weyl @5 06
C03 07  X  FRE  @0 Suite variable aléatoire @5 07
C03 07  X  ENG  @0 Random variable sequence @5 07
C03 07  X  SPA  @0 Sucesión variable aleatoria @5 07
C03 08  X  FRE  @0 Groupe Lie @5 08
C03 08  X  ENG  @0 Lie group @5 08
C03 08  X  SPA  @0 Grupo Lie @5 08
C03 09  X  FRE  @0 Algèbre Hopf @5 09
C03 09  X  ENG  @0 Hopf algebra @5 09
C03 09  X  SPA  @0 Algebra Hopf @5 09
C03 10  X  FRE  @0 81R50 @4 INC @5 28
C03 11  X  FRE  @0 Unicité plongement @4 INC @5 75
C03 12  X  FRE  @0 Propriété Bernstein @4 INC @5 76
C03 13  X  FRE  @0 Groupe nilpotent @4 INC @5 77
C03 14  X  FRE  @0 Groupe connexe @4 INC @5 78
C03 15  X  FRE  @0 Propriété Poincré Birkhoff Witt @4 INC @5 79
C03 16  X  FRE  @0 Loi Gauss @4 CD @5 96
C03 16  X  ENG  @0 Gauss law @4 CD @5 96
C03 17  X  FRE  @0 Groupe convolution @4 CD @5 97
C03 17  X  ENG  @0 Convolution group @4 CD @5 97
C03 18  X  FRE  @0 Groupe tressé @4 CD @5 98
C03 18  X  ENG  @0 Braided group @4 CD @5 98
C03 19  X  FRE  @0 Fonctionnelle Gauss @4 CD @5 99
C03 19  X  ENG  @0 Gaussian functional @4 CD @5 99
N21       @1 300

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:97-0494440

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Gauss laws in the sense of Bernstein and uniqueness of embedding into convolution semigroups on quantum groups and braided groups</title>
<author>
<name sortKey="Franz, U" sort="Franz, U" uniqKey="Franz U" first="U." last="Franz">U. Franz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut Elie Cartan and CRIN-CNRS, BP 239, Université H. Poincaré-Nancy I</s1>
<s2>54506 Vandoeuvre-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Arnold Sommerfeld Institut für math. Physik, Technische Universität Clausthal, Leibnitzstr. 10</s1>
<s2>38678 Clausthal-Zellerfeld</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Neuenschwander, D" sort="Neuenschwander, D" uniqKey="Neuenschwander D" first="D." last="Neuenschwander">D. Neuenschwander</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Université de Lausanne, Ecole des Hautes Etudes Commerciales, Institut de Sciences Actuarielles</s1>
<s2>1015 Lausanne</s2>
<s3>CHE</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
</affiliation>
</author>
<author>
<name sortKey="Schott, R" sort="Schott, R" uniqKey="Schott R" first="R." last="Schott">R. Schott</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut Elie Cartan and CRIN-CNRS, BP 239, Université H. Poincaré-Nancy I</s1>
<s2>54506 Vandoeuvre-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">97-0494440</idno>
<date when="1997">1997</date>
<idno type="stanalyst">PASCAL 97-0494440 INIST</idno>
<idno type="RBID">Pascal:97-0494440</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000C32</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000C47</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Gauss laws in the sense of Bernstein and uniqueness of embedding into convolution semigroups on quantum groups and braided groups</title>
<author>
<name sortKey="Franz, U" sort="Franz, U" uniqKey="Franz U" first="U." last="Franz">U. Franz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut Elie Cartan and CRIN-CNRS, BP 239, Université H. Poincaré-Nancy I</s1>
<s2>54506 Vandoeuvre-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Arnold Sommerfeld Institut für math. Physik, Technische Universität Clausthal, Leibnitzstr. 10</s1>
<s2>38678 Clausthal-Zellerfeld</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Neuenschwander, D" sort="Neuenschwander, D" uniqKey="Neuenschwander D" first="D." last="Neuenschwander">D. Neuenschwander</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Université de Lausanne, Ecole des Hautes Etudes Commerciales, Institut de Sciences Actuarielles</s1>
<s2>1015 Lausanne</s2>
<s3>CHE</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
</affiliation>
</author>
<author>
<name sortKey="Schott, R" sort="Schott, R" uniqKey="Schott R" first="R." last="Schott">R. Schott</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut Elie Cartan and CRIN-CNRS, BP 239, Université H. Poincaré-Nancy I</s1>
<s2>54506 Vandoeuvre-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Probability theory and related fields</title>
<title level="j" type="abbreviated">Probab. theory relat. fields</title>
<idno type="ISSN">0178-8051</idno>
<imprint>
<date when="1997">1997</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Probability theory and related fields</title>
<title level="j" type="abbreviated">Probab. theory relat. fields</title>
<idno type="ISSN">0178-8051</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Braided group</term>
<term>Convolution group</term>
<term>Embedding</term>
<term>Gauss law</term>
<term>Gaussian functional</term>
<term>Heisenberg group</term>
<term>Hopf algebra</term>
<term>Lie group</term>
<term>Probability distribution</term>
<term>Quantum group</term>
<term>Random variable sequence</term>
<term>Semigroup</term>
<term>Weyl group</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Plongement</term>
<term>Semigroupe</term>
<term>Groupe quantique</term>
<term>Loi probabilité</term>
<term>Groupe Heisenberg</term>
<term>Groupe Weyl</term>
<term>Suite variable aléatoire</term>
<term>Groupe Lie</term>
<term>Algèbre Hopf</term>
<term>81R50</term>
<term>Unicité plongement</term>
<term>Propriété Bernstein</term>
<term>Groupe nilpotent</term>
<term>Groupe connexe</term>
<term>Propriété Poincré Birkhoff Witt</term>
<term>Loi Gauss</term>
<term>Groupe convolution</term>
<term>Groupe tressé</term>
<term>Fonctionnelle Gauss</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The goal of this paper is to characterise certain probability laws on a class of quantum groups or braided groups that we will call nilpotent. First we introduce a braided analogue of the Heisenberg-Weyl group, which shall serve as standard example. We introduce Gaussian functionals on quantum groups or braided groups as functionals that satisfy an analogue of the Bernstein property, i.e. that the sum and difference of independent random variables are also independent. The corresponding functionals on the braided line, braided plane and a braided q-Heisenberg-Weyl group are determined. Section 5 deals with continuous convolution semigroups on nilpotent quantum groups and braided groups. We extend recent results proving the uniqueness of the embedding of an infinitely divisible probability law into a continuous convolution semigroup for simply connected nilpotent Lie groups to nilpotent quantum groups and braided groups. Finally, in Section 6 we give some indications how the semigroup approach of Heyer and Hazod to the Bernstein theorem on groups can be extended to quantum groups and braided groups.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0178-8051</s0>
</fA01>
<fA02 i1="01">
<s0>PTRFEU</s0>
</fA02>
<fA03 i2="1">
<s0>Probab. theory relat. fields</s0>
</fA03>
<fA05>
<s2>109</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Gauss laws in the sense of Bernstein and uniqueness of embedding into convolution semigroups on quantum groups and braided groups</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>FRANZ (U.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>NEUENSCHWANDER (D.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SCHOTT (R.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institut Elie Cartan and CRIN-CNRS, BP 239, Université H. Poincaré-Nancy I</s1>
<s2>54506 Vandoeuvre-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Arnold Sommerfeld Institut für math. Physik, Technische Universität Clausthal, Leibnitzstr. 10</s1>
<s2>38678 Clausthal-Zellerfeld</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Université de Lausanne, Ecole des Hautes Etudes Commerciales, Institut de Sciences Actuarielles</s1>
<s2>1015 Lausanne</s2>
<s3>CHE</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>101-127</s1>
</fA20>
<fA21>
<s1>1997</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>9653</s2>
<s5>354000069352750060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 1997 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>21 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>97-0494440</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Probability theory and related fields</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The goal of this paper is to characterise certain probability laws on a class of quantum groups or braided groups that we will call nilpotent. First we introduce a braided analogue of the Heisenberg-Weyl group, which shall serve as standard example. We introduce Gaussian functionals on quantum groups or braided groups as functionals that satisfy an analogue of the Bernstein property, i.e. that the sum and difference of independent random variables are also independent. The corresponding functionals on the braided line, braided plane and a braided q-Heisenberg-Weyl group are determined. Section 5 deals with continuous convolution semigroups on nilpotent quantum groups and braided groups. We extend recent results proving the uniqueness of the embedding of an infinitely divisible probability law into a continuous convolution semigroup for simply connected nilpotent Lie groups to nilpotent quantum groups and braided groups. Finally, in Section 6 we give some indications how the semigroup approach of Heyer and Hazod to the Bernstein theorem on groups can be extended to quantum groups and braided groups.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001A02H01C</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001A02C07</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Plongement</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Embedding</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Inmersión</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Semigroupe</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Semigroup</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Semigrupo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Groupe quantique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Quantum group</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Grupo cuántico</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Loi probabilité</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Probability distribution</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Ley probabilidad</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Groupe Heisenberg</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Heisenberg group</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Grupo Heisenberg</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Groupe Weyl</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Weyl group</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Grupo Weyl</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Suite variable aléatoire</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Random variable sequence</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Sucesión variable aleatoria</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Groupe Lie</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Lie group</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Grupo Lie</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Algèbre Hopf</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Hopf algebra</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Algebra Hopf</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>81R50</s0>
<s4>INC</s4>
<s5>28</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Unicité plongement</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Propriété Bernstein</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Groupe nilpotent</s0>
<s4>INC</s4>
<s5>77</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Groupe connexe</s0>
<s4>INC</s4>
<s5>78</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Propriété Poincré Birkhoff Witt</s0>
<s4>INC</s4>
<s5>79</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Loi Gauss</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Gauss law</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Groupe convolution</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Convolution group</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Groupe tressé</s0>
<s4>CD</s4>
<s5>98</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Braided group</s0>
<s4>CD</s4>
<s5>98</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Fonctionnelle Gauss</s0>
<s4>CD</s4>
<s5>99</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Gaussian functional</s0>
<s4>CD</s4>
<s5>99</s5>
</fC03>
<fN21>
<s1>300</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C47 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000C47 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:97-0494440
   |texte=   Gauss laws in the sense of Bernstein and uniqueness of embedding into convolution semigroups on quantum groups and braided groups
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022