Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

On the Chvátal rank of polytopes in the 0/1 cube

Identifieur interne : 000000 ( PascalFrancis/Curation ); suivant : 000001

On the Chvátal rank of polytopes in the 0/1 cube

Auteurs : A. Bockmayr [France] ; F. Eisenbrand [Allemagne] ; M. Hartmann [États-Unis] ; A. S. Schulz [États-Unis]

Source :

RBID : Pascal:00-0001592

Descripteurs français

English descriptors

Abstract

Given a polytope P ⊆ Rn, the Chvátal-Gomory procedure computes iteratively the integer hull P1 of P. The Chvátal rank of P is the minimal number of iterations needed to obtain P1. It is always finite, but already the Chvátal rank of polytopes in R2 can be arbitrarily large. In this paper, we study polytopes in the 0/1 cube, which are of particular interest in combinatorial optimization. We show that the Chvátal rank of any polytope P ⊆ [0,1]n is O(n3 log n) and prove the linear upper and lower bound n for the case P ∩ Zn = Ø.
pA  
A01 01  1    @0 0166-218X
A02 01      @0 DAMADU
A03   1    @0 Discrete appl. math.
A05       @2 98
A06       @2 1-2
A08 01  1  ENG  @1 On the Chvátal rank of polytopes in the 0/1 cube
A11 01  1    @1 BOCKMAYR (A.)
A11 02  1    @1 EISENBRAND (F.)
A11 03  1    @1 HARTMANN (M.)
A11 04  1    @1 SCHULZ (A. S.)
A14 01      @1 Université Henri Poincaré, LORIA, Campus scientifique, B.P. 239 @2 54506 Vandoeuvre-lès-Nancy @3 FRA @Z 1 aut.
A14 02      @1 Max-Planck-Institut für Informatik, Im Stadtwald @2 66123 Saarbrücken @3 DEU @Z 2 aut.
A14 03      @1 University of North Carolina at Chapel Hill, Department of Operations Research @2 Chapel Hill, NC 27599-3180 @3 USA @Z 3 aut.
A14 04      @1 MIT, Sloan School of Management and Operations Research Center, E53-361 @2 Cambridge, MA 02142 @3 USA @Z 4 aut.
A20       @1 21-27
A21       @1 1999
A23 01      @0 ENG
A43 01      @1 INIST @2 18287 @5 354000080488120020
A44       @0 0000 @1 © 2000 INIST-CNRS. All rights reserved.
A45       @0 13 ref.
A47 01  1    @0 00-0001592
A60       @1 P
A61       @0 A
A64 01  1    @0 Discrete applied mathematics
A66 01      @0 NLD
C01 01    ENG  @0 Given a polytope P ⊆ Rn, the Chvátal-Gomory procedure computes iteratively the integer hull P1 of P. The Chvátal rank of P is the minimal number of iterations needed to obtain P1. It is always finite, but already the Chvátal rank of polytopes in R2 can be arbitrarily large. In this paper, we study polytopes in the 0/1 cube, which are of particular interest in combinatorial optimization. We show that the Chvátal rank of any polytope P ⊆ [0,1]n is O(n3 log n) and prove the linear upper and lower bound n for the case P ∩ Zn = Ø.
C02 01  X    @0 001A02F02
C03 01  X  FRE  @0 Géométrie @5 01
C03 01  X  ENG  @0 Geometry @5 01
C03 01  X  SPA  @0 Geometría @5 01
C03 02  X  FRE  @0 Polytope @5 02
C03 02  X  ENG  @0 Polytope @5 02
C03 02  X  SPA  @0 Politope @5 02
C03 03  X  FRE  @0 Polyèdre @5 03
C03 03  X  ENG  @0 Polyhedron @5 03
C03 03  X  SPA  @0 Poliedro @5 03
C03 04  X  FRE  @0 Rang @5 04
C03 04  X  ENG  @0 Rank @5 04
C03 04  X  SPA  @0 Rango @5 04
C03 05  X  FRE  @0 Borne supérieure @5 05
C03 05  X  ENG  @0 Upper bound @5 05
C03 05  X  SPA  @0 Cota superior @5 05
C03 06  X  FRE  @0 Optimisation combinatoire @5 06
C03 06  X  ENG  @0 Combinatorial optimization @5 06
C03 06  X  SPA  @0 Optimización combinatoria @5 06
C03 07  X  FRE  @0 Cube 0/1 @4 CD @5 96
C03 07  X  ENG  @0 Cube 0/1 @4 CD @5 96
C03 08  X  FRE  @0 Polytope dans cube 0/1 @4 CD @5 97
C03 08  X  ENG  @0 Polytope in 01 cube @4 CD @5 97
C03 09  X  FRE  @0 Rang Chvatal @4 CD @5 98
C03 09  X  ENG  @0 Chvatal rank @4 CD @5 98
C03 10  X  FRE  @0 Envéloppe entière @4 CD @5 99
C03 10  X  ENG  @0 Integer hull @4 CD @5 99
N21       @1 003

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:00-0001592

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">On the Chvátal rank of polytopes in the 0/1 cube</title>
<author>
<name sortKey="Bockmayr, A" sort="Bockmayr, A" uniqKey="Bockmayr A" first="A." last="Bockmayr">A. Bockmayr</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Université Henri Poincaré, LORIA, Campus scientifique, B.P. 239</s1>
<s2>54506 Vandoeuvre-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Eisenbrand, F" sort="Eisenbrand, F" uniqKey="Eisenbrand F" first="F." last="Eisenbrand">F. Eisenbrand</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Max-Planck-Institut für Informatik, Im Stadtwald</s1>
<s2>66123 Saarbrücken</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Hartmann, M" sort="Hartmann, M" uniqKey="Hartmann M" first="M." last="Hartmann">M. Hartmann</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>University of North Carolina at Chapel Hill, Department of Operations Research</s1>
<s2>Chapel Hill, NC 27599-3180</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Schulz, A S" sort="Schulz, A S" uniqKey="Schulz A" first="A. S." last="Schulz">A. S. Schulz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>MIT, Sloan School of Management and Operations Research Center, E53-361</s1>
<s2>Cambridge, MA 02142</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">00-0001592</idno>
<date when="1999">1999</date>
<idno type="stanalyst">PASCAL 00-0001592 INIST</idno>
<idno type="RBID">Pascal:00-0001592</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000A82</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000000</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">On the Chvátal rank of polytopes in the 0/1 cube</title>
<author>
<name sortKey="Bockmayr, A" sort="Bockmayr, A" uniqKey="Bockmayr A" first="A." last="Bockmayr">A. Bockmayr</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Université Henri Poincaré, LORIA, Campus scientifique, B.P. 239</s1>
<s2>54506 Vandoeuvre-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Eisenbrand, F" sort="Eisenbrand, F" uniqKey="Eisenbrand F" first="F." last="Eisenbrand">F. Eisenbrand</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Max-Planck-Institut für Informatik, Im Stadtwald</s1>
<s2>66123 Saarbrücken</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Hartmann, M" sort="Hartmann, M" uniqKey="Hartmann M" first="M." last="Hartmann">M. Hartmann</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>University of North Carolina at Chapel Hill, Department of Operations Research</s1>
<s2>Chapel Hill, NC 27599-3180</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Schulz, A S" sort="Schulz, A S" uniqKey="Schulz A" first="A. S." last="Schulz">A. S. Schulz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>MIT, Sloan School of Management and Operations Research Center, E53-361</s1>
<s2>Cambridge, MA 02142</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Discrete applied mathematics</title>
<title level="j" type="abbreviated">Discrete appl. math.</title>
<idno type="ISSN">0166-218X</idno>
<imprint>
<date when="1999">1999</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Discrete applied mathematics</title>
<title level="j" type="abbreviated">Discrete appl. math.</title>
<idno type="ISSN">0166-218X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chvatal rank</term>
<term>Combinatorial optimization</term>
<term>Cube 0/1</term>
<term>Geometry</term>
<term>Integer hull</term>
<term>Polyhedron</term>
<term>Polytope</term>
<term>Polytope in 01 cube</term>
<term>Rank</term>
<term>Upper bound</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Géométrie</term>
<term>Polytope</term>
<term>Polyèdre</term>
<term>Rang</term>
<term>Borne supérieure</term>
<term>Optimisation combinatoire</term>
<term>Cube 0/1</term>
<term>Polytope dans cube 0/1</term>
<term>Rang Chvatal</term>
<term>Envéloppe entière</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Given a polytope P ⊆ R
<sup>n</sup>
, the Chvátal-Gomory procedure computes iteratively the integer hull P
<sub>1</sub>
of P. The Chvátal rank of P is the minimal number of iterations needed to obtain P
<sub>1</sub>
. It is always finite, but already the Chvátal rank of polytopes in R
<sup>2</sup>
can be arbitrarily large. In this paper, we study polytopes in the 0/1 cube, which are of particular interest in combinatorial optimization. We show that the Chvátal rank of any polytope P ⊆ [0,1]
<sup>n</sup>
is O(n
<sup>3</sup>
log n) and prove the linear upper and lower bound n for the case P ∩ Z
<sup>n</sup>
= Ø.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0166-218X</s0>
</fA01>
<fA02 i1="01">
<s0>DAMADU</s0>
</fA02>
<fA03 i2="1">
<s0>Discrete appl. math.</s0>
</fA03>
<fA05>
<s2>98</s2>
</fA05>
<fA06>
<s2>1-2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>On the Chvátal rank of polytopes in the 0/1 cube</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BOCKMAYR (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>EISENBRAND (F.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HARTMANN (M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SCHULZ (A. S.)</s1>
</fA11>
<fA14 i1="01">
<s1>Université Henri Poincaré, LORIA, Campus scientifique, B.P. 239</s1>
<s2>54506 Vandoeuvre-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Max-Planck-Institut für Informatik, Im Stadtwald</s1>
<s2>66123 Saarbrücken</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>University of North Carolina at Chapel Hill, Department of Operations Research</s1>
<s2>Chapel Hill, NC 27599-3180</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>MIT, Sloan School of Management and Operations Research Center, E53-361</s1>
<s2>Cambridge, MA 02142</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>21-27</s1>
</fA20>
<fA21>
<s1>1999</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18287</s2>
<s5>354000080488120020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2000 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>13 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>00-0001592</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Discrete applied mathematics</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Given a polytope P ⊆ R
<sup>n</sup>
, the Chvátal-Gomory procedure computes iteratively the integer hull P
<sub>1</sub>
of P. The Chvátal rank of P is the minimal number of iterations needed to obtain P
<sub>1</sub>
. It is always finite, but already the Chvátal rank of polytopes in R
<sup>2</sup>
can be arbitrarily large. In this paper, we study polytopes in the 0/1 cube, which are of particular interest in combinatorial optimization. We show that the Chvátal rank of any polytope P ⊆ [0,1]
<sup>n</sup>
is O(n
<sup>3</sup>
log n) and prove the linear upper and lower bound n for the case P ∩ Z
<sup>n</sup>
= Ø.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001A02F02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Géométrie</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Geometry</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Geometría</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Polytope</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Polytope</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Politope</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Polyèdre</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Polyhedron</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Poliedro</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Rang</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Rank</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Rango</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Borne supérieure</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Upper bound</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Cota superior</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Optimisation combinatoire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Combinatorial optimization</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Optimización combinatoria</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Cube 0/1</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Cube 0/1</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Polytope dans cube 0/1</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Polytope in 01 cube</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Rang Chvatal</s0>
<s4>CD</s4>
<s5>98</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Chvatal rank</s0>
<s4>CD</s4>
<s5>98</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Envéloppe entière</s0>
<s4>CD</s4>
<s5>99</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Integer hull</s0>
<s4>CD</s4>
<s5>99</s5>
</fC03>
<fN21>
<s1>003</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000000 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000000 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:00-0001592
   |texte=   On the Chvátal rank of polytopes in the 0/1 cube
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022