Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of convergence rates for the approximation of the stationary distribution of infinite monotone stochastic matrices

Identifieur interne : 000C71 ( PascalFrancis/Corpus ); précédent : 000C70; suivant : 000C72

Characterization of convergence rates for the approximation of the stationary distribution of infinite monotone stochastic matrices

Auteurs : F. Simonot ; Y. Q. Song

Source :

RBID : Pascal:97-0227616

Descripteurs français

English descriptors

Abstract

Let P be an infinite irreducible stochastic matrix, recurrent positive and stochastically monotone and Pn be any n x n stochastic matrix with Pn≥ Tn' where Tn denotes the n x n northwest corner truncation of P. These assumptions imply the existence of limit distributions π and πn for P and Pn respectively. We show that if the Markov chain with transition probability matrix P meets the further condition of geometric recurrence then the exact convergence rate of πn to π can be expressed in terms of the radius of convergence of the generating function of π. As an application of the preceding result, we deal with the random walk on a half line and prove that the assumption of geometric recurrence can be relaxed. We also show that if the i.i.d. input sequence (Aim)) is such that we can find a real number ro > 1 with E(rA0) = 1, then the exact convergence rate of πn to π is characterized by ro. Moreover, when the generating function of A is not defined for |z| > 1, we derive an upper bound for the distance between πn and π based on the moments of A.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0021-9002
A02 01      @0 JPRBAM
A03   1    @0 J. appl. probab.
A05       @2 33
A06       @2 4
A08 01  1  ENG  @1 Characterization of convergence rates for the approximation of the stationary distribution of infinite monotone stochastic matrices
A11 01  1    @1 SIMONOT (F.)
A11 02  1    @1 SONG (Y. Q.)
A14 01      @1 Université Henri Poincaré @3 FRA @Z 1 aut.
A14 02      @1 CRIN-ENSEM @3 FRA @Z 2 aut.
A20       @1 974-985
A21       @1 1996
A23 01      @0 ENG
A43 01      @1 INIST @2 12216 @5 354000062831220070
A44       @0 0000 @1 © 1997 INIST-CNRS. All rights reserved.
A45       @0 20 ref.
A47 01  1    @0 97-0227616
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of applied probability
A66 01      @0 GBR
C01 01    ENG  @0 Let P be an infinite irreducible stochastic matrix, recurrent positive and stochastically monotone and Pn be any n x n stochastic matrix with Pn≥ Tn' where Tn denotes the n x n northwest corner truncation of P. These assumptions imply the existence of limit distributions π and πn for P and Pn respectively. We show that if the Markov chain with transition probability matrix P meets the further condition of geometric recurrence then the exact convergence rate of πn to π can be expressed in terms of the radius of convergence of the generating function of π. As an application of the preceding result, we deal with the random walk on a half line and prove that the assumption of geometric recurrence can be relaxed. We also show that if the i.i.d. input sequence (Aim)) is such that we can find a real number ro > 1 with E(rA0) = 1, then the exact convergence rate of πn to π is characterized by ro. Moreover, when the generating function of A is not defined for |z| > 1, we derive an upper bound for the distance between πn and π based on the moments of A.
C02 01  X    @0 001A02H01J
C02 02  X    @0 001A02H01K
C03 01  X  FRE  @0 Matrice stochastique @5 01
C03 01  X  ENG  @0 Stochastic matrix @5 01
C03 01  X  SPA  @0 Matriz estocástica @5 01
C03 02  X  FRE  @0 Chaîne Markov @5 02
C03 02  X  ENG  @0 Markov chain @5 02
C03 02  X  SPA  @0 Cadena Markov @5 02
C03 03  X  FRE  @0 Loi limite @5 03
C03 03  X  ENG  @0 Limit distribution @5 03
C03 03  X  SPA  @0 Ley límite @5 03
C03 04  X  FRE  @0 Taux convergence @5 04
C03 04  X  ENG  @0 Convergence rate @5 04
C03 04  X  SPA  @0 Relación convergencia @5 04
C03 05  X  FRE  @0 Processus stationnaire @5 05
C03 05  X  ENG  @0 Stationary process @5 05
C03 05  X  SPA  @0 Proceso estacionario @5 05
N21       @1 118

Format Inist (serveur)

NO : PASCAL 97-0227616 INIST
ET : Characterization of convergence rates for the approximation of the stationary distribution of infinite monotone stochastic matrices
AU : SIMONOT (F.); SONG (Y. Q.)
AF : Université Henri Poincaré/France (1 aut.); CRIN-ENSEM/France (2 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of applied probability; ISSN 0021-9002; Coden JPRBAM; Royaume-Uni; Da. 1996; Vol. 33; No. 4; Pp. 974-985; Bibl. 20 ref.
LA : Anglais
EA : Let P be an infinite irreducible stochastic matrix, recurrent positive and stochastically monotone and Pn be any n x n stochastic matrix with Pn≥ Tn' where Tn denotes the n x n northwest corner truncation of P. These assumptions imply the existence of limit distributions π and πn for P and Pn respectively. We show that if the Markov chain with transition probability matrix P meets the further condition of geometric recurrence then the exact convergence rate of πn to π can be expressed in terms of the radius of convergence of the generating function of π. As an application of the preceding result, we deal with the random walk on a half line and prove that the assumption of geometric recurrence can be relaxed. We also show that if the i.i.d. input sequence (Aim)) is such that we can find a real number ro > 1 with E(rA0) = 1, then the exact convergence rate of πn to π is characterized by ro. Moreover, when the generating function of A is not defined for |z| > 1, we derive an upper bound for the distance between πn and π based on the moments of A.
CC : 001A02H01J; 001A02H01K
FD : Matrice stochastique; Chaîne Markov; Loi limite; Taux convergence; Processus stationnaire
ED : Stochastic matrix; Markov chain; Limit distribution; Convergence rate; Stationary process
SD : Matriz estocástica; Cadena Markov; Ley límite; Relación convergencia; Proceso estacionario
LO : INIST-12216.354000062831220070
ID : 97-0227616

Links to Exploration step

Pascal:97-0227616

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Characterization of convergence rates for the approximation of the stationary distribution of infinite monotone stochastic matrices</title>
<author>
<name sortKey="Simonot, F" sort="Simonot, F" uniqKey="Simonot F" first="F." last="Simonot">F. Simonot</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université Henri Poincaré</s1>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Song, Y Q" sort="Song, Y Q" uniqKey="Song Y" first="Y. Q." last="Song">Y. Q. Song</name>
<affiliation>
<inist:fA14 i1="02">
<s1>CRIN-ENSEM</s1>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">97-0227616</idno>
<date when="1996">1996</date>
<idno type="stanalyst">PASCAL 97-0227616 INIST</idno>
<idno type="RBID">Pascal:97-0227616</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000C71</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Characterization of convergence rates for the approximation of the stationary distribution of infinite monotone stochastic matrices</title>
<author>
<name sortKey="Simonot, F" sort="Simonot, F" uniqKey="Simonot F" first="F." last="Simonot">F. Simonot</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université Henri Poincaré</s1>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Song, Y Q" sort="Song, Y Q" uniqKey="Song Y" first="Y. Q." last="Song">Y. Q. Song</name>
<affiliation>
<inist:fA14 i1="02">
<s1>CRIN-ENSEM</s1>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of applied probability</title>
<title level="j" type="abbreviated">J. appl. probab.</title>
<idno type="ISSN">0021-9002</idno>
<imprint>
<date when="1996">1996</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of applied probability</title>
<title level="j" type="abbreviated">J. appl. probab.</title>
<idno type="ISSN">0021-9002</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Convergence rate</term>
<term>Limit distribution</term>
<term>Markov chain</term>
<term>Stationary process</term>
<term>Stochastic matrix</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Matrice stochastique</term>
<term>Chaîne Markov</term>
<term>Loi limite</term>
<term>Taux convergence</term>
<term>Processus stationnaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Let P be an infinite irreducible stochastic matrix, recurrent positive and stochastically monotone and P
<sub>n</sub>
be any n x n stochastic matrix with P
<sub>n</sub>
≥ T
<sub>n'</sub>
where T
<sub>n</sub>
denotes the n x n northwest corner truncation of P. These assumptions imply the existence of limit distributions π and π
<sub>n</sub>
for P and P
<sub>n</sub>
respectively. We show that if the Markov chain with transition probability matrix P meets the further condition of geometric recurrence then the exact convergence rate of π
<sub>n</sub>
to π can be expressed in terms of the radius of convergence of the generating function of π. As an application of the preceding result, we deal with the random walk on a half line and prove that the assumption of geometric recurrence can be relaxed. We also show that if the i.i.d. input sequence (Aim)) is such that we can find a real number r
<sub>o</sub>
> 1 with E(r
<sup>A</sup>
<sub>0</sub>
) = 1, then the exact convergence rate of π
<sub>n</sub>
to π is characterized by r
<sub>o</sub>
. Moreover, when the generating function of A is not defined for |z| > 1, we derive an upper bound for the distance between π
<sub>n</sub>
and π based on the moments of A.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-9002</s0>
</fA01>
<fA02 i1="01">
<s0>JPRBAM</s0>
</fA02>
<fA03 i2="1">
<s0>J. appl. probab.</s0>
</fA03>
<fA05>
<s2>33</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Characterization of convergence rates for the approximation of the stationary distribution of infinite monotone stochastic matrices</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SIMONOT (F.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SONG (Y. Q.)</s1>
</fA11>
<fA14 i1="01">
<s1>Université Henri Poincaré</s1>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>CRIN-ENSEM</s1>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>974-985</s1>
</fA20>
<fA21>
<s1>1996</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>12216</s2>
<s5>354000062831220070</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 1997 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>20 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>97-0227616</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of applied probability</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Let P be an infinite irreducible stochastic matrix, recurrent positive and stochastically monotone and P
<sub>n</sub>
be any n x n stochastic matrix with P
<sub>n</sub>
≥ T
<sub>n'</sub>
where T
<sub>n</sub>
denotes the n x n northwest corner truncation of P. These assumptions imply the existence of limit distributions π and π
<sub>n</sub>
for P and P
<sub>n</sub>
respectively. We show that if the Markov chain with transition probability matrix P meets the further condition of geometric recurrence then the exact convergence rate of π
<sub>n</sub>
to π can be expressed in terms of the radius of convergence of the generating function of π. As an application of the preceding result, we deal with the random walk on a half line and prove that the assumption of geometric recurrence can be relaxed. We also show that if the i.i.d. input sequence (Aim)) is such that we can find a real number r
<sub>o</sub>
> 1 with E(r
<sup>A</sup>
<sub>0</sub>
) = 1, then the exact convergence rate of π
<sub>n</sub>
to π is characterized by r
<sub>o</sub>
. Moreover, when the generating function of A is not defined for |z| > 1, we derive an upper bound for the distance between π
<sub>n</sub>
and π based on the moments of A.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001A02H01J</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001A02H01K</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Matrice stochastique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Stochastic matrix</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Matriz estocástica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Chaîne Markov</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Markov chain</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Cadena Markov</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Loi limite</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Limit distribution</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Ley límite</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Taux convergence</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Convergence rate</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Relación convergencia</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Processus stationnaire</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Stationary process</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Proceso estacionario</s0>
<s5>05</s5>
</fC03>
<fN21>
<s1>118</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 97-0227616 INIST</NO>
<ET>Characterization of convergence rates for the approximation of the stationary distribution of infinite monotone stochastic matrices</ET>
<AU>SIMONOT (F.); SONG (Y. Q.)</AU>
<AF>Université Henri Poincaré/France (1 aut.); CRIN-ENSEM/France (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of applied probability; ISSN 0021-9002; Coden JPRBAM; Royaume-Uni; Da. 1996; Vol. 33; No. 4; Pp. 974-985; Bibl. 20 ref.</SO>
<LA>Anglais</LA>
<EA>Let P be an infinite irreducible stochastic matrix, recurrent positive and stochastically monotone and P
<sub>n</sub>
be any n x n stochastic matrix with P
<sub>n</sub>
≥ T
<sub>n'</sub>
where T
<sub>n</sub>
denotes the n x n northwest corner truncation of P. These assumptions imply the existence of limit distributions π and π
<sub>n</sub>
for P and P
<sub>n</sub>
respectively. We show that if the Markov chain with transition probability matrix P meets the further condition of geometric recurrence then the exact convergence rate of π
<sub>n</sub>
to π can be expressed in terms of the radius of convergence of the generating function of π. As an application of the preceding result, we deal with the random walk on a half line and prove that the assumption of geometric recurrence can be relaxed. We also show that if the i.i.d. input sequence (Aim)) is such that we can find a real number r
<sub>o</sub>
> 1 with E(r
<sup>A</sup>
<sub>0</sub>
) = 1, then the exact convergence rate of π
<sub>n</sub>
to π is characterized by r
<sub>o</sub>
. Moreover, when the generating function of A is not defined for |z| > 1, we derive an upper bound for the distance between π
<sub>n</sub>
and π based on the moments of A.</EA>
<CC>001A02H01J; 001A02H01K</CC>
<FD>Matrice stochastique; Chaîne Markov; Loi limite; Taux convergence; Processus stationnaire</FD>
<ED>Stochastic matrix; Markov chain; Limit distribution; Convergence rate; Stationary process</ED>
<SD>Matriz estocástica; Cadena Markov; Ley límite; Relación convergencia; Proceso estacionario</SD>
<LO>INIST-12216.354000062831220070</LO>
<ID>97-0227616</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C71 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000C71 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:97-0227616
   |texte=   Characterization of convergence rates for the approximation of the stationary distribution of infinite monotone stochastic matrices
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022