Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

On the complexity of recognizing the Hilbert basis of a linear Diophantine system

Identifieur interne : 000A92 ( PascalFrancis/Corpus ); précédent : 000A91; suivant : 000A93

On the complexity of recognizing the Hilbert basis of a linear Diophantine system

Auteurs : A. Durand ; M. Hermann ; L. Juban

Source :

RBID : Pascal:99-0505435

Descripteurs français

English descriptors

Abstract

The problem of computing the Hilbert basis of a linear Diophantine system over nonnegative integers is often considered in automated deduction and integer programming. In automated deduction, the Hilbert basis of a corresponding system serves to compute the minimal complete set of associative-commutative unifiers, whereas in integer programming the Hilbert bases are tightly connected to integer polyhedra and to the notion of total dual integrality. In this paper, we sharpen the previously known result that the problem, asking whether a given solution belongs to the Hilbert basis of a given system, is coNP-complete. We show that the problem has a pseudopolynomial algorithm if the number of equations in the system is fixed, but it is coNP-complete in the strong sense if the given system is unbounded. This result is important in the scope of automated deduction, where the input is given in unary and therefore the previously known coNP-completeness result was unusable. Moreover, we prove that, given a linear Diophantine system and a set of solutions, asking whether this set constitutes the Hilbert basis of the system, is also coNP-complete in the strong sense, answering this way an open problem formulated by Henk and Weismantel in 1996. Our result also allows us to solve another open problem, formulated by Edmonds and Giles in 1982, where we prove that asking whether a given set of vectors constitutes the Hilbert basis of an unknown linear Diophantine system, is coNP-complete in the strong sense.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0302-9743
A05       @2 1672
A08 01  1  ENG  @1 On the complexity of recognizing the Hilbert basis of a linear Diophantine system
A09 01  1  ENG  @1 MFCS '99 : mathematical foundations of computer science : Szklarska Poręba, 6-10 September 1999
A11 01  1    @1 DURAND (A.)
A11 02  1    @1 HERMANN (M.)
A11 03  1    @1 JUBAN (L.)
A12 01  1    @1 KUTYOWSKI (Mirosłalw) @9 ed.
A12 02  1    @1 PACHOLSKI (Leszek) @9 ed.
A12 03  1    @1 WIERZBICKI (Tomasz) @9 ed.
A14 01      @1 LACL, Department of Computer Science, Université Paris 12, 61, av. gen. de Gaule @2 94010 Créteil @3 FRA @Z 1 aut.
A14 02      @1 LORIA (CNRS and Université Henri Poincaré Nancy 1), BP 239 @2 54506, Vandœuvre-lès-Nancy @3 FRA @Z 2 aut. @Z 3 aut.
A20       @1 92-102
A21       @1 1999
A23 01      @0 ENG
A26 01      @0 3-540-66408-4
A43 01      @1 INIST @2 16343 @5 354000084584660090
A44       @0 0000 @1 © 1999 INIST-CNRS. All rights reserved.
A45       @0 17 ref.
A47 01  1    @0 99-0505435
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Lecture notes in computer science
A66 01      @0 DEU
C01 01    ENG  @0 The problem of computing the Hilbert basis of a linear Diophantine system over nonnegative integers is often considered in automated deduction and integer programming. In automated deduction, the Hilbert basis of a corresponding system serves to compute the minimal complete set of associative-commutative unifiers, whereas in integer programming the Hilbert bases are tightly connected to integer polyhedra and to the notion of total dual integrality. In this paper, we sharpen the previously known result that the problem, asking whether a given solution belongs to the Hilbert basis of a given system, is coNP-complete. We show that the problem has a pseudopolynomial algorithm if the number of equations in the system is fixed, but it is coNP-complete in the strong sense if the given system is unbounded. This result is important in the scope of automated deduction, where the input is given in unary and therefore the previously known coNP-completeness result was unusable. Moreover, we prove that, given a linear Diophantine system and a set of solutions, asking whether this set constitutes the Hilbert basis of the system, is also coNP-complete in the strong sense, answering this way an open problem formulated by Henk and Weismantel in 1996. Our result also allows us to solve another open problem, formulated by Edmonds and Giles in 1982, where we prove that asking whether a given set of vectors constitutes the Hilbert basis of an unknown linear Diophantine system, is coNP-complete in the strong sense.
C02 01  X    @0 001D02A03
C02 02  X    @0 001D02C05
C03 01  X  FRE  @0 Programmation en nombres entiers @5 01
C03 01  X  ENG  @0 Integer programming @5 01
C03 01  X  SPA  @0 Programación entera @5 01
C03 02  X  FRE  @0 Système linéaire @5 02
C03 02  X  ENG  @0 Linear system @5 02
C03 02  X  SPA  @0 Sistema lineal @5 02
C03 03  X  FRE  @0 Equation diophantienne @5 03
C03 03  X  ENG  @0 Diophantine equation @5 03
C03 03  X  SPA  @0 Ecuación diofántica @5 03
C03 04  X  FRE  @0 Système équation @5 04
C03 04  X  ENG  @0 Equation system @5 04
C03 04  X  SPA  @0 Sistema ecuación @5 04
C03 05  X  FRE  @0 Reconnaissance @5 05
C03 05  X  ENG  @0 Recognition @5 05
C03 05  X  SPA  @0 Reconocimiento @5 05
C03 06  X  FRE  @0 Problème NP complet @5 06
C03 06  X  ENG  @0 NP complete problem @5 06
C03 06  X  SPA  @0 Problema NP completo @5 06
C03 07  X  FRE  @0 Résolution système équation @5 07
C03 07  X  ENG  @0 Equation system solving @5 07
C03 07  X  SPA  @0 Resolución sistema ecuación @5 07
C03 08  X  FRE  @0 Complexité @5 08
C03 08  X  ENG  @0 Complexity @5 08
C03 08  X  SPA  @0 Complejidad @5 08
C03 09  X  FRE  @0 Calcul automatique @5 09
C03 09  X  ENG  @0 Computing @5 09
C03 09  X  SPA  @0 Cálculo automático @5 09
C03 10  X  FRE  @0 Base Hilbert @4 INC @5 72
N21       @1 326
pR  
A30 01  1  ENG  @1 Mathematical foundations of computer science. International symposium @2 24 @3 Szklarska Poręba POL @4 1999-09-06

Format Inist (serveur)

NO : PASCAL 99-0505435 INIST
ET : On the complexity of recognizing the Hilbert basis of a linear Diophantine system
AU : DURAND (A.); HERMANN (M.); JUBAN (L.); KUTYOWSKI (Mirosłalw); PACHOLSKI (Leszek); WIERZBICKI (Tomasz)
AF : LACL, Department of Computer Science, Université Paris 12, 61, av. gen. de Gaule/94010 Créteil/France (1 aut.); LORIA (CNRS and Université Henri Poincaré Nancy 1), BP 239/54506, Vandœuvre-lès-Nancy/France (2 aut., 3 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Lecture notes in computer science; ISSN 0302-9743; Allemagne; Da. 1999; Vol. 1672; Pp. 92-102; Bibl. 17 ref.
LA : Anglais
EA : The problem of computing the Hilbert basis of a linear Diophantine system over nonnegative integers is often considered in automated deduction and integer programming. In automated deduction, the Hilbert basis of a corresponding system serves to compute the minimal complete set of associative-commutative unifiers, whereas in integer programming the Hilbert bases are tightly connected to integer polyhedra and to the notion of total dual integrality. In this paper, we sharpen the previously known result that the problem, asking whether a given solution belongs to the Hilbert basis of a given system, is coNP-complete. We show that the problem has a pseudopolynomial algorithm if the number of equations in the system is fixed, but it is coNP-complete in the strong sense if the given system is unbounded. This result is important in the scope of automated deduction, where the input is given in unary and therefore the previously known coNP-completeness result was unusable. Moreover, we prove that, given a linear Diophantine system and a set of solutions, asking whether this set constitutes the Hilbert basis of the system, is also coNP-complete in the strong sense, answering this way an open problem formulated by Henk and Weismantel in 1996. Our result also allows us to solve another open problem, formulated by Edmonds and Giles in 1982, where we prove that asking whether a given set of vectors constitutes the Hilbert basis of an unknown linear Diophantine system, is coNP-complete in the strong sense.
CC : 001D02A03; 001D02C05
FD : Programmation en nombres entiers; Système linéaire; Equation diophantienne; Système équation; Reconnaissance; Problème NP complet; Résolution système équation; Complexité; Calcul automatique; Base Hilbert
ED : Integer programming; Linear system; Diophantine equation; Equation system; Recognition; NP complete problem; Equation system solving; Complexity; Computing
SD : Programación entera; Sistema lineal; Ecuación diofántica; Sistema ecuación; Reconocimiento; Problema NP completo; Resolución sistema ecuación; Complejidad; Cálculo automático
LO : INIST-16343.354000084584660090
ID : 99-0505435

Links to Exploration step

Pascal:99-0505435

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">On the complexity of recognizing the Hilbert basis of a linear Diophantine system</title>
<author>
<name sortKey="Durand, A" sort="Durand, A" uniqKey="Durand A" first="A." last="Durand">A. Durand</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LACL, Department of Computer Science, Université Paris 12, 61, av. gen. de Gaule</s1>
<s2>94010 Créteil</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hermann, M" sort="Hermann, M" uniqKey="Hermann M" first="M." last="Hermann">M. Hermann</name>
<affiliation>
<inist:fA14 i1="02">
<s1>LORIA (CNRS and Université Henri Poincaré Nancy 1), BP 239</s1>
<s2>54506, Vandœuvre-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Juban, L" sort="Juban, L" uniqKey="Juban L" first="L." last="Juban">L. Juban</name>
<affiliation>
<inist:fA14 i1="02">
<s1>LORIA (CNRS and Université Henri Poincaré Nancy 1), BP 239</s1>
<s2>54506, Vandœuvre-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">99-0505435</idno>
<date when="1999">1999</date>
<idno type="stanalyst">PASCAL 99-0505435 INIST</idno>
<idno type="RBID">Pascal:99-0505435</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000A92</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">On the complexity of recognizing the Hilbert basis of a linear Diophantine system</title>
<author>
<name sortKey="Durand, A" sort="Durand, A" uniqKey="Durand A" first="A." last="Durand">A. Durand</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LACL, Department of Computer Science, Université Paris 12, 61, av. gen. de Gaule</s1>
<s2>94010 Créteil</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hermann, M" sort="Hermann, M" uniqKey="Hermann M" first="M." last="Hermann">M. Hermann</name>
<affiliation>
<inist:fA14 i1="02">
<s1>LORIA (CNRS and Université Henri Poincaré Nancy 1), BP 239</s1>
<s2>54506, Vandœuvre-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Juban, L" sort="Juban, L" uniqKey="Juban L" first="L." last="Juban">L. Juban</name>
<affiliation>
<inist:fA14 i1="02">
<s1>LORIA (CNRS and Université Henri Poincaré Nancy 1), BP 239</s1>
<s2>54506, Vandœuvre-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Lecture notes in computer science</title>
<idno type="ISSN">0302-9743</idno>
<imprint>
<date when="1999">1999</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Lecture notes in computer science</title>
<idno type="ISSN">0302-9743</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Complexity</term>
<term>Computing</term>
<term>Diophantine equation</term>
<term>Equation system</term>
<term>Equation system solving</term>
<term>Integer programming</term>
<term>Linear system</term>
<term>NP complete problem</term>
<term>Recognition</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Programmation en nombres entiers</term>
<term>Système linéaire</term>
<term>Equation diophantienne</term>
<term>Système équation</term>
<term>Reconnaissance</term>
<term>Problème NP complet</term>
<term>Résolution système équation</term>
<term>Complexité</term>
<term>Calcul automatique</term>
<term>Base Hilbert</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The problem of computing the Hilbert basis of a linear Diophantine system over nonnegative integers is often considered in automated deduction and integer programming. In automated deduction, the Hilbert basis of a corresponding system serves to compute the minimal complete set of associative-commutative unifiers, whereas in integer programming the Hilbert bases are tightly connected to integer polyhedra and to the notion of total dual integrality. In this paper, we sharpen the previously known result that the problem, asking whether a given solution belongs to the Hilbert basis of a given system, is coNP-complete. We show that the problem has a pseudopolynomial algorithm if the number of equations in the system is fixed, but it is coNP-complete in the strong sense if the given system is unbounded. This result is important in the scope of automated deduction, where the input is given in unary and therefore the previously known coNP-completeness result was unusable. Moreover, we prove that, given a linear Diophantine system and a set of solutions, asking whether this set constitutes the Hilbert basis of the system, is also coNP-complete in the strong sense, answering this way an open problem formulated by Henk and Weismantel in 1996. Our result also allows us to solve another open problem, formulated by Edmonds and Giles in 1982, where we prove that asking whether a given set of vectors constitutes the Hilbert basis of an unknown linear Diophantine system, is coNP-complete in the strong sense.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0302-9743</s0>
</fA01>
<fA05>
<s2>1672</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>On the complexity of recognizing the Hilbert basis of a linear Diophantine system</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>MFCS '99 : mathematical foundations of computer science : Szklarska Poręba, 6-10 September 1999</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>DURAND (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HERMANN (M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>JUBAN (L.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>KUTYOWSKI (Mirosłalw)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>PACHOLSKI (Leszek)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>WIERZBICKI (Tomasz)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>LACL, Department of Computer Science, Université Paris 12, 61, av. gen. de Gaule</s1>
<s2>94010 Créteil</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>LORIA (CNRS and Université Henri Poincaré Nancy 1), BP 239</s1>
<s2>54506, Vandœuvre-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>92-102</s1>
</fA20>
<fA21>
<s1>1999</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA26 i1="01">
<s0>3-540-66408-4</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16343</s2>
<s5>354000084584660090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 1999 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>17 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>99-0505435</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Lecture notes in computer science</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The problem of computing the Hilbert basis of a linear Diophantine system over nonnegative integers is often considered in automated deduction and integer programming. In automated deduction, the Hilbert basis of a corresponding system serves to compute the minimal complete set of associative-commutative unifiers, whereas in integer programming the Hilbert bases are tightly connected to integer polyhedra and to the notion of total dual integrality. In this paper, we sharpen the previously known result that the problem, asking whether a given solution belongs to the Hilbert basis of a given system, is coNP-complete. We show that the problem has a pseudopolynomial algorithm if the number of equations in the system is fixed, but it is coNP-complete in the strong sense if the given system is unbounded. This result is important in the scope of automated deduction, where the input is given in unary and therefore the previously known coNP-completeness result was unusable. Moreover, we prove that, given a linear Diophantine system and a set of solutions, asking whether this set constitutes the Hilbert basis of the system, is also coNP-complete in the strong sense, answering this way an open problem formulated by Henk and Weismantel in 1996. Our result also allows us to solve another open problem, formulated by Edmonds and Giles in 1982, where we prove that asking whether a given set of vectors constitutes the Hilbert basis of an unknown linear Diophantine system, is coNP-complete in the strong sense.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02A03</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D02C05</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Programmation en nombres entiers</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Integer programming</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Programación entera</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Système linéaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Linear system</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Sistema lineal</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Equation diophantienne</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Diophantine equation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Ecuación diofántica</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Système équation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Equation system</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Sistema ecuación</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Reconnaissance</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Recognition</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Reconocimiento</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Problème NP complet</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>NP complete problem</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Problema NP completo</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Résolution système équation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Equation system solving</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Resolución sistema ecuación</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Complexité</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Complexity</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Complejidad</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Calcul automatique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Computing</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Cálculo automático</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Base Hilbert</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fN21>
<s1>326</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Mathematical foundations of computer science. International symposium</s1>
<s2>24</s2>
<s3>Szklarska Poręba POL</s3>
<s4>1999-09-06</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 99-0505435 INIST</NO>
<ET>On the complexity of recognizing the Hilbert basis of a linear Diophantine system</ET>
<AU>DURAND (A.); HERMANN (M.); JUBAN (L.); KUTYOWSKI (Mirosłalw); PACHOLSKI (Leszek); WIERZBICKI (Tomasz)</AU>
<AF>LACL, Department of Computer Science, Université Paris 12, 61, av. gen. de Gaule/94010 Créteil/France (1 aut.); LORIA (CNRS and Université Henri Poincaré Nancy 1), BP 239/54506, Vandœuvre-lès-Nancy/France (2 aut., 3 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Lecture notes in computer science; ISSN 0302-9743; Allemagne; Da. 1999; Vol. 1672; Pp. 92-102; Bibl. 17 ref.</SO>
<LA>Anglais</LA>
<EA>The problem of computing the Hilbert basis of a linear Diophantine system over nonnegative integers is often considered in automated deduction and integer programming. In automated deduction, the Hilbert basis of a corresponding system serves to compute the minimal complete set of associative-commutative unifiers, whereas in integer programming the Hilbert bases are tightly connected to integer polyhedra and to the notion of total dual integrality. In this paper, we sharpen the previously known result that the problem, asking whether a given solution belongs to the Hilbert basis of a given system, is coNP-complete. We show that the problem has a pseudopolynomial algorithm if the number of equations in the system is fixed, but it is coNP-complete in the strong sense if the given system is unbounded. This result is important in the scope of automated deduction, where the input is given in unary and therefore the previously known coNP-completeness result was unusable. Moreover, we prove that, given a linear Diophantine system and a set of solutions, asking whether this set constitutes the Hilbert basis of the system, is also coNP-complete in the strong sense, answering this way an open problem formulated by Henk and Weismantel in 1996. Our result also allows us to solve another open problem, formulated by Edmonds and Giles in 1982, where we prove that asking whether a given set of vectors constitutes the Hilbert basis of an unknown linear Diophantine system, is coNP-complete in the strong sense.</EA>
<CC>001D02A03; 001D02C05</CC>
<FD>Programmation en nombres entiers; Système linéaire; Equation diophantienne; Système équation; Reconnaissance; Problème NP complet; Résolution système équation; Complexité; Calcul automatique; Base Hilbert</FD>
<ED>Integer programming; Linear system; Diophantine equation; Equation system; Recognition; NP complete problem; Equation system solving; Complexity; Computing</ED>
<SD>Programación entera; Sistema lineal; Ecuación diofántica; Sistema ecuación; Reconocimiento; Problema NP completo; Resolución sistema ecuación; Complejidad; Cálculo automático</SD>
<LO>INIST-16343.354000084584660090</LO>
<ID>99-0505435</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A92 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000A92 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:99-0505435
   |texte=   On the complexity of recognizing the Hilbert basis of a linear Diophantine system
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022