Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modular proof systems for partial functions with Evans equality

Identifieur interne : 000415 ( PascalFrancis/Corpus ); précédent : 000414; suivant : 000416

Modular proof systems for partial functions with Evans equality

Auteurs : Harald Ganzinger ; Viorica Sofronie-Stokkermans ; Uwe Waldmann

Source :

RBID : Pascal:06-0527635

Descripteurs français

English descriptors

Abstract

The paper presents a modular superposition calculus for the combination of first-order theories involving both total and partial functions. The modularity of the calculus is a consequence of the fact that all the inferences are pure-only involving clauses over the alphabet of either one, but not both, of the theories-when refuting goals represented by sets of pure formulae. The calculus is shown to be complete provided that functions that are not in the intersection of the component signatures are declared as partial. This result also means that if the unsatisfiability of a goal modulo the combined theory does not depend on the totality of the functions in the extensions, the inconsistency will be effectively found. Moreover, we consider a constraint superposition calculus for the case of hierarchical theories and show that it has a related modularity property. Finally, we identify cases where the partial models can always be made total so that modular superposition is also complete with respect to the standard (total function) semantics of the theories.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0890-5401
A02 01      @0 INFCEC
A03   1    @0 Inf. comput. : (Print)
A05       @2 204
A06       @2 10
A08 01  1  ENG  @1 Modular proof systems for partial functions with Evans equality
A09 01  1  ENG  @1 Combining logical systems
A11 01  1    @1 GANZINGER (Harald)
A11 02  1    @1 SOFRONIE-STOKKERMANS (Viorica)
A11 03  1    @1 WALDMANN (Uwe)
A12 01  1    @1 ARMANDO (Alessandro) @9 ed.
A12 02  1    @1 RINGEISSEN (Christophe) @9 ed.
A14 01      @1 Max-Planck-Institut für Informatik, Stuhtsatzenhausweg 85 @2 66123 Saarbrücken @3 DEU @Z 1 aut. @Z 2 aut. @Z 3 aut.
A15 01      @1 DIST, University of Genova @3 ITA @Z 1 aut.
A15 02      @1 LORIA & INRIA-Lorraine @2 54500 Vandoeuvre-les-Nancy @3 FRA @Z 2 aut.
A20       @1 1453-1492
A21       @1 2006
A23 01      @0 ENG
A43 01      @1 INIST @2 8341 @5 354000157254510020
A44       @0 0000 @1 © 2006 INIST-CNRS. All rights reserved.
A45       @0 28 ref.
A47 01  1    @0 06-0527635
A60       @1 P
A61       @0 A
A64 01  1    @0 Information and computation : (Print)
A66 01      @0 USA
C01 01    ENG  @0 The paper presents a modular superposition calculus for the combination of first-order theories involving both total and partial functions. The modularity of the calculus is a consequence of the fact that all the inferences are pure-only involving clauses over the alphabet of either one, but not both, of the theories-when refuting goals represented by sets of pure formulae. The calculus is shown to be complete provided that functions that are not in the intersection of the component signatures are declared as partial. This result also means that if the unsatisfiability of a goal modulo the combined theory does not depend on the totality of the functions in the extensions, the inconsistency will be effectively found. Moreover, we consider a constraint superposition calculus for the case of hierarchical theories and show that it has a related modularity property. Finally, we identify cases where the partial models can always be made total so that modular superposition is also complete with respect to the standard (total function) semantics of the theories.
C02 01  X    @0 001D02A08
C02 02  X    @0 001D02A02
C03 01  X  FRE  @0 Système modulaire @5 17
C03 01  X  ENG  @0 Modular system @5 17
C03 01  X  SPA  @0 Sistema modular @5 17
C03 02  X  FRE  @0 Fonction Evans @5 18
C03 02  X  ENG  @0 Evans function @5 18
C03 02  X  SPA  @0 Función Evans @5 18
C03 03  X  FRE  @0 Superposition @5 19
C03 03  X  ENG  @0 Superposition @5 19
C03 03  X  SPA  @0 Superposición @5 19
C03 04  X  FRE  @0 Ordre 1 @5 20
C03 04  X  ENG  @0 First order @5 20
C03 04  X  SPA  @0 Orden 1 @5 20
C03 05  X  FRE  @0 Alphabet @5 21
C03 05  X  ENG  @0 Alphabet @5 21
C03 05  X  SPA  @0 Alfabeto @5 21
C03 06  X  FRE  @0 Intersection @5 22
C03 06  X  ENG  @0 Intersection @5 22
C03 06  X  SPA  @0 Intersección @5 22
C03 07  X  FRE  @0 Contrainte @5 23
C03 07  X  ENG  @0 Constraint @5 23
C03 07  X  SPA  @0 Coacción @5 23
C03 08  X  FRE  @0 Sémantique @5 24
C03 08  X  ENG  @0 Semantics @5 24
C03 08  X  SPA  @0 Semántica @5 24
C03 09  X  FRE  @0 Informatique théorique @5 25
C03 09  X  ENG  @0 Computer theory @5 25
C03 09  X  SPA  @0 Informática teórica @5 25
C03 10  X  FRE  @0 Proof systems @4 INC @5 70
C03 11  X  FRE  @0 Système preuve @4 INC @5 71
C03 12  X  FRE  @0 Preuve @4 INC @5 72
C03 13  X  FRE  @0 Fonction partielle @4 INC @5 73
C03 14  X  FRE  @0 Modularité @4 INC @5 74
C03 15  X  FRE  @0 68Q55 @4 INC @5 75
N21       @1 346
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 06-0527635 INIST
ET : Modular proof systems for partial functions with Evans equality
AU : GANZINGER (Harald); SOFRONIE-STOKKERMANS (Viorica); WALDMANN (Uwe); ARMANDO (Alessandro); RINGEISSEN (Christophe)
AF : Max-Planck-Institut für Informatik, Stuhtsatzenhausweg 85/66123 Saarbrücken/Allemagne (1 aut., 2 aut., 3 aut.); DIST, University of Genova/Italie (1 aut.); LORIA & INRIA-Lorraine/54500 Vandoeuvre-les-Nancy/France (2 aut.)
DT : Publication en série; Niveau analytique
SO : Information and computation : (Print); ISSN 0890-5401; Coden INFCEC; Etats-Unis; Da. 2006; Vol. 204; No. 10; Pp. 1453-1492; Bibl. 28 ref.
LA : Anglais
EA : The paper presents a modular superposition calculus for the combination of first-order theories involving both total and partial functions. The modularity of the calculus is a consequence of the fact that all the inferences are pure-only involving clauses over the alphabet of either one, but not both, of the theories-when refuting goals represented by sets of pure formulae. The calculus is shown to be complete provided that functions that are not in the intersection of the component signatures are declared as partial. This result also means that if the unsatisfiability of a goal modulo the combined theory does not depend on the totality of the functions in the extensions, the inconsistency will be effectively found. Moreover, we consider a constraint superposition calculus for the case of hierarchical theories and show that it has a related modularity property. Finally, we identify cases where the partial models can always be made total so that modular superposition is also complete with respect to the standard (total function) semantics of the theories.
CC : 001D02A08; 001D02A02
FD : Système modulaire; Fonction Evans; Superposition; Ordre 1; Alphabet; Intersection; Contrainte; Sémantique; Informatique théorique; Proof systems; Système preuve; Preuve; Fonction partielle; Modularité; 68Q55
ED : Modular system; Evans function; Superposition; First order; Alphabet; Intersection; Constraint; Semantics; Computer theory
SD : Sistema modular; Función Evans; Superposición; Orden 1; Alfabeto; Intersección; Coacción; Semántica; Informática teórica
LO : INIST-8341.354000157254510020
ID : 06-0527635

Links to Exploration step

Pascal:06-0527635

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Modular proof systems for partial functions with Evans equality</title>
<author>
<name sortKey="Ganzinger, Harald" sort="Ganzinger, Harald" uniqKey="Ganzinger H" first="Harald" last="Ganzinger">Harald Ganzinger</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max-Planck-Institut für Informatik, Stuhtsatzenhausweg 85</s1>
<s2>66123 Saarbrücken</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sofronie Stokkermans, Viorica" sort="Sofronie Stokkermans, Viorica" uniqKey="Sofronie Stokkermans V" first="Viorica" last="Sofronie-Stokkermans">Viorica Sofronie-Stokkermans</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max-Planck-Institut für Informatik, Stuhtsatzenhausweg 85</s1>
<s2>66123 Saarbrücken</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Waldmann, Uwe" sort="Waldmann, Uwe" uniqKey="Waldmann U" first="Uwe" last="Waldmann">Uwe Waldmann</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max-Planck-Institut für Informatik, Stuhtsatzenhausweg 85</s1>
<s2>66123 Saarbrücken</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0527635</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 06-0527635 INIST</idno>
<idno type="RBID">Pascal:06-0527635</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000415</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Modular proof systems for partial functions with Evans equality</title>
<author>
<name sortKey="Ganzinger, Harald" sort="Ganzinger, Harald" uniqKey="Ganzinger H" first="Harald" last="Ganzinger">Harald Ganzinger</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max-Planck-Institut für Informatik, Stuhtsatzenhausweg 85</s1>
<s2>66123 Saarbrücken</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sofronie Stokkermans, Viorica" sort="Sofronie Stokkermans, Viorica" uniqKey="Sofronie Stokkermans V" first="Viorica" last="Sofronie-Stokkermans">Viorica Sofronie-Stokkermans</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max-Planck-Institut für Informatik, Stuhtsatzenhausweg 85</s1>
<s2>66123 Saarbrücken</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Waldmann, Uwe" sort="Waldmann, Uwe" uniqKey="Waldmann U" first="Uwe" last="Waldmann">Uwe Waldmann</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max-Planck-Institut für Informatik, Stuhtsatzenhausweg 85</s1>
<s2>66123 Saarbrücken</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Information and computation : (Print)</title>
<title level="j" type="abbreviated">Inf. comput. : (Print)</title>
<idno type="ISSN">0890-5401</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Information and computation : (Print)</title>
<title level="j" type="abbreviated">Inf. comput. : (Print)</title>
<idno type="ISSN">0890-5401</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alphabet</term>
<term>Computer theory</term>
<term>Constraint</term>
<term>Evans function</term>
<term>First order</term>
<term>Intersection</term>
<term>Modular system</term>
<term>Semantics</term>
<term>Superposition</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Système modulaire</term>
<term>Fonction Evans</term>
<term>Superposition</term>
<term>Ordre 1</term>
<term>Alphabet</term>
<term>Intersection</term>
<term>Contrainte</term>
<term>Sémantique</term>
<term>Informatique théorique</term>
<term>Proof systems</term>
<term>Système preuve</term>
<term>Preuve</term>
<term>Fonction partielle</term>
<term>Modularité</term>
<term>68Q55</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The paper presents a modular superposition calculus for the combination of first-order theories involving both total and partial functions. The modularity of the calculus is a consequence of the fact that all the inferences are pure-only involving clauses over the alphabet of either one, but not both, of the theories-when refuting goals represented by sets of pure formulae. The calculus is shown to be complete provided that functions that are not in the intersection of the component signatures are declared as partial. This result also means that if the unsatisfiability of a goal modulo the combined theory does not depend on the totality of the functions in the extensions, the inconsistency will be effectively found. Moreover, we consider a constraint superposition calculus for the case of hierarchical theories and show that it has a related modularity property. Finally, we identify cases where the partial models can always be made total so that modular superposition is also complete with respect to the standard (total function) semantics of the theories.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0890-5401</s0>
</fA01>
<fA02 i1="01">
<s0>INFCEC</s0>
</fA02>
<fA03 i2="1">
<s0>Inf. comput. : (Print)</s0>
</fA03>
<fA05>
<s2>204</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Modular proof systems for partial functions with Evans equality</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Combining logical systems</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>GANZINGER (Harald)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SOFRONIE-STOKKERMANS (Viorica)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WALDMANN (Uwe)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>ARMANDO (Alessandro)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>RINGEISSEN (Christophe)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Max-Planck-Institut für Informatik, Stuhtsatzenhausweg 85</s1>
<s2>66123 Saarbrücken</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>DIST, University of Genova</s1>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>LORIA & INRIA-Lorraine</s1>
<s2>54500 Vandoeuvre-les-Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>1453-1492</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>8341</s2>
<s5>354000157254510020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>28 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0527635</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Information and computation : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The paper presents a modular superposition calculus for the combination of first-order theories involving both total and partial functions. The modularity of the calculus is a consequence of the fact that all the inferences are pure-only involving clauses over the alphabet of either one, but not both, of the theories-when refuting goals represented by sets of pure formulae. The calculus is shown to be complete provided that functions that are not in the intersection of the component signatures are declared as partial. This result also means that if the unsatisfiability of a goal modulo the combined theory does not depend on the totality of the functions in the extensions, the inconsistency will be effectively found. Moreover, we consider a constraint superposition calculus for the case of hierarchical theories and show that it has a related modularity property. Finally, we identify cases where the partial models can always be made total so that modular superposition is also complete with respect to the standard (total function) semantics of the theories.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02A08</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D02A02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Système modulaire</s0>
<s5>17</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Modular system</s0>
<s5>17</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Sistema modular</s0>
<s5>17</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Fonction Evans</s0>
<s5>18</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Evans function</s0>
<s5>18</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Función Evans</s0>
<s5>18</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Superposition</s0>
<s5>19</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Superposition</s0>
<s5>19</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Superposición</s0>
<s5>19</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Ordre 1</s0>
<s5>20</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>First order</s0>
<s5>20</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Orden 1</s0>
<s5>20</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Alphabet</s0>
<s5>21</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Alphabet</s0>
<s5>21</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Alfabeto</s0>
<s5>21</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Intersection</s0>
<s5>22</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Intersection</s0>
<s5>22</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Intersección</s0>
<s5>22</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Contrainte</s0>
<s5>23</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Constraint</s0>
<s5>23</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Coacción</s0>
<s5>23</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Sémantique</s0>
<s5>24</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Semantics</s0>
<s5>24</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Semántica</s0>
<s5>24</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Informatique théorique</s0>
<s5>25</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Computer theory</s0>
<s5>25</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Informática teórica</s0>
<s5>25</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Proof systems</s0>
<s4>INC</s4>
<s5>70</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Système preuve</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Preuve</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Fonction partielle</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Modularité</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>68Q55</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fN21>
<s1>346</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 06-0527635 INIST</NO>
<ET>Modular proof systems for partial functions with Evans equality</ET>
<AU>GANZINGER (Harald); SOFRONIE-STOKKERMANS (Viorica); WALDMANN (Uwe); ARMANDO (Alessandro); RINGEISSEN (Christophe)</AU>
<AF>Max-Planck-Institut für Informatik, Stuhtsatzenhausweg 85/66123 Saarbrücken/Allemagne (1 aut., 2 aut., 3 aut.); DIST, University of Genova/Italie (1 aut.); LORIA & INRIA-Lorraine/54500 Vandoeuvre-les-Nancy/France (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Information and computation : (Print); ISSN 0890-5401; Coden INFCEC; Etats-Unis; Da. 2006; Vol. 204; No. 10; Pp. 1453-1492; Bibl. 28 ref.</SO>
<LA>Anglais</LA>
<EA>The paper presents a modular superposition calculus for the combination of first-order theories involving both total and partial functions. The modularity of the calculus is a consequence of the fact that all the inferences are pure-only involving clauses over the alphabet of either one, but not both, of the theories-when refuting goals represented by sets of pure formulae. The calculus is shown to be complete provided that functions that are not in the intersection of the component signatures are declared as partial. This result also means that if the unsatisfiability of a goal modulo the combined theory does not depend on the totality of the functions in the extensions, the inconsistency will be effectively found. Moreover, we consider a constraint superposition calculus for the case of hierarchical theories and show that it has a related modularity property. Finally, we identify cases where the partial models can always be made total so that modular superposition is also complete with respect to the standard (total function) semantics of the theories.</EA>
<CC>001D02A08; 001D02A02</CC>
<FD>Système modulaire; Fonction Evans; Superposition; Ordre 1; Alphabet; Intersection; Contrainte; Sémantique; Informatique théorique; Proof systems; Système preuve; Preuve; Fonction partielle; Modularité; 68Q55</FD>
<ED>Modular system; Evans function; Superposition; First order; Alphabet; Intersection; Constraint; Semantics; Computer theory</ED>
<SD>Sistema modular; Función Evans; Superposición; Orden 1; Alfabeto; Intersección; Coacción; Semántica; Informática teórica</SD>
<LO>INIST-8341.354000157254510020</LO>
<ID>06-0527635</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000415 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000415 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:06-0527635
   |texte=   Modular proof systems for partial functions with Evans equality
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022