Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Graceful degradation of loss-tolerant QoS using (m,k)-finn constraints in guaranteed rate networks

Identifieur interne : 000528 ( PascalFrancis/Corpus ); précédent : 000527; suivant : 000529

Graceful degradation of loss-tolerant QoS using (m,k)-finn constraints in guaranteed rate networks

Auteurs : Anis Koubaa ; Ye-Qiong Song

Source :

RBID : Pascal:05-0385323

Descripteurs français

English descriptors

Abstract

The Weighted Fair Queueing (WFQ) scheduling algorithm and its variants can be used to provide real-time guarantees by making bandwidth reservation. However, while hard guarantees are based on a peak workload model that leads to underutilize network resources, soft guarantees, based on average workload model, are not always sufficient to maintain acceptable Quality-of-Service (QoS) since consecutive packet losses or deadline misses may occur, which are not suitable for real-time applications. In this paper, we propose a trade-off between hard and soft real-time guarantees to maintain an acceptable QoS in overload conditions and efficiently maximize the utilization of network resources. The key to our solution is based on the fact that many real-time applications, such as voice and video, are loss-tolerant. The loss profile must be well defined, and such a profile can be easily specified using the (m,k)-firm model. Therefore, we propose the (m,k)-WFQ algorithm to take into account (m,A-)-firm timing constraints to provide delay guarantees of at least in packets out of any k consecutive packets without violating bandwidth fairness or misusing network resources. Using the Network Calculus theory, an analytic study gives the deterministic delay bound provided by the (m,k)-WFQ algorithm for upper bounded arrival curve traffic. We extend our analytic results for guaranteed-rate networks, such as the IntServ QoS model and ATM networks, and the DiffServ QoS model. Analytic results and simulations show a noticeable improvement in delay guarantee made by (m,k)-WFQ compared to WFQ without much degradation of bandwidth faimess.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0140-3664
A03   1    @0 Comput. commun.
A05       @2 28
A06       @2 12
A08 01  1  ENG  @1 Graceful degradation of loss-tolerant QoS using (m,k)-finn constraints in guaranteed rate networks
A11 01  1    @1 KOUBAA (Anis)
A11 02  1    @1 SONG (Ye-Qiong)
A14 01      @1 LORIA-TRIO-INPL, Computer Science, 615, rue du jardin botanique @2 Villers Les Nancy 54602 @3 FRA @Z 1 aut. @Z 2 aut.
A20       @1 1393-1409
A21       @1 2005
A23 01      @0 ENG
A43 01      @1 INIST @2 17163 @5 354000137997140010
A44       @0 0000 @1 © 2005 INIST-CNRS. All rights reserved.
A45       @0 20 ref.
A47 01  1    @0 05-0385323
A60       @1 P
A61       @0 A
A64 01  1    @0 Computer communications
A66 01      @0 NLD
C01 01    ENG  @0 The Weighted Fair Queueing (WFQ) scheduling algorithm and its variants can be used to provide real-time guarantees by making bandwidth reservation. However, while hard guarantees are based on a peak workload model that leads to underutilize network resources, soft guarantees, based on average workload model, are not always sufficient to maintain acceptable Quality-of-Service (QoS) since consecutive packet losses or deadline misses may occur, which are not suitable for real-time applications. In this paper, we propose a trade-off between hard and soft real-time guarantees to maintain an acceptable QoS in overload conditions and efficiently maximize the utilization of network resources. The key to our solution is based on the fact that many real-time applications, such as voice and video, are loss-tolerant. The loss profile must be well defined, and such a profile can be easily specified using the (m,k)-firm model. Therefore, we propose the (m,k)-WFQ algorithm to take into account (m,A-)-firm timing constraints to provide delay guarantees of at least in packets out of any k consecutive packets without violating bandwidth fairness or misusing network resources. Using the Network Calculus theory, an analytic study gives the deterministic delay bound provided by the (m,k)-WFQ algorithm for upper bounded arrival curve traffic. We extend our analytic results for guaranteed-rate networks, such as the IntServ QoS model and ATM networks, and the DiffServ QoS model. Analytic results and simulations show a noticeable improvement in delay guarantee made by (m,k)-WFQ compared to WFQ without much degradation of bandwidth faimess.
C02 01  X    @0 001D04B03B
C03 01  X  FRE  @0 Qualité service @5 01
C03 01  X  ENG  @0 Service quality @5 01
C03 01  X  SPA  @0 Calidad servicio @5 01
C03 02  X  FRE  @0 Largeur bande @5 02
C03 02  X  ENG  @0 Bandwidth @5 02
C03 02  X  SPA  @0 Anchura banda @5 02
C03 03  X  FRE  @0 Garantie @5 03
C03 03  X  ENG  @0 Guarantee @5 03
C03 03  X  SPA  @0 Garantía @5 03
C03 04  X  FRE  @0 Réseau ATM @5 04
C03 04  X  ENG  @0 ATM network @5 04
C03 04  X  SPA  @0 Red ATM @5 04
C03 05  X  FRE  @0 Calcul réseau @4 INC @5 82
C03 06  X  FRE  @0 Weighted fair queuing @4 INC @5 83
C03 07  X  FRE  @0 (m,k) firm guarantee @4 INC @5 84
N21       @1 269
N44 01      @1 PSI
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 05-0385323 INIST
ET : Graceful degradation of loss-tolerant QoS using (m,k)-finn constraints in guaranteed rate networks
AU : KOUBAA (Anis); SONG (Ye-Qiong)
AF : LORIA-TRIO-INPL, Computer Science, 615, rue du jardin botanique/Villers Les Nancy 54602/France (1 aut., 2 aut.)
DT : Publication en série; Niveau analytique
SO : Computer communications; ISSN 0140-3664; Pays-Bas; Da. 2005; Vol. 28; No. 12; Pp. 1393-1409; Bibl. 20 ref.
LA : Anglais
EA : The Weighted Fair Queueing (WFQ) scheduling algorithm and its variants can be used to provide real-time guarantees by making bandwidth reservation. However, while hard guarantees are based on a peak workload model that leads to underutilize network resources, soft guarantees, based on average workload model, are not always sufficient to maintain acceptable Quality-of-Service (QoS) since consecutive packet losses or deadline misses may occur, which are not suitable for real-time applications. In this paper, we propose a trade-off between hard and soft real-time guarantees to maintain an acceptable QoS in overload conditions and efficiently maximize the utilization of network resources. The key to our solution is based on the fact that many real-time applications, such as voice and video, are loss-tolerant. The loss profile must be well defined, and such a profile can be easily specified using the (m,k)-firm model. Therefore, we propose the (m,k)-WFQ algorithm to take into account (m,A-)-firm timing constraints to provide delay guarantees of at least in packets out of any k consecutive packets without violating bandwidth fairness or misusing network resources. Using the Network Calculus theory, an analytic study gives the deterministic delay bound provided by the (m,k)-WFQ algorithm for upper bounded arrival curve traffic. We extend our analytic results for guaranteed-rate networks, such as the IntServ QoS model and ATM networks, and the DiffServ QoS model. Analytic results and simulations show a noticeable improvement in delay guarantee made by (m,k)-WFQ compared to WFQ without much degradation of bandwidth faimess.
CC : 001D04B03B
FD : Qualité service; Largeur bande; Garantie; Réseau ATM; Calcul réseau; Weighted fair queuing; (m,k) firm guarantee
ED : Service quality; Bandwidth; Guarantee; ATM network
SD : Calidad servicio; Anchura banda; Garantía; Red ATM
LO : INIST-17163.354000137997140010
ID : 05-0385323

Links to Exploration step

Pascal:05-0385323

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Graceful degradation of loss-tolerant QoS using (m,k)-finn constraints in guaranteed rate networks</title>
<author>
<name sortKey="Koubaa, Anis" sort="Koubaa, Anis" uniqKey="Koubaa A" first="Anis" last="Koubaa">Anis Koubaa</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LORIA-TRIO-INPL, Computer Science, 615, rue du jardin botanique</s1>
<s2>Villers Les Nancy 54602</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Song, Ye Qiong" sort="Song, Ye Qiong" uniqKey="Song Y" first="Ye-Qiong" last="Song">Ye-Qiong Song</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LORIA-TRIO-INPL, Computer Science, 615, rue du jardin botanique</s1>
<s2>Villers Les Nancy 54602</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">05-0385323</idno>
<date when="2005">2005</date>
<idno type="stanalyst">PASCAL 05-0385323 INIST</idno>
<idno type="RBID">Pascal:05-0385323</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000528</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Graceful degradation of loss-tolerant QoS using (m,k)-finn constraints in guaranteed rate networks</title>
<author>
<name sortKey="Koubaa, Anis" sort="Koubaa, Anis" uniqKey="Koubaa A" first="Anis" last="Koubaa">Anis Koubaa</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LORIA-TRIO-INPL, Computer Science, 615, rue du jardin botanique</s1>
<s2>Villers Les Nancy 54602</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Song, Ye Qiong" sort="Song, Ye Qiong" uniqKey="Song Y" first="Ye-Qiong" last="Song">Ye-Qiong Song</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LORIA-TRIO-INPL, Computer Science, 615, rue du jardin botanique</s1>
<s2>Villers Les Nancy 54602</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Computer communications</title>
<title level="j" type="abbreviated">Comput. commun.</title>
<idno type="ISSN">0140-3664</idno>
<imprint>
<date when="2005">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Computer communications</title>
<title level="j" type="abbreviated">Comput. commun.</title>
<idno type="ISSN">0140-3664</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>ATM network</term>
<term>Bandwidth</term>
<term>Guarantee</term>
<term>Service quality</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Qualité service</term>
<term>Largeur bande</term>
<term>Garantie</term>
<term>Réseau ATM</term>
<term>Calcul réseau</term>
<term>Weighted fair queuing</term>
<term>(m,k) firm guarantee</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Weighted Fair Queueing (WFQ) scheduling algorithm and its variants can be used to provide real-time guarantees by making bandwidth reservation. However, while hard guarantees are based on a peak workload model that leads to underutilize network resources, soft guarantees, based on average workload model, are not always sufficient to maintain acceptable Quality-of-Service (QoS) since consecutive packet losses or deadline misses may occur, which are not suitable for real-time applications. In this paper, we propose a trade-off between hard and soft real-time guarantees to maintain an acceptable QoS in overload conditions and efficiently maximize the utilization of network resources. The key to our solution is based on the fact that many real-time applications, such as voice and video, are loss-tolerant. The loss profile must be well defined, and such a profile can be easily specified using the (m,k)-firm model. Therefore, we propose the (m,k)-WFQ algorithm to take into account (m,A-)-firm timing constraints to provide delay guarantees of at least in packets out of any k consecutive packets without violating bandwidth fairness or misusing network resources. Using the Network Calculus theory, an analytic study gives the deterministic delay bound provided by the (m,k)-WFQ algorithm for upper bounded arrival curve traffic. We extend our analytic results for guaranteed-rate networks, such as the IntServ QoS model and ATM networks, and the DiffServ QoS model. Analytic results and simulations show a noticeable improvement in delay guarantee made by (m,k)-WFQ compared to WFQ without much degradation of bandwidth faimess.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0140-3664</s0>
</fA01>
<fA03 i2="1">
<s0>Comput. commun.</s0>
</fA03>
<fA05>
<s2>28</s2>
</fA05>
<fA06>
<s2>12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Graceful degradation of loss-tolerant QoS using (m,k)-finn constraints in guaranteed rate networks</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KOUBAA (Anis)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SONG (Ye-Qiong)</s1>
</fA11>
<fA14 i1="01">
<s1>LORIA-TRIO-INPL, Computer Science, 615, rue du jardin botanique</s1>
<s2>Villers Les Nancy 54602</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>1393-1409</s1>
</fA20>
<fA21>
<s1>2005</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17163</s2>
<s5>354000137997140010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2005 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>20 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>05-0385323</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Computer communications</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The Weighted Fair Queueing (WFQ) scheduling algorithm and its variants can be used to provide real-time guarantees by making bandwidth reservation. However, while hard guarantees are based on a peak workload model that leads to underutilize network resources, soft guarantees, based on average workload model, are not always sufficient to maintain acceptable Quality-of-Service (QoS) since consecutive packet losses or deadline misses may occur, which are not suitable for real-time applications. In this paper, we propose a trade-off between hard and soft real-time guarantees to maintain an acceptable QoS in overload conditions and efficiently maximize the utilization of network resources. The key to our solution is based on the fact that many real-time applications, such as voice and video, are loss-tolerant. The loss profile must be well defined, and such a profile can be easily specified using the (m,k)-firm model. Therefore, we propose the (m,k)-WFQ algorithm to take into account (m,A-)-firm timing constraints to provide delay guarantees of at least in packets out of any k consecutive packets without violating bandwidth fairness or misusing network resources. Using the Network Calculus theory, an analytic study gives the deterministic delay bound provided by the (m,k)-WFQ algorithm for upper bounded arrival curve traffic. We extend our analytic results for guaranteed-rate networks, such as the IntServ QoS model and ATM networks, and the DiffServ QoS model. Analytic results and simulations show a noticeable improvement in delay guarantee made by (m,k)-WFQ compared to WFQ without much degradation of bandwidth faimess.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D04B03B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Qualité service</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Service quality</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Calidad servicio</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Largeur bande</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Bandwidth</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Anchura banda</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Garantie</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Guarantee</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Garantía</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Réseau ATM</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>ATM network</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Red ATM</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Calcul réseau</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Weighted fair queuing</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>(m,k) firm guarantee</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fN21>
<s1>269</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 05-0385323 INIST</NO>
<ET>Graceful degradation of loss-tolerant QoS using (m,k)-finn constraints in guaranteed rate networks</ET>
<AU>KOUBAA (Anis); SONG (Ye-Qiong)</AU>
<AF>LORIA-TRIO-INPL, Computer Science, 615, rue du jardin botanique/Villers Les Nancy 54602/France (1 aut., 2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Computer communications; ISSN 0140-3664; Pays-Bas; Da. 2005; Vol. 28; No. 12; Pp. 1393-1409; Bibl. 20 ref.</SO>
<LA>Anglais</LA>
<EA>The Weighted Fair Queueing (WFQ) scheduling algorithm and its variants can be used to provide real-time guarantees by making bandwidth reservation. However, while hard guarantees are based on a peak workload model that leads to underutilize network resources, soft guarantees, based on average workload model, are not always sufficient to maintain acceptable Quality-of-Service (QoS) since consecutive packet losses or deadline misses may occur, which are not suitable for real-time applications. In this paper, we propose a trade-off between hard and soft real-time guarantees to maintain an acceptable QoS in overload conditions and efficiently maximize the utilization of network resources. The key to our solution is based on the fact that many real-time applications, such as voice and video, are loss-tolerant. The loss profile must be well defined, and such a profile can be easily specified using the (m,k)-firm model. Therefore, we propose the (m,k)-WFQ algorithm to take into account (m,A-)-firm timing constraints to provide delay guarantees of at least in packets out of any k consecutive packets without violating bandwidth fairness or misusing network resources. Using the Network Calculus theory, an analytic study gives the deterministic delay bound provided by the (m,k)-WFQ algorithm for upper bounded arrival curve traffic. We extend our analytic results for guaranteed-rate networks, such as the IntServ QoS model and ATM networks, and the DiffServ QoS model. Analytic results and simulations show a noticeable improvement in delay guarantee made by (m,k)-WFQ compared to WFQ without much degradation of bandwidth faimess.</EA>
<CC>001D04B03B</CC>
<FD>Qualité service; Largeur bande; Garantie; Réseau ATM; Calcul réseau; Weighted fair queuing; (m,k) firm guarantee</FD>
<ED>Service quality; Bandwidth; Guarantee; ATM network</ED>
<SD>Calidad servicio; Anchura banda; Garantía; Red ATM</SD>
<LO>INIST-17163.354000137997140010</LO>
<ID>05-0385323</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000528 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000528 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:05-0385323
   |texte=   Graceful degradation of loss-tolerant QoS using (m,k)-finn constraints in guaranteed rate networks
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022