Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fault confinement mechanisms on CAN: Analysis and improvements

Identifieur interne : 000549 ( PascalFrancis/Corpus ); précédent : 000548; suivant : 000550

Fault confinement mechanisms on CAN: Analysis and improvements

Auteurs : Bruno Gaujal ; Nicolas Navet

Source :

RBID : Pascal:05-0320185

Descripteurs français

English descriptors

Abstract

The Controller Area Network (CAN) protocol possesses fault confinement mechanisms aimed at differentiating between short disturbances caused by electromagnetic interference (EMI) and permanent failures due to hardware dysfunctioning. In this paper, we derive a Markovian analysis of these mechanisms which enables one to assess the risk of reaching one of the two degraded modes-busoff and error-passive-defined by CAN. We identify several problems with the existing mechanisms, the major one being that the busoff state is reached too easily. In particular, it happens with bursts of EMI causing several consecutive transmission errors. We propose new mechanisms that address these drawbacks. The basic idea is to weigh the progression toward the degraded mode by the quantity of information given by the last transmission. In our experiments, these mechanisms proved to be effective: the hitting time of busoff for nonfaulty nodes increases hugely while faulty systems reach busoff in the same amount of time. In the last part of this paper, implementation issues are discussed and different techniques for tuning the parameters of the algorithm are provided, either off-line or at run-time.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0018-9545
A02 01      @0 ITVTAB
A03   1    @0 IEEE trans. veh. technol.
A05       @2 54
A06       @2 3
A08 01  1  ENG  @1 Fault confinement mechanisms on CAN: Analysis and improvements
A11 01  1    @1 GAUJAL (Bruno)
A11 02  1    @1 NAVET (Nicolas)
A14 01      @1 ID Laboratory, INRIA @2 38330 Montbonnot @3 FRA @Z 1 aut.
A14 02      @1 LORIA laboratory, INRIA @2 54506 Vandoeuvre-lès-Nancy @3 FRA @Z 2 aut.
A20       @1 1103-1113
A21       @1 2005
A23 01      @0 ENG
A43 01      @1 INIST @2 222H1 @5 354000124554330330
A44       @0 0000 @1 © 2005 INIST-CNRS. All rights reserved.
A45       @0 14 ref.
A47 01  1    @0 05-0320185
A60       @1 P
A61       @0 A
A64 01  1    @0 IEEE transactions on vehicular technology
A66 01      @0 USA
C01 01    ENG  @0 The Controller Area Network (CAN) protocol possesses fault confinement mechanisms aimed at differentiating between short disturbances caused by electromagnetic interference (EMI) and permanent failures due to hardware dysfunctioning. In this paper, we derive a Markovian analysis of these mechanisms which enables one to assess the risk of reaching one of the two degraded modes-busoff and error-passive-defined by CAN. We identify several problems with the existing mechanisms, the major one being that the busoff state is reached too easily. In particular, it happens with bursts of EMI causing several consecutive transmission errors. We propose new mechanisms that address these drawbacks. The basic idea is to weigh the progression toward the degraded mode by the quantity of information given by the last transmission. In our experiments, these mechanisms proved to be effective: the hitting time of busoff for nonfaulty nodes increases hugely while faulty systems reach busoff in the same amount of time. In the last part of this paper, implementation issues are discussed and different techniques for tuning the parameters of the algorithm are provided, either off-line or at run-time.
C02 01  X    @0 001D04B03A
C02 02  X    @0 001D04B03B
C03 01  X  FRE  @0 Protocole accès @5 01
C03 01  X  ENG  @0 Access protocol @5 01
C03 01  X  SPA  @0 Protocolo acceso @5 01
C03 02  X  FRE  @0 Système temps réel @5 02
C03 02  X  ENG  @0 Real time system @5 02
C03 02  X  SPA  @0 Sistema tiempo real @5 02
C03 03  X  FRE  @0 Tolérance faute @5 03
C03 03  X  ENG  @0 Fault tolerance @5 03
C03 03  X  SPA  @0 Tolerancia falta @5 03
C03 04  X  FRE  @0 Brouillage @5 04
C03 04  X  ENG  @0 Electromagnetic interference @5 04
C03 04  X  SPA  @0 Interferencia @5 04
C03 05  X  FRE  @0 Processus Markov @5 05
C03 05  X  ENG  @0 Markov process @5 05
C03 05  X  SPA  @0 Proceso Markov @5 05
C03 06  X  FRE  @0 Analyse performance @5 06
C03 06  X  ENG  @0 Performance analysis @5 06
C03 06  X  SPA  @0 Análisis eficacia @5 06
N21       @1 227
N44 01      @1 PSI
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 05-0320185 INIST
ET : Fault confinement mechanisms on CAN: Analysis and improvements
AU : GAUJAL (Bruno); NAVET (Nicolas)
AF : ID Laboratory, INRIA/38330 Montbonnot/France (1 aut.); LORIA laboratory, INRIA/54506 Vandoeuvre-lès-Nancy/France (2 aut.)
DT : Publication en série; Niveau analytique
SO : IEEE transactions on vehicular technology; ISSN 0018-9545; Coden ITVTAB; Etats-Unis; Da. 2005; Vol. 54; No. 3; Pp. 1103-1113; Bibl. 14 ref.
LA : Anglais
EA : The Controller Area Network (CAN) protocol possesses fault confinement mechanisms aimed at differentiating between short disturbances caused by electromagnetic interference (EMI) and permanent failures due to hardware dysfunctioning. In this paper, we derive a Markovian analysis of these mechanisms which enables one to assess the risk of reaching one of the two degraded modes-busoff and error-passive-defined by CAN. We identify several problems with the existing mechanisms, the major one being that the busoff state is reached too easily. In particular, it happens with bursts of EMI causing several consecutive transmission errors. We propose new mechanisms that address these drawbacks. The basic idea is to weigh the progression toward the degraded mode by the quantity of information given by the last transmission. In our experiments, these mechanisms proved to be effective: the hitting time of busoff for nonfaulty nodes increases hugely while faulty systems reach busoff in the same amount of time. In the last part of this paper, implementation issues are discussed and different techniques for tuning the parameters of the algorithm are provided, either off-line or at run-time.
CC : 001D04B03A; 001D04B03B
FD : Protocole accès; Système temps réel; Tolérance faute; Brouillage; Processus Markov; Analyse performance
ED : Access protocol; Real time system; Fault tolerance; Electromagnetic interference; Markov process; Performance analysis
SD : Protocolo acceso; Sistema tiempo real; Tolerancia falta; Interferencia; Proceso Markov; Análisis eficacia
LO : INIST-222H1.354000124554330330
ID : 05-0320185

Links to Exploration step

Pascal:05-0320185

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Fault confinement mechanisms on CAN: Analysis and improvements</title>
<author>
<name sortKey="Gaujal, Bruno" sort="Gaujal, Bruno" uniqKey="Gaujal B" first="Bruno" last="Gaujal">Bruno Gaujal</name>
<affiliation>
<inist:fA14 i1="01">
<s1>ID Laboratory, INRIA</s1>
<s2>38330 Montbonnot</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Navet, Nicolas" sort="Navet, Nicolas" uniqKey="Navet N" first="Nicolas" last="Navet">Nicolas Navet</name>
<affiliation>
<inist:fA14 i1="02">
<s1>LORIA laboratory, INRIA</s1>
<s2>54506 Vandoeuvre-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">05-0320185</idno>
<date when="2005">2005</date>
<idno type="stanalyst">PASCAL 05-0320185 INIST</idno>
<idno type="RBID">Pascal:05-0320185</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000549</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Fault confinement mechanisms on CAN: Analysis and improvements</title>
<author>
<name sortKey="Gaujal, Bruno" sort="Gaujal, Bruno" uniqKey="Gaujal B" first="Bruno" last="Gaujal">Bruno Gaujal</name>
<affiliation>
<inist:fA14 i1="01">
<s1>ID Laboratory, INRIA</s1>
<s2>38330 Montbonnot</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Navet, Nicolas" sort="Navet, Nicolas" uniqKey="Navet N" first="Nicolas" last="Navet">Nicolas Navet</name>
<affiliation>
<inist:fA14 i1="02">
<s1>LORIA laboratory, INRIA</s1>
<s2>54506 Vandoeuvre-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE transactions on vehicular technology</title>
<title level="j" type="abbreviated">IEEE trans. veh. technol.</title>
<idno type="ISSN">0018-9545</idno>
<imprint>
<date when="2005">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE transactions on vehicular technology</title>
<title level="j" type="abbreviated">IEEE trans. veh. technol.</title>
<idno type="ISSN">0018-9545</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Access protocol</term>
<term>Electromagnetic interference</term>
<term>Fault tolerance</term>
<term>Markov process</term>
<term>Performance analysis</term>
<term>Real time system</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Protocole accès</term>
<term>Système temps réel</term>
<term>Tolérance faute</term>
<term>Brouillage</term>
<term>Processus Markov</term>
<term>Analyse performance</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Controller Area Network (CAN) protocol possesses fault confinement mechanisms aimed at differentiating between short disturbances caused by electromagnetic interference (EMI) and permanent failures due to hardware dysfunctioning. In this paper, we derive a Markovian analysis of these mechanisms which enables one to assess the risk of reaching one of the two degraded modes-busoff and error-passive-defined by CAN. We identify several problems with the existing mechanisms, the major one being that the busoff state is reached too easily. In particular, it happens with bursts of EMI causing several consecutive transmission errors. We propose new mechanisms that address these drawbacks. The basic idea is to weigh the progression toward the degraded mode by the quantity of information given by the last transmission. In our experiments, these mechanisms proved to be effective: the hitting time of busoff for nonfaulty nodes increases hugely while faulty systems reach busoff in the same amount of time. In the last part of this paper, implementation issues are discussed and different techniques for tuning the parameters of the algorithm are provided, either off-line or at run-time.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0018-9545</s0>
</fA01>
<fA02 i1="01">
<s0>ITVTAB</s0>
</fA02>
<fA03 i2="1">
<s0>IEEE trans. veh. technol.</s0>
</fA03>
<fA05>
<s2>54</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Fault confinement mechanisms on CAN: Analysis and improvements</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GAUJAL (Bruno)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>NAVET (Nicolas)</s1>
</fA11>
<fA14 i1="01">
<s1>ID Laboratory, INRIA</s1>
<s2>38330 Montbonnot</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>LORIA laboratory, INRIA</s1>
<s2>54506 Vandoeuvre-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>1103-1113</s1>
</fA20>
<fA21>
<s1>2005</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>222H1</s2>
<s5>354000124554330330</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2005 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>14 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>05-0320185</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE transactions on vehicular technology</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The Controller Area Network (CAN) protocol possesses fault confinement mechanisms aimed at differentiating between short disturbances caused by electromagnetic interference (EMI) and permanent failures due to hardware dysfunctioning. In this paper, we derive a Markovian analysis of these mechanisms which enables one to assess the risk of reaching one of the two degraded modes-busoff and error-passive-defined by CAN. We identify several problems with the existing mechanisms, the major one being that the busoff state is reached too easily. In particular, it happens with bursts of EMI causing several consecutive transmission errors. We propose new mechanisms that address these drawbacks. The basic idea is to weigh the progression toward the degraded mode by the quantity of information given by the last transmission. In our experiments, these mechanisms proved to be effective: the hitting time of busoff for nonfaulty nodes increases hugely while faulty systems reach busoff in the same amount of time. In the last part of this paper, implementation issues are discussed and different techniques for tuning the parameters of the algorithm are provided, either off-line or at run-time.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D04B03A</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D04B03B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Protocole accès</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Access protocol</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Protocolo acceso</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Système temps réel</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Real time system</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Sistema tiempo real</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Tolérance faute</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Fault tolerance</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Tolerancia falta</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Brouillage</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Electromagnetic interference</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Interferencia</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Processus Markov</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Markov process</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Proceso Markov</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Analyse performance</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Performance analysis</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Análisis eficacia</s0>
<s5>06</s5>
</fC03>
<fN21>
<s1>227</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 05-0320185 INIST</NO>
<ET>Fault confinement mechanisms on CAN: Analysis and improvements</ET>
<AU>GAUJAL (Bruno); NAVET (Nicolas)</AU>
<AF>ID Laboratory, INRIA/38330 Montbonnot/France (1 aut.); LORIA laboratory, INRIA/54506 Vandoeuvre-lès-Nancy/France (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>IEEE transactions on vehicular technology; ISSN 0018-9545; Coden ITVTAB; Etats-Unis; Da. 2005; Vol. 54; No. 3; Pp. 1103-1113; Bibl. 14 ref.</SO>
<LA>Anglais</LA>
<EA>The Controller Area Network (CAN) protocol possesses fault confinement mechanisms aimed at differentiating between short disturbances caused by electromagnetic interference (EMI) and permanent failures due to hardware dysfunctioning. In this paper, we derive a Markovian analysis of these mechanisms which enables one to assess the risk of reaching one of the two degraded modes-busoff and error-passive-defined by CAN. We identify several problems with the existing mechanisms, the major one being that the busoff state is reached too easily. In particular, it happens with bursts of EMI causing several consecutive transmission errors. We propose new mechanisms that address these drawbacks. The basic idea is to weigh the progression toward the degraded mode by the quantity of information given by the last transmission. In our experiments, these mechanisms proved to be effective: the hitting time of busoff for nonfaulty nodes increases hugely while faulty systems reach busoff in the same amount of time. In the last part of this paper, implementation issues are discussed and different techniques for tuning the parameters of the algorithm are provided, either off-line or at run-time.</EA>
<CC>001D04B03A; 001D04B03B</CC>
<FD>Protocole accès; Système temps réel; Tolérance faute; Brouillage; Processus Markov; Analyse performance</FD>
<ED>Access protocol; Real time system; Fault tolerance; Electromagnetic interference; Markov process; Performance analysis</ED>
<SD>Protocolo acceso; Sistema tiempo real; Tolerancia falta; Interferencia; Proceso Markov; Análisis eficacia</SD>
<LO>INIST-222H1.354000124554330330</LO>
<ID>05-0320185</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000549 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000549 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:05-0320185
   |texte=   Fault confinement mechanisms on CAN: Analysis and improvements
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022