Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Counting rooted maps on a surface

Identifieur interne : 000A59 ( PascalFrancis/Corpus ); précédent : 000A58; suivant : 000A60

Counting rooted maps on a surface

Auteurs : D. Arques ; A. Giorgetti

Source :

RBID : Pascal:00-0169830

Descripteurs français

English descriptors

Abstract

Several enumeration results are known about rooted maps on orientable surfaces, whereas rooted maps on non-orientable surfaces have seldom been studied. First, we unify both kind of maps, giving general functional equations for the generating series which counts rooted maps on any locally orientable surface, by number of vertices and faces. Then, we formally solve these equations, in order to establish a detailed common formula for all these generating series. All of them appear to be algebraic functions of the variables counting the number of vertices and faces. Explicit expressions and numerical tables for the series counting rooted maps on the non-orientable surfaces of genus 3 and 4 are given.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0304-3975
A02 01      @0 TCSCDI
A03   1    @0 Theor. comput. sci.
A05       @2 234
A06       @2 1-2
A08 01  1  ENG  @1 Counting rooted maps on a surface
A11 01  1    @1 ARQUES (D.)
A11 02  1    @1 GIORGETTI (A.)
A14 01      @1 Institut Gaspard Monge, Université de Marne la Vallée, 5, boulevard Descartes, Champs sur Marne @2 77454 Marne la Vallée @3 FRA @Z 1 aut.
A14 02      @1 LORIA, Université Henri Poincaré, Nancy I, Domaine scientifique Victor Grignard, B. P. 239 @2 54506 Vandœuvre les Nancy @3 FRA @Z 2 aut.
A20       @1 255-272
A21       @1 2000
A23 01      @0 ENG
A43 01      @1 INIST @2 17243 @5 354000086807540110
A44       @0 0000 @1 © 2000 INIST-CNRS. All rights reserved.
A45       @0 16 ref.
A47 01  1    @0 00-0169830
A60       @1 P
A61       @0 A
A64 01  1    @0 Theoretical computer science
A66 01      @0 NLD
C01 01    ENG  @0 Several enumeration results are known about rooted maps on orientable surfaces, whereas rooted maps on non-orientable surfaces have seldom been studied. First, we unify both kind of maps, giving general functional equations for the generating series which counts rooted maps on any locally orientable surface, by number of vertices and faces. Then, we formally solve these equations, in order to establish a detailed common formula for all these generating series. All of them appear to be algebraic functions of the variables counting the number of vertices and faces. Explicit expressions and numerical tables for the series counting rooted maps on the non-orientable surfaces of genus 3 and 4 are given.
C02 01  X    @0 001A02G02
C02 02  X    @0 001A02B01A
C02 03  X    @0 001A02C02
C03 01  X  FRE  @0 Enumération @5 01
C03 01  X  ENG  @0 Enumeration @5 01
C03 01  X  SPA  @0 Enumeración @5 01
C03 02  3  FRE  @0 Série exponentielle @5 02
C03 02  3  ENG  @0 Power series @5 02
C03 03  X  FRE  @0 Série formelle @5 03
C03 03  X  ENG  @0 Formal series @5 03
C03 03  X  SPA  @0 Serie formal @5 03
C03 04  X  FRE  @0 Surface Riemann @5 04
C03 04  X  ENG  @0 Riemann surface @5 04
C03 04  X  SPA  @0 Superficie Riemann @5 04
C03 05  X  FRE  @0 Equation fonctionnelle @5 05
C03 05  X  ENG  @0 Functional equation @5 05
C03 05  X  SPA  @0 Ecuación funcional @5 05
C03 06  X  FRE  @0 Théorème unicité @5 06
C03 06  X  ENG  @0 Uniqueness theorem @5 06
C03 06  X  SPA  @0 Teorema unicidad @5 06
C03 07  X  FRE  @0 Topologie algébrique @5 07
C03 07  X  ENG  @0 Algebraic topology @5 07
C03 07  X  SPA  @0 Topología algebraica @5 07
C03 08  X  FRE  @0 Orientabilité @4 CD @5 96
C03 08  X  ENG  @0 Orientability @4 CD @5 96
C03 09  X  FRE  @0 Série exponentielle formelle @4 CD @5 97
C03 09  X  ENG  @0 Formal power series @4 CD @5 97
C03 10  X  FRE  @0 Bouteille Klein @4 CD @5 98
C03 10  X  ENG  @0 Klein bottle @4 CD @5 98
C03 11  X  FRE  @0 Application à racine @4 CD @5 99
C03 11  X  ENG  @0 Rooted tree @4 CD @5 99
N21       @1 122

Format Inist (serveur)

NO : PASCAL 00-0169830 INIST
ET : Counting rooted maps on a surface
AU : ARQUES (D.); GIORGETTI (A.)
AF : Institut Gaspard Monge, Université de Marne la Vallée, 5, boulevard Descartes, Champs sur Marne/77454 Marne la Vallée/France (1 aut.); LORIA, Université Henri Poincaré, Nancy I, Domaine scientifique Victor Grignard, B. P. 239/54506 Vandœuvre les Nancy/France (2 aut.)
DT : Publication en série; Niveau analytique
SO : Theoretical computer science; ISSN 0304-3975; Coden TCSCDI; Pays-Bas; Da. 2000; Vol. 234; No. 1-2; Pp. 255-272; Bibl. 16 ref.
LA : Anglais
EA : Several enumeration results are known about rooted maps on orientable surfaces, whereas rooted maps on non-orientable surfaces have seldom been studied. First, we unify both kind of maps, giving general functional equations for the generating series which counts rooted maps on any locally orientable surface, by number of vertices and faces. Then, we formally solve these equations, in order to establish a detailed common formula for all these generating series. All of them appear to be algebraic functions of the variables counting the number of vertices and faces. Explicit expressions and numerical tables for the series counting rooted maps on the non-orientable surfaces of genus 3 and 4 are given.
CC : 001A02G02; 001A02B01A; 001A02C02
FD : Enumération; Série exponentielle; Série formelle; Surface Riemann; Equation fonctionnelle; Théorème unicité; Topologie algébrique; Orientabilité; Série exponentielle formelle; Bouteille Klein; Application à racine
ED : Enumeration; Power series; Formal series; Riemann surface; Functional equation; Uniqueness theorem; Algebraic topology; Orientability; Formal power series; Klein bottle; Rooted tree
SD : Enumeración; Serie formal; Superficie Riemann; Ecuación funcional; Teorema unicidad; Topología algebraica
LO : INIST-17243.354000086807540110
ID : 00-0169830

Links to Exploration step

Pascal:00-0169830

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Counting rooted maps on a surface</title>
<author>
<name sortKey="Arques, D" sort="Arques, D" uniqKey="Arques D" first="D." last="Arques">D. Arques</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institut Gaspard Monge, Université de Marne la Vallée, 5, boulevard Descartes, Champs sur Marne</s1>
<s2>77454 Marne la Vallée</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Giorgetti, A" sort="Giorgetti, A" uniqKey="Giorgetti A" first="A." last="Giorgetti">A. Giorgetti</name>
<affiliation>
<inist:fA14 i1="02">
<s1>LORIA, Université Henri Poincaré, Nancy I, Domaine scientifique Victor Grignard, B. P. 239</s1>
<s2>54506 Vandœuvre les Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">00-0169830</idno>
<date when="2000">2000</date>
<idno type="stanalyst">PASCAL 00-0169830 INIST</idno>
<idno type="RBID">Pascal:00-0169830</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000A59</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Counting rooted maps on a surface</title>
<author>
<name sortKey="Arques, D" sort="Arques, D" uniqKey="Arques D" first="D." last="Arques">D. Arques</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institut Gaspard Monge, Université de Marne la Vallée, 5, boulevard Descartes, Champs sur Marne</s1>
<s2>77454 Marne la Vallée</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Giorgetti, A" sort="Giorgetti, A" uniqKey="Giorgetti A" first="A." last="Giorgetti">A. Giorgetti</name>
<affiliation>
<inist:fA14 i1="02">
<s1>LORIA, Université Henri Poincaré, Nancy I, Domaine scientifique Victor Grignard, B. P. 239</s1>
<s2>54506 Vandœuvre les Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Theoretical computer science</title>
<title level="j" type="abbreviated">Theor. comput. sci.</title>
<idno type="ISSN">0304-3975</idno>
<imprint>
<date when="2000">2000</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Theoretical computer science</title>
<title level="j" type="abbreviated">Theor. comput. sci.</title>
<idno type="ISSN">0304-3975</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algebraic topology</term>
<term>Enumeration</term>
<term>Formal power series</term>
<term>Formal series</term>
<term>Functional equation</term>
<term>Klein bottle</term>
<term>Orientability</term>
<term>Power series</term>
<term>Riemann surface</term>
<term>Rooted tree</term>
<term>Uniqueness theorem</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Enumération</term>
<term>Série exponentielle</term>
<term>Série formelle</term>
<term>Surface Riemann</term>
<term>Equation fonctionnelle</term>
<term>Théorème unicité</term>
<term>Topologie algébrique</term>
<term>Orientabilité</term>
<term>Série exponentielle formelle</term>
<term>Bouteille Klein</term>
<term>Application à racine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Several enumeration results are known about rooted maps on orientable surfaces, whereas rooted maps on non-orientable surfaces have seldom been studied. First, we unify both kind of maps, giving general functional equations for the generating series which counts rooted maps on any locally orientable surface, by number of vertices and faces. Then, we formally solve these equations, in order to establish a detailed common formula for all these generating series. All of them appear to be algebraic functions of the variables counting the number of vertices and faces. Explicit expressions and numerical tables for the series counting rooted maps on the non-orientable surfaces of genus 3 and 4 are given.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0304-3975</s0>
</fA01>
<fA02 i1="01">
<s0>TCSCDI</s0>
</fA02>
<fA03 i2="1">
<s0>Theor. comput. sci.</s0>
</fA03>
<fA05>
<s2>234</s2>
</fA05>
<fA06>
<s2>1-2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Counting rooted maps on a surface</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ARQUES (D.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GIORGETTI (A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institut Gaspard Monge, Université de Marne la Vallée, 5, boulevard Descartes, Champs sur Marne</s1>
<s2>77454 Marne la Vallée</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>LORIA, Université Henri Poincaré, Nancy I, Domaine scientifique Victor Grignard, B. P. 239</s1>
<s2>54506 Vandœuvre les Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>255-272</s1>
</fA20>
<fA21>
<s1>2000</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17243</s2>
<s5>354000086807540110</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2000 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>16 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>00-0169830</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Theoretical computer science</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Several enumeration results are known about rooted maps on orientable surfaces, whereas rooted maps on non-orientable surfaces have seldom been studied. First, we unify both kind of maps, giving general functional equations for the generating series which counts rooted maps on any locally orientable surface, by number of vertices and faces. Then, we formally solve these equations, in order to establish a detailed common formula for all these generating series. All of them appear to be algebraic functions of the variables counting the number of vertices and faces. Explicit expressions and numerical tables for the series counting rooted maps on the non-orientable surfaces of genus 3 and 4 are given.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001A02G02</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001A02B01A</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001A02C02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Enumération</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Enumeration</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Enumeración</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Série exponentielle</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Power series</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Série formelle</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Formal series</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Serie formal</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Surface Riemann</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Riemann surface</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Superficie Riemann</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Equation fonctionnelle</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Functional equation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Ecuación funcional</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Théorème unicité</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Uniqueness theorem</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Teorema unicidad</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Topologie algébrique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Algebraic topology</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Topología algebraica</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Orientabilité</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Orientability</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Série exponentielle formelle</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Formal power series</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Bouteille Klein</s0>
<s4>CD</s4>
<s5>98</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Klein bottle</s0>
<s4>CD</s4>
<s5>98</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Application à racine</s0>
<s4>CD</s4>
<s5>99</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Rooted tree</s0>
<s4>CD</s4>
<s5>99</s5>
</fC03>
<fN21>
<s1>122</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 00-0169830 INIST</NO>
<ET>Counting rooted maps on a surface</ET>
<AU>ARQUES (D.); GIORGETTI (A.)</AU>
<AF>Institut Gaspard Monge, Université de Marne la Vallée, 5, boulevard Descartes, Champs sur Marne/77454 Marne la Vallée/France (1 aut.); LORIA, Université Henri Poincaré, Nancy I, Domaine scientifique Victor Grignard, B. P. 239/54506 Vandœuvre les Nancy/France (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Theoretical computer science; ISSN 0304-3975; Coden TCSCDI; Pays-Bas; Da. 2000; Vol. 234; No. 1-2; Pp. 255-272; Bibl. 16 ref.</SO>
<LA>Anglais</LA>
<EA>Several enumeration results are known about rooted maps on orientable surfaces, whereas rooted maps on non-orientable surfaces have seldom been studied. First, we unify both kind of maps, giving general functional equations for the generating series which counts rooted maps on any locally orientable surface, by number of vertices and faces. Then, we formally solve these equations, in order to establish a detailed common formula for all these generating series. All of them appear to be algebraic functions of the variables counting the number of vertices and faces. Explicit expressions and numerical tables for the series counting rooted maps on the non-orientable surfaces of genus 3 and 4 are given.</EA>
<CC>001A02G02; 001A02B01A; 001A02C02</CC>
<FD>Enumération; Série exponentielle; Série formelle; Surface Riemann; Equation fonctionnelle; Théorème unicité; Topologie algébrique; Orientabilité; Série exponentielle formelle; Bouteille Klein; Application à racine</FD>
<ED>Enumeration; Power series; Formal series; Riemann surface; Functional equation; Uniqueness theorem; Algebraic topology; Orientability; Formal power series; Klein bottle; Rooted tree</ED>
<SD>Enumeración; Serie formal; Superficie Riemann; Ecuación funcional; Teorema unicidad; Topología algebraica</SD>
<LO>INIST-17243.354000086807540110</LO>
<ID>00-0169830</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A59 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000A59 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:00-0169830
   |texte=   Counting rooted maps on a surface
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022