Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Low-dimensional lattice basis reduction revisited

Identifieur interne : 000668 ( PascalFrancis/Corpus ); précédent : 000667; suivant : 000669

Low-dimensional lattice basis reduction revisited

Auteurs : Phong Q. Nguyen ; Damien Stehle

Source :

RBID : Pascal:04-0301103

Descripteurs français

English descriptors

Abstract

Most of the interesting algorithmic problems in the geometry of numbers are NP-hard as the lattice dimension increases. This article deals with the low-dimensional case. We study a greedy lattice basis reduction algorithm for the Euclidean norm, which is arguably the most natural lattice basis reduction algorithm, because it is a straightforward generalization of the well-known two-dimensional Gaussian algorithm. Our results are two-fold. From a mathematical point of view, we show that up to dimension four, the output of the greedy algorithm is optimal: the output basis reaches all the successive minima of the lattice. However, as soon as the lattice dimension is strictly higher than four, the output basis may not even reach the first minimum. More importantly, from a computational point of view, we show that up to dimension four, the bit-complexity of the greedy algorithm is quadratic without fast integer arithmetic: this allows to compute various lattice problems (e.g. computing a Minkowski-reduced basis and a closest vector) in quadratic time, without fast integer arithmetic, up to dimension four, while all other algorithms known for such problems have a bit-complexity which is at least cubic. This was already proved by Semaev up to dimension three using rather technical means, but it was previously unknown whether or not the algorithm was still polynomial in dimension four. Our analysis, based on geometric properties of low-dimensional lattices and in particular Voronoï cells, arguably simplifies Semaev's analysis in dimensions two and three, unifies the cases of dimensions two, three and four, but breaks down in dimension five.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0302-9743
A05       @2 3076
A08 01  1  ENG  @1 Low-dimensional lattice basis reduction revisited
A09 01  1  ENG  @1 ANTS - VI : algorithmic number theory : Burlington VT, 13-18 June 2004
A11 01  1    @1 NGUYEN (Phong Q.)
A11 02  1    @1 STEHLE (Damien)
A12 01  1    @1 BUELL (Duncan) @9 ed.
A14 01      @1 CNRS/École normale supérieure, Département d'informatique, 45 rue d'Ulm @2 75230 Paris @3 FRA @Z 1 aut.
A14 02      @1 LORIA/INRIA Lorraine, 615 rue du J. botanique @2 54602 Villers-lès-Nancy @3 FRA @Z 2 aut.
A20       @1 338-357
A21       @1 2004
A23 01      @0 ENG
A26 01      @0 3-540-22156-5
A43 01      @1 INIST @2 16343 @5 354000117887920260
A44       @0 0000 @1 © 2004 INIST-CNRS. All rights reserved.
A45       @0 30 ref.
A47 01  1    @0 04-0301103
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Lecture notes in computer science
A66 01      @0 DEU
C01 01    ENG  @0 Most of the interesting algorithmic problems in the geometry of numbers are NP-hard as the lattice dimension increases. This article deals with the low-dimensional case. We study a greedy lattice basis reduction algorithm for the Euclidean norm, which is arguably the most natural lattice basis reduction algorithm, because it is a straightforward generalization of the well-known two-dimensional Gaussian algorithm. Our results are two-fold. From a mathematical point of view, we show that up to dimension four, the output of the greedy algorithm is optimal: the output basis reaches all the successive minima of the lattice. However, as soon as the lattice dimension is strictly higher than four, the output basis may not even reach the first minimum. More importantly, from a computational point of view, we show that up to dimension four, the bit-complexity of the greedy algorithm is quadratic without fast integer arithmetic: this allows to compute various lattice problems (e.g. computing a Minkowski-reduced basis and a closest vector) in quadratic time, without fast integer arithmetic, up to dimension four, while all other algorithms known for such problems have a bit-complexity which is at least cubic. This was already proved by Semaev up to dimension three using rather technical means, but it was previously unknown whether or not the algorithm was still polynomial in dimension four. Our analysis, based on geometric properties of low-dimensional lattices and in particular Voronoï cells, arguably simplifies Semaev's analysis in dimensions two and three, unifies the cases of dimensions two, three and four, but breaks down in dimension five.
C02 01  X    @0 001A02C02
C02 02  X    @0 001D04A04E
C02 03  X    @0 001D02B07C
C03 01  X  FRE  @0 Treillis @5 09
C03 01  X  ENG  @0 Lattice @5 09
C03 01  X  SPA  @0 Enrejado @5 09
C03 02  X  FRE  @0 Géométrie algorithmique @5 10
C03 02  X  ENG  @0 Computational geometry @5 10
C03 02  X  SPA  @0 Geometría computacional @5 10
C03 03  X  FRE  @0 Problème NP difficile @5 23
C03 03  X  ENG  @0 NP hard problem @5 23
C03 03  X  SPA  @0 Problema NP duro @5 23
C03 04  X  FRE  @0 Algorithme glouton @5 24
C03 04  X  ENG  @0 Greedy algorithm @5 24
C03 04  X  SPA  @0 Algoritmo glotón @5 24
C03 05  X  FRE  @0 Théorie euclidienne @5 25
C03 05  X  ENG  @0 Euclidean theory @5 25
C03 05  X  SPA  @0 Teoría euclidiana @5 25
C03 06  X  FRE  @0 Modèle 2 dimensions @5 26
C03 06  X  ENG  @0 Two dimensional model @5 26
C03 06  X  SPA  @0 Modelo 2 dimensiones @5 26
C03 07  X  FRE  @0 Processus Gauss @5 27
C03 07  X  ENG  @0 Gaussian process @5 27
C03 07  X  SPA  @0 Proceso Gauss @5 27
C03 08  X  FRE  @0 Algorithme optimal @5 28
C03 08  X  ENG  @0 Optimal algorithm @5 28
C03 08  X  SPA  @0 Algoritmo óptimo @5 28
C03 09  X  FRE  @0 Complexité algorithme @5 29
C03 09  X  ENG  @0 Algorithm complexity @5 29
C03 09  X  SPA  @0 Complejidad algoritmo @5 29
C03 10  X  FRE  @0 Algorithme rapide @5 32
C03 10  X  ENG  @0 Fast algorithm @5 32
C03 10  X  SPA  @0 Algoritmo rápido @5 32
C03 11  X  FRE  @0 Arithmétique @5 33
C03 11  X  ENG  @0 Arithmetics @5 33
C03 11  X  SPA  @0 Aritmética @5 33
C03 12  X  FRE  @0 Métrique Minkowski @5 34
C03 12  X  ENG  @0 Minkowski metric @5 34
C03 12  X  SPA  @0 Métrico Minkowski @5 34
C03 13  X  FRE  @0 Modèle 3 dimensions @5 35
C03 13  X  ENG  @0 Three dimensional model @5 35
C03 13  X  SPA  @0 Modelo 3 dimensiones @5 35
C03 14  X  FRE  @0 Méthode polynomiale @5 36
C03 14  X  ENG  @0 Polynomial method @5 36
C03 14  X  SPA  @0 Método polinomial @5 36
C03 15  X  FRE  @0 Diagramme Voronoï @5 37
C03 15  X  ENG  @0 Voronoï diagram @5 37
C03 15  X  SPA  @0 Diagrama Voronoi @5 37
C03 16  X  FRE  @0 Cubique @4 CD @5 96
C03 16  X  ENG  @0 Cubics @4 CD @5 96
C03 16  X  SPA  @0 Cúbico @4 CD @5 96
N21       @1 180
N44 01      @1 OTO
N82       @1 OTO
pR  
A30 01  1  ENG  @1 Algorithmic number theory. International symposium @2 6 @3 Burlington VT USA @4 2004-06-13

Format Inist (serveur)

NO : PASCAL 04-0301103 INIST
ET : Low-dimensional lattice basis reduction revisited
AU : NGUYEN (Phong Q.); STEHLE (Damien); BUELL (Duncan)
AF : CNRS/École normale supérieure, Département d'informatique, 45 rue d'Ulm/75230 Paris/France (1 aut.); LORIA/INRIA Lorraine, 615 rue du J. botanique/54602 Villers-lès-Nancy/France (2 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Lecture notes in computer science; ISSN 0302-9743; Allemagne; Da. 2004; Vol. 3076; Pp. 338-357; Bibl. 30 ref.
LA : Anglais
EA : Most of the interesting algorithmic problems in the geometry of numbers are NP-hard as the lattice dimension increases. This article deals with the low-dimensional case. We study a greedy lattice basis reduction algorithm for the Euclidean norm, which is arguably the most natural lattice basis reduction algorithm, because it is a straightforward generalization of the well-known two-dimensional Gaussian algorithm. Our results are two-fold. From a mathematical point of view, we show that up to dimension four, the output of the greedy algorithm is optimal: the output basis reaches all the successive minima of the lattice. However, as soon as the lattice dimension is strictly higher than four, the output basis may not even reach the first minimum. More importantly, from a computational point of view, we show that up to dimension four, the bit-complexity of the greedy algorithm is quadratic without fast integer arithmetic: this allows to compute various lattice problems (e.g. computing a Minkowski-reduced basis and a closest vector) in quadratic time, without fast integer arithmetic, up to dimension four, while all other algorithms known for such problems have a bit-complexity which is at least cubic. This was already proved by Semaev up to dimension three using rather technical means, but it was previously unknown whether or not the algorithm was still polynomial in dimension four. Our analysis, based on geometric properties of low-dimensional lattices and in particular Voronoï cells, arguably simplifies Semaev's analysis in dimensions two and three, unifies the cases of dimensions two, three and four, but breaks down in dimension five.
CC : 001A02C02; 001D04A04E; 001D02B07C
FD : Treillis; Géométrie algorithmique; Problème NP difficile; Algorithme glouton; Théorie euclidienne; Modèle 2 dimensions; Processus Gauss; Algorithme optimal; Complexité algorithme; Algorithme rapide; Arithmétique; Métrique Minkowski; Modèle 3 dimensions; Méthode polynomiale; Diagramme Voronoï; Cubique
ED : Lattice; Computational geometry; NP hard problem; Greedy algorithm; Euclidean theory; Two dimensional model; Gaussian process; Optimal algorithm; Algorithm complexity; Fast algorithm; Arithmetics; Minkowski metric; Three dimensional model; Polynomial method; Voronoï diagram; Cubics
SD : Enrejado; Geometría computacional; Problema NP duro; Algoritmo glotón; Teoría euclidiana; Modelo 2 dimensiones; Proceso Gauss; Algoritmo óptimo; Complejidad algoritmo; Algoritmo rápido; Aritmética; Métrico Minkowski; Modelo 3 dimensiones; Método polinomial; Diagrama Voronoi; Cúbico
LO : INIST-16343.354000117887920260
ID : 04-0301103

Links to Exploration step

Pascal:04-0301103

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Low-dimensional lattice basis reduction revisited</title>
<author>
<name sortKey="Nguyen, Phong Q" sort="Nguyen, Phong Q" uniqKey="Nguyen P" first="Phong Q." last="Nguyen">Phong Q. Nguyen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>CNRS/École normale supérieure, Département d'informatique, 45 rue d'Ulm</s1>
<s2>75230 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Stehle, Damien" sort="Stehle, Damien" uniqKey="Stehle D" first="Damien" last="Stehle">Damien Stehle</name>
<affiliation>
<inist:fA14 i1="02">
<s1>LORIA/INRIA Lorraine, 615 rue du J. botanique</s1>
<s2>54602 Villers-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0301103</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 04-0301103 INIST</idno>
<idno type="RBID">Pascal:04-0301103</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000668</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Low-dimensional lattice basis reduction revisited</title>
<author>
<name sortKey="Nguyen, Phong Q" sort="Nguyen, Phong Q" uniqKey="Nguyen P" first="Phong Q." last="Nguyen">Phong Q. Nguyen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>CNRS/École normale supérieure, Département d'informatique, 45 rue d'Ulm</s1>
<s2>75230 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Stehle, Damien" sort="Stehle, Damien" uniqKey="Stehle D" first="Damien" last="Stehle">Damien Stehle</name>
<affiliation>
<inist:fA14 i1="02">
<s1>LORIA/INRIA Lorraine, 615 rue du J. botanique</s1>
<s2>54602 Villers-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Lecture notes in computer science</title>
<idno type="ISSN">0302-9743</idno>
<imprint>
<date when="2004">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Lecture notes in computer science</title>
<idno type="ISSN">0302-9743</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithm complexity</term>
<term>Arithmetics</term>
<term>Computational geometry</term>
<term>Cubics</term>
<term>Euclidean theory</term>
<term>Fast algorithm</term>
<term>Gaussian process</term>
<term>Greedy algorithm</term>
<term>Lattice</term>
<term>Minkowski metric</term>
<term>NP hard problem</term>
<term>Optimal algorithm</term>
<term>Polynomial method</term>
<term>Three dimensional model</term>
<term>Two dimensional model</term>
<term>Voronoï diagram</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Treillis</term>
<term>Géométrie algorithmique</term>
<term>Problème NP difficile</term>
<term>Algorithme glouton</term>
<term>Théorie euclidienne</term>
<term>Modèle 2 dimensions</term>
<term>Processus Gauss</term>
<term>Algorithme optimal</term>
<term>Complexité algorithme</term>
<term>Algorithme rapide</term>
<term>Arithmétique</term>
<term>Métrique Minkowski</term>
<term>Modèle 3 dimensions</term>
<term>Méthode polynomiale</term>
<term>Diagramme Voronoï</term>
<term>Cubique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Most of the interesting algorithmic problems in the geometry of numbers are NP-hard as the lattice dimension increases. This article deals with the low-dimensional case. We study a greedy lattice basis reduction algorithm for the Euclidean norm, which is arguably the most natural lattice basis reduction algorithm, because it is a straightforward generalization of the well-known two-dimensional Gaussian algorithm. Our results are two-fold. From a mathematical point of view, we show that up to dimension four, the output of the greedy algorithm is optimal: the output basis reaches all the successive minima of the lattice. However, as soon as the lattice dimension is strictly higher than four, the output basis may not even reach the first minimum. More importantly, from a computational point of view, we show that up to dimension four, the bit-complexity of the greedy algorithm is quadratic without fast integer arithmetic: this allows to compute various lattice problems (e.g. computing a Minkowski-reduced basis and a closest vector) in quadratic time, without fast integer arithmetic, up to dimension four, while all other algorithms known for such problems have a bit-complexity which is at least cubic. This was already proved by Semaev up to dimension three using rather technical means, but it was previously unknown whether or not the algorithm was still polynomial in dimension four. Our analysis, based on geometric properties of low-dimensional lattices and in particular Voronoï cells, arguably simplifies Semaev's analysis in dimensions two and three, unifies the cases of dimensions two, three and four, but breaks down in dimension five.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0302-9743</s0>
</fA01>
<fA05>
<s2>3076</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Low-dimensional lattice basis reduction revisited</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>ANTS - VI : algorithmic number theory : Burlington VT, 13-18 June 2004</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>NGUYEN (Phong Q.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>STEHLE (Damien)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BUELL (Duncan)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>CNRS/École normale supérieure, Département d'informatique, 45 rue d'Ulm</s1>
<s2>75230 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>LORIA/INRIA Lorraine, 615 rue du J. botanique</s1>
<s2>54602 Villers-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>338-357</s1>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA26 i1="01">
<s0>3-540-22156-5</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16343</s2>
<s5>354000117887920260</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2004 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>30 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0301103</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Lecture notes in computer science</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Most of the interesting algorithmic problems in the geometry of numbers are NP-hard as the lattice dimension increases. This article deals with the low-dimensional case. We study a greedy lattice basis reduction algorithm for the Euclidean norm, which is arguably the most natural lattice basis reduction algorithm, because it is a straightforward generalization of the well-known two-dimensional Gaussian algorithm. Our results are two-fold. From a mathematical point of view, we show that up to dimension four, the output of the greedy algorithm is optimal: the output basis reaches all the successive minima of the lattice. However, as soon as the lattice dimension is strictly higher than four, the output basis may not even reach the first minimum. More importantly, from a computational point of view, we show that up to dimension four, the bit-complexity of the greedy algorithm is quadratic without fast integer arithmetic: this allows to compute various lattice problems (e.g. computing a Minkowski-reduced basis and a closest vector) in quadratic time, without fast integer arithmetic, up to dimension four, while all other algorithms known for such problems have a bit-complexity which is at least cubic. This was already proved by Semaev up to dimension three using rather technical means, but it was previously unknown whether or not the algorithm was still polynomial in dimension four. Our analysis, based on geometric properties of low-dimensional lattices and in particular Voronoï cells, arguably simplifies Semaev's analysis in dimensions two and three, unifies the cases of dimensions two, three and four, but breaks down in dimension five.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001A02C02</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D04A04E</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D02B07C</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Treillis</s0>
<s5>09</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Lattice</s0>
<s5>09</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Enrejado</s0>
<s5>09</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Géométrie algorithmique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Computational geometry</s0>
<s5>10</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Geometría computacional</s0>
<s5>10</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Problème NP difficile</s0>
<s5>23</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>NP hard problem</s0>
<s5>23</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Problema NP duro</s0>
<s5>23</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Algorithme glouton</s0>
<s5>24</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Greedy algorithm</s0>
<s5>24</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Algoritmo glotón</s0>
<s5>24</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Théorie euclidienne</s0>
<s5>25</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Euclidean theory</s0>
<s5>25</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Teoría euclidiana</s0>
<s5>25</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Modèle 2 dimensions</s0>
<s5>26</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Two dimensional model</s0>
<s5>26</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Modelo 2 dimensiones</s0>
<s5>26</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Processus Gauss</s0>
<s5>27</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Gaussian process</s0>
<s5>27</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Proceso Gauss</s0>
<s5>27</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Algorithme optimal</s0>
<s5>28</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Optimal algorithm</s0>
<s5>28</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Algoritmo óptimo</s0>
<s5>28</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Complexité algorithme</s0>
<s5>29</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Algorithm complexity</s0>
<s5>29</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Complejidad algoritmo</s0>
<s5>29</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Algorithme rapide</s0>
<s5>32</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Fast algorithm</s0>
<s5>32</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Algoritmo rápido</s0>
<s5>32</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Arithmétique</s0>
<s5>33</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Arithmetics</s0>
<s5>33</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Aritmética</s0>
<s5>33</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Métrique Minkowski</s0>
<s5>34</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Minkowski metric</s0>
<s5>34</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Métrico Minkowski</s0>
<s5>34</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Modèle 3 dimensions</s0>
<s5>35</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Three dimensional model</s0>
<s5>35</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Modelo 3 dimensiones</s0>
<s5>35</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Méthode polynomiale</s0>
<s5>36</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Polynomial method</s0>
<s5>36</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Método polinomial</s0>
<s5>36</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Diagramme Voronoï</s0>
<s5>37</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Voronoï diagram</s0>
<s5>37</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Diagrama Voronoi</s0>
<s5>37</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Cubique</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Cubics</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Cúbico</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>180</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Algorithmic number theory. International symposium</s1>
<s2>6</s2>
<s3>Burlington VT USA</s3>
<s4>2004-06-13</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 04-0301103 INIST</NO>
<ET>Low-dimensional lattice basis reduction revisited</ET>
<AU>NGUYEN (Phong Q.); STEHLE (Damien); BUELL (Duncan)</AU>
<AF>CNRS/École normale supérieure, Département d'informatique, 45 rue d'Ulm/75230 Paris/France (1 aut.); LORIA/INRIA Lorraine, 615 rue du J. botanique/54602 Villers-lès-Nancy/France (2 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Lecture notes in computer science; ISSN 0302-9743; Allemagne; Da. 2004; Vol. 3076; Pp. 338-357; Bibl. 30 ref.</SO>
<LA>Anglais</LA>
<EA>Most of the interesting algorithmic problems in the geometry of numbers are NP-hard as the lattice dimension increases. This article deals with the low-dimensional case. We study a greedy lattice basis reduction algorithm for the Euclidean norm, which is arguably the most natural lattice basis reduction algorithm, because it is a straightforward generalization of the well-known two-dimensional Gaussian algorithm. Our results are two-fold. From a mathematical point of view, we show that up to dimension four, the output of the greedy algorithm is optimal: the output basis reaches all the successive minima of the lattice. However, as soon as the lattice dimension is strictly higher than four, the output basis may not even reach the first minimum. More importantly, from a computational point of view, we show that up to dimension four, the bit-complexity of the greedy algorithm is quadratic without fast integer arithmetic: this allows to compute various lattice problems (e.g. computing a Minkowski-reduced basis and a closest vector) in quadratic time, without fast integer arithmetic, up to dimension four, while all other algorithms known for such problems have a bit-complexity which is at least cubic. This was already proved by Semaev up to dimension three using rather technical means, but it was previously unknown whether or not the algorithm was still polynomial in dimension four. Our analysis, based on geometric properties of low-dimensional lattices and in particular Voronoï cells, arguably simplifies Semaev's analysis in dimensions two and three, unifies the cases of dimensions two, three and four, but breaks down in dimension five.</EA>
<CC>001A02C02; 001D04A04E; 001D02B07C</CC>
<FD>Treillis; Géométrie algorithmique; Problème NP difficile; Algorithme glouton; Théorie euclidienne; Modèle 2 dimensions; Processus Gauss; Algorithme optimal; Complexité algorithme; Algorithme rapide; Arithmétique; Métrique Minkowski; Modèle 3 dimensions; Méthode polynomiale; Diagramme Voronoï; Cubique</FD>
<ED>Lattice; Computational geometry; NP hard problem; Greedy algorithm; Euclidean theory; Two dimensional model; Gaussian process; Optimal algorithm; Algorithm complexity; Fast algorithm; Arithmetics; Minkowski metric; Three dimensional model; Polynomial method; Voronoï diagram; Cubics</ED>
<SD>Enrejado; Geometría computacional; Problema NP duro; Algoritmo glotón; Teoría euclidiana; Modelo 2 dimensiones; Proceso Gauss; Algoritmo óptimo; Complejidad algoritmo; Algoritmo rápido; Aritmética; Métrico Minkowski; Modelo 3 dimensiones; Método polinomial; Diagrama Voronoi; Cúbico</SD>
<LO>INIST-16343.354000117887920260</LO>
<ID>04-0301103</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000668 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000668 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:04-0301103
   |texte=   Low-dimensional lattice basis reduction revisited
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022