Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A fast algorithm for testing reducibility of trinomials mod 2 and some new primitive trinomials of degree 3021377

Identifieur interne : 000769 ( PascalFrancis/Corpus ); précédent : 000768; suivant : 000770

A fast algorithm for testing reducibility of trinomials mod 2 and some new primitive trinomials of degree 3021377

Auteurs : Richard P. Brent ; Samuli Larvala ; Paul Zimmermann

Source :

RBID : Pascal:03-0388460

Descripteurs français

English descriptors

Abstract

The standard algorithm for testing reducibility of a trinomial of prime degree r over GF(2) requires 2r + O(1) bits of memory. We describe a new algorithm which requires only 3r /2+O(1) bits of memory and significantly fewer memory references and bit-operations than the standard algorithm. If 2r - 1 is a Mersenne prime, then an irreducible trinomial of degree r is necessarily primitive. We give primitive trinomials for the Mersenne exponents r = 756839, 859433, and 3021377. The results for r = 859433 extend and correct some computations of Kumada et al. The two results for r = 3021377 are primitive trinomials of the highest known degree.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0025-5718
A02 01      @0 MCMPAF
A03   1    @0 Math. comput.
A05       @2 72
A06       @2 243
A08 01  1  ENG  @1 A fast algorithm for testing reducibility of trinomials mod 2 and some new primitive trinomials of degree 3021377
A11 01  1    @1 BRENT (Richard P.)
A11 02  1    @1 LARVALA (Samuli)
A11 03  1    @1 ZIMMERMANN (Paul)
A14 01      @1 Oxford University Computing Laboratory, Wolfson Building, Parks Road @2 Oxford, OX1 3QD @3 GBR @Z 1 aut.
A14 02      @1 Helsinki University of Technology @2 Espoo @3 FIN @Z 2 aut.
A14 03      @1 LORIA/INRIA Lorraine, 615 rue du Jardin Botanique, BP 101 @2 54602 Villers-lès-Nancy @3 FRA @Z 3 aut.
A20       @1 1443-1452
A21       @1 2003
A23 01      @0 ENG
A43 01      @1 INIST @2 5227 @5 354000118344630190
A44       @0 0000 @1 © 2003 INIST-CNRS. All rights reserved.
A45       @0 27 ref.
A47 01  1    @0 03-0388460
A60       @1 P
A61       @0 A
A64 01  1    @0 Mathematics of computation
A66 01      @0 USA
C01 01    ENG  @0 The standard algorithm for testing reducibility of a trinomial of prime degree r over GF(2) requires 2r + O(1) bits of memory. We describe a new algorithm which requires only 3r /2+O(1) bits of memory and significantly fewer memory references and bit-operations than the standard algorithm. If 2r - 1 is a Mersenne prime, then an irreducible trinomial of degree r is necessarily primitive. We give primitive trinomials for the Mersenne exponents r = 756839, 859433, and 3021377. The results for r = 859433 extend and correct some computations of Kumada et al. The two results for r = 3021377 are primitive trinomials of the highest known degree.
C02 01  X    @0 001A02C02
C02 02  X    @0 001A02C03
C02 03  X    @0 001A02I02
C02 04  X    @0 001D02A05
C03 01  X  FRE  @0 Calcul numérique @5 01
C03 01  X  ENG  @0 Numerical computation @5 01
C03 01  X  SPA  @0 Cálculo numérico @5 01
C03 02  X  FRE  @0 Théorie nombre @5 02
C03 02  X  ENG  @0 Number theory @5 02
C03 02  X  SPA  @0 Teoría números @5 02
C03 03  X  FRE  @0 Polynôme @5 03
C03 03  X  ENG  @0 Polynomial @5 03
C03 03  X  SPA  @0 Polinomio @5 03
C03 04  X  FRE  @0 Représentation irréductible @5 04
C03 04  X  ENG  @0 Irreducible representation @5 04
C03 04  X  SPA  @0 Representación irreductible @5 04
C03 05  X  FRE  @0 Génération nombre aléatoire @5 05
C03 05  X  ENG  @0 Random number generation @5 05
C03 05  X  SPA  @0 Generación número aleatorio @5 05
C03 06  X  FRE  @0 Carroyage @5 07
C03 06  X  ENG  @0 Squaring @5 07
C03 06  X  SPA  @0 Cuadriculación @5 07
C03 07  X  FRE  @0 Méthode réduction @5 08
C03 07  X  ENG  @0 Reduction method @5 08
C03 07  X  SPA  @0 Método reducción @5 08
C03 08  X  FRE  @0 Algorithme rapide @5 09
C03 08  X  ENG  @0 Fast algorithm @5 09
C03 08  X  SPA  @0 Algoritmo rápido @5 09
C03 09  X  FRE  @0 Trinôme irréductible @4 CD @5 96
C03 09  X  ENG  @0 Irreducible trinomials @4 CD @5 96
C03 10  X  FRE  @0 Exposant Mersenne @4 CD @5 97
C03 10  X  ENG  @0 Mersenne exponent @4 CD @5 97
C03 11  X  FRE  @0 Nombre Mersenne @4 CD @5 98
C03 11  X  ENG  @0 Mersenne number @4 CD @5 98
C03 11  X  SPA  @0 Número real @4 CD @5 98
C03 12  X  FRE  @0 Trinôme primitif @4 CD @5 99
C03 12  X  ENG  @0 Primitive trinomials @4 CD @5 99
N21       @1 272

Format Inist (serveur)

NO : PASCAL 03-0388460 INIST
ET : A fast algorithm for testing reducibility of trinomials mod 2 and some new primitive trinomials of degree 3021377
AU : BRENT (Richard P.); LARVALA (Samuli); ZIMMERMANN (Paul)
AF : Oxford University Computing Laboratory, Wolfson Building, Parks Road/Oxford, OX1 3QD/Royaume-Uni (1 aut.); Helsinki University of Technology/Espoo/Finlande (2 aut.); LORIA/INRIA Lorraine, 615 rue du Jardin Botanique, BP 101/54602 Villers-lès-Nancy/France (3 aut.)
DT : Publication en série; Niveau analytique
SO : Mathematics of computation; ISSN 0025-5718; Coden MCMPAF; Etats-Unis; Da. 2003; Vol. 72; No. 243; Pp. 1443-1452; Bibl. 27 ref.
LA : Anglais
EA : The standard algorithm for testing reducibility of a trinomial of prime degree r over GF(2) requires 2r + O(1) bits of memory. We describe a new algorithm which requires only 3r /2+O(1) bits of memory and significantly fewer memory references and bit-operations than the standard algorithm. If 2r - 1 is a Mersenne prime, then an irreducible trinomial of degree r is necessarily primitive. We give primitive trinomials for the Mersenne exponents r = 756839, 859433, and 3021377. The results for r = 859433 extend and correct some computations of Kumada et al. The two results for r = 3021377 are primitive trinomials of the highest known degree.
CC : 001A02C02; 001A02C03; 001A02I02; 001D02A05
FD : Calcul numérique; Théorie nombre; Polynôme; Représentation irréductible; Génération nombre aléatoire; Carroyage; Méthode réduction; Algorithme rapide; Trinôme irréductible; Exposant Mersenne; Nombre Mersenne; Trinôme primitif
ED : Numerical computation; Number theory; Polynomial; Irreducible representation; Random number generation; Squaring; Reduction method; Fast algorithm; Irreducible trinomials; Mersenne exponent; Mersenne number; Primitive trinomials
SD : Cálculo numérico; Teoría números; Polinomio; Representación irreductible; Generación número aleatorio; Cuadriculación; Método reducción; Algoritmo rápido; Número real
LO : INIST-5227.354000118344630190
ID : 03-0388460

Links to Exploration step

Pascal:03-0388460

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">A fast algorithm for testing reducibility of trinomials mod 2 and some new primitive trinomials of degree 3021377</title>
<author>
<name sortKey="Brent, Richard P" sort="Brent, Richard P" uniqKey="Brent R" first="Richard P." last="Brent">Richard P. Brent</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Oxford University Computing Laboratory, Wolfson Building, Parks Road</s1>
<s2>Oxford, OX1 3QD</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Larvala, Samuli" sort="Larvala, Samuli" uniqKey="Larvala S" first="Samuli" last="Larvala">Samuli Larvala</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Helsinki University of Technology</s1>
<s2>Espoo</s2>
<s3>FIN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zimmermann, Paul" sort="Zimmermann, Paul" uniqKey="Zimmermann P" first="Paul" last="Zimmermann">Paul Zimmermann</name>
<affiliation>
<inist:fA14 i1="03">
<s1>LORIA/INRIA Lorraine, 615 rue du Jardin Botanique, BP 101</s1>
<s2>54602 Villers-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">03-0388460</idno>
<date when="2003">2003</date>
<idno type="stanalyst">PASCAL 03-0388460 INIST</idno>
<idno type="RBID">Pascal:03-0388460</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000769</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">A fast algorithm for testing reducibility of trinomials mod 2 and some new primitive trinomials of degree 3021377</title>
<author>
<name sortKey="Brent, Richard P" sort="Brent, Richard P" uniqKey="Brent R" first="Richard P." last="Brent">Richard P. Brent</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Oxford University Computing Laboratory, Wolfson Building, Parks Road</s1>
<s2>Oxford, OX1 3QD</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Larvala, Samuli" sort="Larvala, Samuli" uniqKey="Larvala S" first="Samuli" last="Larvala">Samuli Larvala</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Helsinki University of Technology</s1>
<s2>Espoo</s2>
<s3>FIN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zimmermann, Paul" sort="Zimmermann, Paul" uniqKey="Zimmermann P" first="Paul" last="Zimmermann">Paul Zimmermann</name>
<affiliation>
<inist:fA14 i1="03">
<s1>LORIA/INRIA Lorraine, 615 rue du Jardin Botanique, BP 101</s1>
<s2>54602 Villers-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Mathematics of computation</title>
<title level="j" type="abbreviated">Math. comput.</title>
<idno type="ISSN">0025-5718</idno>
<imprint>
<date when="2003">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Mathematics of computation</title>
<title level="j" type="abbreviated">Math. comput.</title>
<idno type="ISSN">0025-5718</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Fast algorithm</term>
<term>Irreducible representation</term>
<term>Irreducible trinomials</term>
<term>Mersenne exponent</term>
<term>Mersenne number</term>
<term>Number theory</term>
<term>Numerical computation</term>
<term>Polynomial</term>
<term>Primitive trinomials</term>
<term>Random number generation</term>
<term>Reduction method</term>
<term>Squaring</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Calcul numérique</term>
<term>Théorie nombre</term>
<term>Polynôme</term>
<term>Représentation irréductible</term>
<term>Génération nombre aléatoire</term>
<term>Carroyage</term>
<term>Méthode réduction</term>
<term>Algorithme rapide</term>
<term>Trinôme irréductible</term>
<term>Exposant Mersenne</term>
<term>Nombre Mersenne</term>
<term>Trinôme primitif</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The standard algorithm for testing reducibility of a trinomial of prime degree r over GF(2) requires 2r + O(1) bits of memory. We describe a new algorithm which requires only 3r /2+O(1) bits of memory and significantly fewer memory references and bit-operations than the standard algorithm. If 2
<sup>r</sup>
- 1 is a Mersenne prime, then an irreducible trinomial of degree r is necessarily primitive. We give primitive trinomials for the Mersenne exponents r = 756839, 859433, and 3021377. The results for r = 859433 extend and correct some computations of Kumada et al. The two results for r = 3021377 are primitive trinomials of the highest known degree.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0025-5718</s0>
</fA01>
<fA02 i1="01">
<s0>MCMPAF</s0>
</fA02>
<fA03 i2="1">
<s0>Math. comput.</s0>
</fA03>
<fA05>
<s2>72</s2>
</fA05>
<fA06>
<s2>243</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>A fast algorithm for testing reducibility of trinomials mod 2 and some new primitive trinomials of degree 3021377</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BRENT (Richard P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LARVALA (Samuli)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ZIMMERMANN (Paul)</s1>
</fA11>
<fA14 i1="01">
<s1>Oxford University Computing Laboratory, Wolfson Building, Parks Road</s1>
<s2>Oxford, OX1 3QD</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Helsinki University of Technology</s1>
<s2>Espoo</s2>
<s3>FIN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>LORIA/INRIA Lorraine, 615 rue du Jardin Botanique, BP 101</s1>
<s2>54602 Villers-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>1443-1452</s1>
</fA20>
<fA21>
<s1>2003</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>5227</s2>
<s5>354000118344630190</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2003 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>27 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>03-0388460</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Mathematics of computation</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The standard algorithm for testing reducibility of a trinomial of prime degree r over GF(2) requires 2r + O(1) bits of memory. We describe a new algorithm which requires only 3r /2+O(1) bits of memory and significantly fewer memory references and bit-operations than the standard algorithm. If 2
<sup>r</sup>
- 1 is a Mersenne prime, then an irreducible trinomial of degree r is necessarily primitive. We give primitive trinomials for the Mersenne exponents r = 756839, 859433, and 3021377. The results for r = 859433 extend and correct some computations of Kumada et al. The two results for r = 3021377 are primitive trinomials of the highest known degree.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001A02C02</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001A02C03</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001A02I02</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D02A05</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Calcul numérique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Numerical computation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Cálculo numérico</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Théorie nombre</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Number theory</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Teoría números</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Polynôme</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Polynomial</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Polinomio</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Représentation irréductible</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Irreducible representation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Representación irreductible</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Génération nombre aléatoire</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Random number generation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Generación número aleatorio</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Carroyage</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Squaring</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Cuadriculación</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Méthode réduction</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Reduction method</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Método reducción</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Algorithme rapide</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Fast algorithm</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Algoritmo rápido</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Trinôme irréductible</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Irreducible trinomials</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Exposant Mersenne</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Mersenne exponent</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Nombre Mersenne</s0>
<s4>CD</s4>
<s5>98</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Mersenne number</s0>
<s4>CD</s4>
<s5>98</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Número real</s0>
<s4>CD</s4>
<s5>98</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Trinôme primitif</s0>
<s4>CD</s4>
<s5>99</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Primitive trinomials</s0>
<s4>CD</s4>
<s5>99</s5>
</fC03>
<fN21>
<s1>272</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 03-0388460 INIST</NO>
<ET>A fast algorithm for testing reducibility of trinomials mod 2 and some new primitive trinomials of degree 3021377</ET>
<AU>BRENT (Richard P.); LARVALA (Samuli); ZIMMERMANN (Paul)</AU>
<AF>Oxford University Computing Laboratory, Wolfson Building, Parks Road/Oxford, OX1 3QD/Royaume-Uni (1 aut.); Helsinki University of Technology/Espoo/Finlande (2 aut.); LORIA/INRIA Lorraine, 615 rue du Jardin Botanique, BP 101/54602 Villers-lès-Nancy/France (3 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Mathematics of computation; ISSN 0025-5718; Coden MCMPAF; Etats-Unis; Da. 2003; Vol. 72; No. 243; Pp. 1443-1452; Bibl. 27 ref.</SO>
<LA>Anglais</LA>
<EA>The standard algorithm for testing reducibility of a trinomial of prime degree r over GF(2) requires 2r + O(1) bits of memory. We describe a new algorithm which requires only 3r /2+O(1) bits of memory and significantly fewer memory references and bit-operations than the standard algorithm. If 2
<sup>r</sup>
- 1 is a Mersenne prime, then an irreducible trinomial of degree r is necessarily primitive. We give primitive trinomials for the Mersenne exponents r = 756839, 859433, and 3021377. The results for r = 859433 extend and correct some computations of Kumada et al. The two results for r = 3021377 are primitive trinomials of the highest known degree.</EA>
<CC>001A02C02; 001A02C03; 001A02I02; 001D02A05</CC>
<FD>Calcul numérique; Théorie nombre; Polynôme; Représentation irréductible; Génération nombre aléatoire; Carroyage; Méthode réduction; Algorithme rapide; Trinôme irréductible; Exposant Mersenne; Nombre Mersenne; Trinôme primitif</FD>
<ED>Numerical computation; Number theory; Polynomial; Irreducible representation; Random number generation; Squaring; Reduction method; Fast algorithm; Irreducible trinomials; Mersenne exponent; Mersenne number; Primitive trinomials</ED>
<SD>Cálculo numérico; Teoría números; Polinomio; Representación irreductible; Generación número aleatorio; Cuadriculación; Método reducción; Algoritmo rápido; Número real</SD>
<LO>INIST-5227.354000118344630190</LO>
<ID>03-0388460</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000769 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000769 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:03-0388460
   |texte=   A fast algorithm for testing reducibility of trinomials mod 2 and some new primitive trinomials of degree 3021377
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022