Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

α-Jacobian environmental adaptation

Identifieur interne : 000364 ( PascalFrancis/Curation ); précédent : 000363; suivant : 000365

α-Jacobian environmental adaptation

Auteurs : Christophe Cerisara [France] ; Luca Rigazio [États-Unis] ; Jean-Claude Junqua [États-Unis]

Source :

RBID : Pascal:04-0274368

Descripteurs français

English descriptors

Abstract

The robustness of automatic speech recognition systems to noise is still a problem, especially for small footprint systems. This paper addresses the problem of noise robustness using model compensation methods. Such algorithms are already available, but their complexity is usually high. An often-referenced method for achieving noise robustness is parallel model combination (PMC). Several algorithms have been proposed to develop more computationally efficient methods than PMC. For example, Jacobian adaptation approximates PMC with a linear transformation function in the cepstral domain. However, the Jacobian approximation is valid only for test environments that are close to the training conditions whereas, in real test conditions, the mismatch between the test and training environments is usually large. In this paper, we propose two methods, respectively called static and dynamic α-Jacobian adaptation (or α-JAC), to compute new linear approximations of PMC for realistic test environments. We further extend both algorithms to compensate for additive and convolutional noise and we derive the corresponding non-linear algorithm that is approximated. All these algorithms are experimentally compared in important mismatch conditions. As compared to Jacobian adaptation, improvements are observed with both static and dynamic α-Jacobian adaptation.
pA  
A01 01  1    @0 0167-6393
A02 01      @0 SCOMDH
A03   1    @0 Speech commun.
A05       @2 42
A06       @2 1
A08 01  1  ENG  @1 α-Jacobian environmental adaptation
A09 01  1  ENG  @1 Adaptation methods for speech recognition
A11 01  1    @1 CERISARA (Christophe)
A11 02  1    @1 RIGAZIO (Luca)
A11 03  1    @1 JUNQUA (Jean-Claude)
A12 01  1    @1 JUNQUA (J. C.) @9 ed.
A12 02  1    @1 WELLEKENS (C. J.) @9 ed.
A14 01      @1 LORIA, UMR 7503 Campus Scientifique, BP 239 @2 54506 Vandoeuvre-les-Nancy @3 FRA @Z 1 aut.
A14 02      @1 Panasonic Speech Technology Laboratory, 3888 State Street, Suite 202 @2 Santa-Barbara, CA 93105 @3 USA @Z 2 aut. @Z 3 aut.
A15 01      @1 Panasonic Speech Technology Laboratory of Panasonic Tech. Company, Div. of Matsushita Electric Corp. of America, Suite 202, 3888 State Street @2 Santa Barbara, CA 93105 @3 USA @Z 1 aut.
A15 02      @1 Institut Eurécom, Multimedia Communications Dpt, 2229, Route de Cretes - B.P. 193 @2 06904 Sophia Antipolis @3 FRA @Z 2 aut.
A20       @1 25-41
A21       @1 2004
A23 01      @0 ENG
A43 01      @1 INIST @2 19642 @5 354000116515290020
A44       @0 0000 @1 © 2004 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/4
A47 01  1    @0 04-0274368
A60       @1 P
A61       @0 A
A64 01  1    @0 Speech communication
A66 01      @0 NLD
C01 01    ENG  @0 The robustness of automatic speech recognition systems to noise is still a problem, especially for small footprint systems. This paper addresses the problem of noise robustness using model compensation methods. Such algorithms are already available, but their complexity is usually high. An often-referenced method for achieving noise robustness is parallel model combination (PMC). Several algorithms have been proposed to develop more computationally efficient methods than PMC. For example, Jacobian adaptation approximates PMC with a linear transformation function in the cepstral domain. However, the Jacobian approximation is valid only for test environments that are close to the training conditions whereas, in real test conditions, the mismatch between the test and training environments is usually large. In this paper, we propose two methods, respectively called static and dynamic α-Jacobian adaptation (or α-JAC), to compute new linear approximations of PMC for realistic test environments. We further extend both algorithms to compensate for additive and convolutional noise and we derive the corresponding non-linear algorithm that is approximated. All these algorithms are experimentally compared in important mismatch conditions. As compared to Jacobian adaptation, improvements are observed with both static and dynamic α-Jacobian adaptation.
C02 01  X    @0 001D04A05B
C03 01  X  FRE  @0 Reconnaissance parole @5 01
C03 01  X  ENG  @0 Speech recognition @5 01
C03 01  X  SPA  @0 Reconocimiento voz @5 01
C03 02  X  FRE  @0 Reconnaissance automatique @5 02
C03 02  X  ENG  @0 Automatic recognition @5 02
C03 02  X  SPA  @0 Reconocimiento automático @5 02
C03 03  X  FRE  @0 Robustesse @5 03
C03 03  X  ENG  @0 Robustness @5 03
C03 03  X  SPA  @0 Robustez @5 03
C03 04  X  FRE  @0 Méthode Jacobi @5 04
C03 04  X  ENG  @0 Jacobi method @5 04
C03 04  X  SPA  @0 Método Jacobi @5 04
C03 05  X  FRE  @0 Méthode adaptative @5 05
C03 05  X  ENG  @0 Adaptive method @5 05
C03 05  X  SPA  @0 Método adaptativo @5 05
C03 06  X  FRE  @0 Réduction bruit @5 06
C03 06  X  ENG  @0 Noise reduction @5 06
C03 06  X  SPA  @0 Reducción ruido @5 06
C03 07  X  FRE  @0 Bruit additif @5 07
C03 07  X  ENG  @0 Additive noise @5 07
C03 07  X  SPA  @0 Ruido aditivo @5 07
C03 08  X  FRE  @0 Compensation modèle @4 INC @5 72
N21       @1 173
N44 01      @1 PSI
N82       @1 PSI

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:04-0274368

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">α-Jacobian environmental adaptation</title>
<author>
<name sortKey="Cerisara, Christophe" sort="Cerisara, Christophe" uniqKey="Cerisara C" first="Christophe" last="Cerisara">Christophe Cerisara</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>LORIA, UMR 7503 Campus Scientifique, BP 239</s1>
<s2>54506 Vandoeuvre-les-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Rigazio, Luca" sort="Rigazio, Luca" uniqKey="Rigazio L" first="Luca" last="Rigazio">Luca Rigazio</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Panasonic Speech Technology Laboratory, 3888 State Street, Suite 202</s1>
<s2>Santa-Barbara, CA 93105</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Junqua, Jean Claude" sort="Junqua, Jean Claude" uniqKey="Junqua J" first="Jean-Claude" last="Junqua">Jean-Claude Junqua</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Panasonic Speech Technology Laboratory, 3888 State Street, Suite 202</s1>
<s2>Santa-Barbara, CA 93105</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0274368</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 04-0274368 INIST</idno>
<idno type="RBID">Pascal:04-0274368</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000677</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000364</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">α-Jacobian environmental adaptation</title>
<author>
<name sortKey="Cerisara, Christophe" sort="Cerisara, Christophe" uniqKey="Cerisara C" first="Christophe" last="Cerisara">Christophe Cerisara</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>LORIA, UMR 7503 Campus Scientifique, BP 239</s1>
<s2>54506 Vandoeuvre-les-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Rigazio, Luca" sort="Rigazio, Luca" uniqKey="Rigazio L" first="Luca" last="Rigazio">Luca Rigazio</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Panasonic Speech Technology Laboratory, 3888 State Street, Suite 202</s1>
<s2>Santa-Barbara, CA 93105</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Junqua, Jean Claude" sort="Junqua, Jean Claude" uniqKey="Junqua J" first="Jean-Claude" last="Junqua">Jean-Claude Junqua</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Panasonic Speech Technology Laboratory, 3888 State Street, Suite 202</s1>
<s2>Santa-Barbara, CA 93105</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Speech communication</title>
<title level="j" type="abbreviated">Speech commun.</title>
<idno type="ISSN">0167-6393</idno>
<imprint>
<date when="2004">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Speech communication</title>
<title level="j" type="abbreviated">Speech commun.</title>
<idno type="ISSN">0167-6393</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptive method</term>
<term>Additive noise</term>
<term>Automatic recognition</term>
<term>Jacobi method</term>
<term>Noise reduction</term>
<term>Robustness</term>
<term>Speech recognition</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Reconnaissance parole</term>
<term>Reconnaissance automatique</term>
<term>Robustesse</term>
<term>Méthode Jacobi</term>
<term>Méthode adaptative</term>
<term>Réduction bruit</term>
<term>Bruit additif</term>
<term>Compensation modèle</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The robustness of automatic speech recognition systems to noise is still a problem, especially for small footprint systems. This paper addresses the problem of noise robustness using model compensation methods. Such algorithms are already available, but their complexity is usually high. An often-referenced method for achieving noise robustness is parallel model combination (PMC). Several algorithms have been proposed to develop more computationally efficient methods than PMC. For example, Jacobian adaptation approximates PMC with a linear transformation function in the cepstral domain. However, the Jacobian approximation is valid only for test environments that are close to the training conditions whereas, in real test conditions, the mismatch between the test and training environments is usually large. In this paper, we propose two methods, respectively called static and dynamic α-Jacobian adaptation (or α-JAC), to compute new linear approximations of PMC for realistic test environments. We further extend both algorithms to compensate for additive and convolutional noise and we derive the corresponding non-linear algorithm that is approximated. All these algorithms are experimentally compared in important mismatch conditions. As compared to Jacobian adaptation, improvements are observed with both static and dynamic α-Jacobian adaptation.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0167-6393</s0>
</fA01>
<fA02 i1="01">
<s0>SCOMDH</s0>
</fA02>
<fA03 i2="1">
<s0>Speech commun.</s0>
</fA03>
<fA05>
<s2>42</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>α-Jacobian environmental adaptation</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Adaptation methods for speech recognition</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>CERISARA (Christophe)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>RIGAZIO (Luca)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>JUNQUA (Jean-Claude)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>JUNQUA (J. C.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>WELLEKENS (C. J.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>LORIA, UMR 7503 Campus Scientifique, BP 239</s1>
<s2>54506 Vandoeuvre-les-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Panasonic Speech Technology Laboratory, 3888 State Street, Suite 202</s1>
<s2>Santa-Barbara, CA 93105</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Panasonic Speech Technology Laboratory of Panasonic Tech. Company, Div. of Matsushita Electric Corp. of America, Suite 202, 3888 State Street</s1>
<s2>Santa Barbara, CA 93105</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Institut Eurécom, Multimedia Communications Dpt, 2229, Route de Cretes - B.P. 193</s1>
<s2>06904 Sophia Antipolis</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>25-41</s1>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>19642</s2>
<s5>354000116515290020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2004 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0274368</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Speech communication</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The robustness of automatic speech recognition systems to noise is still a problem, especially for small footprint systems. This paper addresses the problem of noise robustness using model compensation methods. Such algorithms are already available, but their complexity is usually high. An often-referenced method for achieving noise robustness is parallel model combination (PMC). Several algorithms have been proposed to develop more computationally efficient methods than PMC. For example, Jacobian adaptation approximates PMC with a linear transformation function in the cepstral domain. However, the Jacobian approximation is valid only for test environments that are close to the training conditions whereas, in real test conditions, the mismatch between the test and training environments is usually large. In this paper, we propose two methods, respectively called static and dynamic α-Jacobian adaptation (or α-JAC), to compute new linear approximations of PMC for realistic test environments. We further extend both algorithms to compensate for additive and convolutional noise and we derive the corresponding non-linear algorithm that is approximated. All these algorithms are experimentally compared in important mismatch conditions. As compared to Jacobian adaptation, improvements are observed with both static and dynamic α-Jacobian adaptation.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D04A05B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Reconnaissance parole</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Speech recognition</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Reconocimiento voz</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Reconnaissance automatique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Automatic recognition</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Reconocimiento automático</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Robustesse</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Robustness</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Robustez</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Méthode Jacobi</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Jacobi method</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Método Jacobi</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Méthode adaptative</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Adaptive method</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Método adaptativo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Réduction bruit</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Noise reduction</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Reducción ruido</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Bruit additif</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Additive noise</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Ruido aditivo</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Compensation modèle</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fN21>
<s1>173</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000364 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000364 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:04-0274368
   |texte=   α-Jacobian environmental adaptation
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022