Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

On a fast calculation of structure factors at a subatomic resolution

Identifieur interne : 000679 ( PascalFrancis/Corpus ); précédent : 000678; suivant : 000680

On a fast calculation of structure factors at a subatomic resolution

Auteurs : P. V. Afonine ; A. Urzhumtsev

Source :

RBID : Pascal:04-0264450

Descripteurs français

English descriptors

Abstract

In the last decade, the progress of protein crystallography allowed several protein structures to be solved at a resolution higher than 0.9 Å. Such studies provide researchers with important new information reflecting very fine structural details. The signal from these details is very weak with respect to that corresponding to the whole structure. Its analysis requires high-quality data, which previously were available only for crystals of small molecules, and a high accuracy of calculations. The calculation of structure factors using direct formulae, traditional for 'small-molecule' crystallography, allows a relatively simple accuracy control. For macromolecular crystals, diffraction data sets at a subatomic resolution contain hundreds of thousands of reflections, and the number of parameters used to describe the corresponding models may reach the same order. Therefore, the direct way of calculating structure factors becomes very time expensive when applied to large molecules. These problems of high accuracy and computational efficiency require a re-examination of computer tools and algorithms. The calculation of model structure factors through an intermediate generation of an electron density [Sayre (1951). Acta Cryst. 4, 362-367; Ten Eyck (1977). Acta Cryst. A33, 486-492] may be much more computationally efficient, but contains some parameters (grid step, 'effective' atom radii etc.) whose influence on the accuracy of the calculation is not straightforward. At the same time, the choice of parameters within safety margins that largely ensure a sufficient accuracy may result in a significant loss of the CPU time, making it close to the time for the direct-formulae calculations. The impact of the different parameters on the computer efficiency of structure-factor calculation is studied. It is shown that an appropriate choice of these parameters allows the structure factors to be obtained with a high accuracy and in a significantly shorter time than that required when using the direct formulae. Practical algorithms for the optimal choice of the parameters are suggested.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0108-7673
A02 01      @0 ACACEQ
A03   1    @0 Acta crystallogr., Sect. A Found. crystallogr.
A05       @2 60
A06       @3 p.1
A08 01  1  ENG  @1 On a fast calculation of structure factors at a subatomic resolution
A11 01  1    @1 AFONINE (P. V.)
A11 02  1    @1 URZHUMTSEV (A.)
A14 01      @1 LCM3B, UMR 7036 CNRS, Faculté des Sciences, BP 239, Université Henri Poincaré @2 Nancy 1, Vandoeuvre-lès-Nancy 54506 @3 FRA @Z 1 aut. @Z 2 aut.
A14 02      @1 Centre Charles Hermite, LORIA @2 Villers-lès-Nancy 54602 @3 FRA @Z 1 aut.
A20       @1 19-32
A21       @1 2004
A23 01      @0 ENG
A43 01      @1 INIST @2 5160A @5 354000116969120030
A44       @0 0000 @1 © 2004 INIST-CNRS. All rights reserved.
A45       @0 43 ref.
A47 01  1    @0 04-0264450
A60       @1 P
A61       @0 A
A64 01  1    @0 Acta crystallographica. Section A, Foundations of crystallography
A66 01      @0 GBR
C01 01    ENG  @0 In the last decade, the progress of protein crystallography allowed several protein structures to be solved at a resolution higher than 0.9 Å. Such studies provide researchers with important new information reflecting very fine structural details. The signal from these details is very weak with respect to that corresponding to the whole structure. Its analysis requires high-quality data, which previously were available only for crystals of small molecules, and a high accuracy of calculations. The calculation of structure factors using direct formulae, traditional for 'small-molecule' crystallography, allows a relatively simple accuracy control. For macromolecular crystals, diffraction data sets at a subatomic resolution contain hundreds of thousands of reflections, and the number of parameters used to describe the corresponding models may reach the same order. Therefore, the direct way of calculating structure factors becomes very time expensive when applied to large molecules. These problems of high accuracy and computational efficiency require a re-examination of computer tools and algorithms. The calculation of model structure factors through an intermediate generation of an electron density [Sayre (1951). Acta Cryst. 4, 362-367; Ten Eyck (1977). Acta Cryst. A33, 486-492] may be much more computationally efficient, but contains some parameters (grid step, 'effective' atom radii etc.) whose influence on the accuracy of the calculation is not straightforward. At the same time, the choice of parameters within safety margins that largely ensure a sufficient accuracy may result in a significant loss of the CPU time, making it close to the time for the direct-formulae calculations. The impact of the different parameters on the computer efficiency of structure-factor calculation is studied. It is shown that an appropriate choice of these parameters allows the structure factors to be obtained with a high accuracy and in a significantly shorter time than that required when using the direct formulae. Practical algorithms for the optimal choice of the parameters are suggested.
C02 01  3    @0 001B60A50A
C03 01  3  FRE  @0 Etude théorique @5 02
C03 01  3  ENG  @0 Theoretical study @5 02
C03 02  3  FRE  @0 Simulation numérique @5 03
C03 02  3  ENG  @0 Digital simulation @5 03
C03 03  3  FRE  @0 Facteur structure @5 04
C03 03  3  ENG  @0 Structure factors @5 04
C03 04  3  FRE  @0 Modèle structure @5 05
C03 04  3  ENG  @0 Structural models @5 05
C03 05  3  FRE  @0 Algorithme @5 06
C03 05  3  ENG  @0 Algorithms @5 06
C03 06  3  FRE  @0 Rayon atomique @5 07
C03 06  3  ENG  @0 Atomic radii @5 07
C03 07  3  FRE  @0 Anisotropie @5 08
C03 07  3  ENG  @0 Anisotropy @5 08
C03 08  3  FRE  @0 Diffusion @5 09
C03 08  3  ENG  @0 Scattering @5 09
C03 09  X  FRE  @0 Affinement @5 10
C03 09  X  ENG  @0 Refinement @5 10
C03 09  X  SPA  @0 Afinamiento @5 10
C03 10  3  FRE  @0 Cristal moléculaire @5 15
C03 10  3  ENG  @0 Molecular crystals @5 15
C03 11  3  FRE  @0 Protéine @5 16
C03 11  3  ENG  @0 Proteins @5 16
C03 12  3  FRE  @0 6150A @2 PAC @4 INC @5 56
N21       @1 166
N44 01      @1 PSI
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 04-0264450 INIST
ET : On a fast calculation of structure factors at a subatomic resolution
AU : AFONINE (P. V.); URZHUMTSEV (A.)
AF : LCM3B, UMR 7036 CNRS, Faculté des Sciences, BP 239, Université Henri Poincaré/Nancy 1, Vandoeuvre-lès-Nancy 54506/France (1 aut., 2 aut.); Centre Charles Hermite, LORIA/Villers-lès-Nancy 54602/France (1 aut.)
DT : Publication en série; Niveau analytique
SO : Acta crystallographica. Section A, Foundations of crystallography; ISSN 0108-7673; Coden ACACEQ; Royaume-Uni; Da. 2004; Vol. 60; No. p.1; Pp. 19-32; Bibl. 43 ref.
LA : Anglais
EA : In the last decade, the progress of protein crystallography allowed several protein structures to be solved at a resolution higher than 0.9 Å. Such studies provide researchers with important new information reflecting very fine structural details. The signal from these details is very weak with respect to that corresponding to the whole structure. Its analysis requires high-quality data, which previously were available only for crystals of small molecules, and a high accuracy of calculations. The calculation of structure factors using direct formulae, traditional for 'small-molecule' crystallography, allows a relatively simple accuracy control. For macromolecular crystals, diffraction data sets at a subatomic resolution contain hundreds of thousands of reflections, and the number of parameters used to describe the corresponding models may reach the same order. Therefore, the direct way of calculating structure factors becomes very time expensive when applied to large molecules. These problems of high accuracy and computational efficiency require a re-examination of computer tools and algorithms. The calculation of model structure factors through an intermediate generation of an electron density [Sayre (1951). Acta Cryst. 4, 362-367; Ten Eyck (1977). Acta Cryst. A33, 486-492] may be much more computationally efficient, but contains some parameters (grid step, 'effective' atom radii etc.) whose influence on the accuracy of the calculation is not straightforward. At the same time, the choice of parameters within safety margins that largely ensure a sufficient accuracy may result in a significant loss of the CPU time, making it close to the time for the direct-formulae calculations. The impact of the different parameters on the computer efficiency of structure-factor calculation is studied. It is shown that an appropriate choice of these parameters allows the structure factors to be obtained with a high accuracy and in a significantly shorter time than that required when using the direct formulae. Practical algorithms for the optimal choice of the parameters are suggested.
CC : 001B60A50A
FD : Etude théorique; Simulation numérique; Facteur structure; Modèle structure; Algorithme; Rayon atomique; Anisotropie; Diffusion; Affinement; Cristal moléculaire; Protéine; 6150A
ED : Theoretical study; Digital simulation; Structure factors; Structural models; Algorithms; Atomic radii; Anisotropy; Scattering; Refinement; Molecular crystals; Proteins
SD : Afinamiento
LO : INIST-5160A.354000116969120030
ID : 04-0264450

Links to Exploration step

Pascal:04-0264450

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">On a fast calculation of structure factors at a subatomic resolution</title>
<author>
<name sortKey="Afonine, P V" sort="Afonine, P V" uniqKey="Afonine P" first="P. V." last="Afonine">P. V. Afonine</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LCM
<sup>3</sup>
B, UMR 7036 CNRS, Faculté des Sciences, BP 239, Université Henri Poincaré</s1>
<s2>Nancy 1, Vandoeuvre-lès-Nancy 54506</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Centre Charles Hermite, LORIA</s1>
<s2>Villers-lès-Nancy 54602</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Urzhumtsev, A" sort="Urzhumtsev, A" uniqKey="Urzhumtsev A" first="A." last="Urzhumtsev">A. Urzhumtsev</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LCM
<sup>3</sup>
B, UMR 7036 CNRS, Faculté des Sciences, BP 239, Université Henri Poincaré</s1>
<s2>Nancy 1, Vandoeuvre-lès-Nancy 54506</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0264450</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 04-0264450 INIST</idno>
<idno type="RBID">Pascal:04-0264450</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000679</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">On a fast calculation of structure factors at a subatomic resolution</title>
<author>
<name sortKey="Afonine, P V" sort="Afonine, P V" uniqKey="Afonine P" first="P. V." last="Afonine">P. V. Afonine</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LCM
<sup>3</sup>
B, UMR 7036 CNRS, Faculté des Sciences, BP 239, Université Henri Poincaré</s1>
<s2>Nancy 1, Vandoeuvre-lès-Nancy 54506</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Centre Charles Hermite, LORIA</s1>
<s2>Villers-lès-Nancy 54602</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Urzhumtsev, A" sort="Urzhumtsev, A" uniqKey="Urzhumtsev A" first="A." last="Urzhumtsev">A. Urzhumtsev</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LCM
<sup>3</sup>
B, UMR 7036 CNRS, Faculté des Sciences, BP 239, Université Henri Poincaré</s1>
<s2>Nancy 1, Vandoeuvre-lès-Nancy 54506</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Acta crystallographica. Section A, Foundations of crystallography</title>
<title level="j" type="abbreviated">Acta crystallogr., Sect. A Found. crystallogr.</title>
<idno type="ISSN">0108-7673</idno>
<imprint>
<date when="2004">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Acta crystallographica. Section A, Foundations of crystallography</title>
<title level="j" type="abbreviated">Acta crystallogr., Sect. A Found. crystallogr.</title>
<idno type="ISSN">0108-7673</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Anisotropy</term>
<term>Atomic radii</term>
<term>Digital simulation</term>
<term>Molecular crystals</term>
<term>Proteins</term>
<term>Refinement</term>
<term>Scattering</term>
<term>Structural models</term>
<term>Structure factors</term>
<term>Theoretical study</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Etude théorique</term>
<term>Simulation numérique</term>
<term>Facteur structure</term>
<term>Modèle structure</term>
<term>Algorithme</term>
<term>Rayon atomique</term>
<term>Anisotropie</term>
<term>Diffusion</term>
<term>Affinement</term>
<term>Cristal moléculaire</term>
<term>Protéine</term>
<term>6150A</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In the last decade, the progress of protein crystallography allowed several protein structures to be solved at a resolution higher than 0.9 Å. Such studies provide researchers with important new information reflecting very fine structural details. The signal from these details is very weak with respect to that corresponding to the whole structure. Its analysis requires high-quality data, which previously were available only for crystals of small molecules, and a high accuracy of calculations. The calculation of structure factors using direct formulae, traditional for 'small-molecule' crystallography, allows a relatively simple accuracy control. For macromolecular crystals, diffraction data sets at a subatomic resolution contain hundreds of thousands of reflections, and the number of parameters used to describe the corresponding models may reach the same order. Therefore, the direct way of calculating structure factors becomes very time expensive when applied to large molecules. These problems of high accuracy and computational efficiency require a re-examination of computer tools and algorithms. The calculation of model structure factors through an intermediate generation of an electron density [Sayre (1951). Acta Cryst. 4, 362-367; Ten Eyck (1977). Acta Cryst. A33, 486-492] may be much more computationally efficient, but contains some parameters (grid step, 'effective' atom radii etc.) whose influence on the accuracy of the calculation is not straightforward. At the same time, the choice of parameters within safety margins that largely ensure a sufficient accuracy may result in a significant loss of the CPU time, making it close to the time for the direct-formulae calculations. The impact of the different parameters on the computer efficiency of structure-factor calculation is studied. It is shown that an appropriate choice of these parameters allows the structure factors to be obtained with a high accuracy and in a significantly shorter time than that required when using the direct formulae. Practical algorithms for the optimal choice of the parameters are suggested.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0108-7673</s0>
</fA01>
<fA02 i1="01">
<s0>ACACEQ</s0>
</fA02>
<fA03 i2="1">
<s0>Acta crystallogr., Sect. A Found. crystallogr.</s0>
</fA03>
<fA05>
<s2>60</s2>
</fA05>
<fA06>
<s3>p.1</s3>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>On a fast calculation of structure factors at a subatomic resolution</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>AFONINE (P. V.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>URZHUMTSEV (A.)</s1>
</fA11>
<fA14 i1="01">
<s1>LCM
<sup>3</sup>
B, UMR 7036 CNRS, Faculté des Sciences, BP 239, Université Henri Poincaré</s1>
<s2>Nancy 1, Vandoeuvre-lès-Nancy 54506</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Centre Charles Hermite, LORIA</s1>
<s2>Villers-lès-Nancy 54602</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>19-32</s1>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>5160A</s2>
<s5>354000116969120030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2004 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>43 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0264450</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Acta crystallographica. Section A, Foundations of crystallography</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In the last decade, the progress of protein crystallography allowed several protein structures to be solved at a resolution higher than 0.9 Å. Such studies provide researchers with important new information reflecting very fine structural details. The signal from these details is very weak with respect to that corresponding to the whole structure. Its analysis requires high-quality data, which previously were available only for crystals of small molecules, and a high accuracy of calculations. The calculation of structure factors using direct formulae, traditional for 'small-molecule' crystallography, allows a relatively simple accuracy control. For macromolecular crystals, diffraction data sets at a subatomic resolution contain hundreds of thousands of reflections, and the number of parameters used to describe the corresponding models may reach the same order. Therefore, the direct way of calculating structure factors becomes very time expensive when applied to large molecules. These problems of high accuracy and computational efficiency require a re-examination of computer tools and algorithms. The calculation of model structure factors through an intermediate generation of an electron density [Sayre (1951). Acta Cryst. 4, 362-367; Ten Eyck (1977). Acta Cryst. A33, 486-492] may be much more computationally efficient, but contains some parameters (grid step, 'effective' atom radii etc.) whose influence on the accuracy of the calculation is not straightforward. At the same time, the choice of parameters within safety margins that largely ensure a sufficient accuracy may result in a significant loss of the CPU time, making it close to the time for the direct-formulae calculations. The impact of the different parameters on the computer efficiency of structure-factor calculation is studied. It is shown that an appropriate choice of these parameters allows the structure factors to be obtained with a high accuracy and in a significantly shorter time than that required when using the direct formulae. Practical algorithms for the optimal choice of the parameters are suggested.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60A50A</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Etude théorique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Theoretical study</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Simulation numérique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Digital simulation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Facteur structure</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Structure factors</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Modèle structure</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Structural models</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Algorithme</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Algorithms</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Rayon atomique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Atomic radii</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Anisotropie</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Anisotropy</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Diffusion</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Scattering</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Affinement</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Refinement</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Afinamiento</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Cristal moléculaire</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Molecular crystals</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Protéine</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Proteins</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>6150A</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fN21>
<s1>166</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 04-0264450 INIST</NO>
<ET>On a fast calculation of structure factors at a subatomic resolution</ET>
<AU>AFONINE (P. V.); URZHUMTSEV (A.)</AU>
<AF>LCM
<sup>3</sup>
B, UMR 7036 CNRS, Faculté des Sciences, BP 239, Université Henri Poincaré/Nancy 1, Vandoeuvre-lès-Nancy 54506/France (1 aut., 2 aut.); Centre Charles Hermite, LORIA/Villers-lès-Nancy 54602/France (1 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Acta crystallographica. Section A, Foundations of crystallography; ISSN 0108-7673; Coden ACACEQ; Royaume-Uni; Da. 2004; Vol. 60; No. p.1; Pp. 19-32; Bibl. 43 ref.</SO>
<LA>Anglais</LA>
<EA>In the last decade, the progress of protein crystallography allowed several protein structures to be solved at a resolution higher than 0.9 Å. Such studies provide researchers with important new information reflecting very fine structural details. The signal from these details is very weak with respect to that corresponding to the whole structure. Its analysis requires high-quality data, which previously were available only for crystals of small molecules, and a high accuracy of calculations. The calculation of structure factors using direct formulae, traditional for 'small-molecule' crystallography, allows a relatively simple accuracy control. For macromolecular crystals, diffraction data sets at a subatomic resolution contain hundreds of thousands of reflections, and the number of parameters used to describe the corresponding models may reach the same order. Therefore, the direct way of calculating structure factors becomes very time expensive when applied to large molecules. These problems of high accuracy and computational efficiency require a re-examination of computer tools and algorithms. The calculation of model structure factors through an intermediate generation of an electron density [Sayre (1951). Acta Cryst. 4, 362-367; Ten Eyck (1977). Acta Cryst. A33, 486-492] may be much more computationally efficient, but contains some parameters (grid step, 'effective' atom radii etc.) whose influence on the accuracy of the calculation is not straightforward. At the same time, the choice of parameters within safety margins that largely ensure a sufficient accuracy may result in a significant loss of the CPU time, making it close to the time for the direct-formulae calculations. The impact of the different parameters on the computer efficiency of structure-factor calculation is studied. It is shown that an appropriate choice of these parameters allows the structure factors to be obtained with a high accuracy and in a significantly shorter time than that required when using the direct formulae. Practical algorithms for the optimal choice of the parameters are suggested.</EA>
<CC>001B60A50A</CC>
<FD>Etude théorique; Simulation numérique; Facteur structure; Modèle structure; Algorithme; Rayon atomique; Anisotropie; Diffusion; Affinement; Cristal moléculaire; Protéine; 6150A</FD>
<ED>Theoretical study; Digital simulation; Structure factors; Structural models; Algorithms; Atomic radii; Anisotropy; Scattering; Refinement; Molecular crystals; Proteins</ED>
<SD>Afinamiento</SD>
<LO>INIST-5160A.354000116969120030</LO>
<ID>04-0264450</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000679 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000679 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:04-0264450
   |texte=   On a fast calculation of structure factors at a subatomic resolution
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022