Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

LINES AND FREE LINE SEGMENTS TANGENT TO ARBITRARY THREE-DIMENSIONAL CONVEX POLYHEDRA

Identifieur interne : 000317 ( PascalFrancis/Corpus ); précédent : 000316; suivant : 000318

LINES AND FREE LINE SEGMENTS TANGENT TO ARBITRARY THREE-DIMENSIONAL CONVEX POLYHEDRA

Auteurs : Hervé Brönnimann ; Olivier Devillers ; Vida Dujmovic ; Hazel Everett ; Marc Glisse ; Xavier Goaoc ; Sylvain Lazard ; Hyeon-Suk Na ; Sue Whitesides

Source :

RBID : Pascal:08-0208367

Descripteurs français

English descriptors

Abstract

Motivated by visibility problems in three dimensions, we investigate the complexity and construction of the set of tangent lines in a scene of three-dimensional polyhedra. We prove that the set of lines tangent to four possibly intersecting convex polyhedra in R3 with a total of n edges consists of Θ(n2) connected components in the worst case. In the generic case, each connected component is a single line, but our result still holds for arbitrarily degenerate scenes. More generally, we show that a set of k possibly intersecting convex polyhedra with a total of n edges admits, in the worst case, Θ(n2k2) connected components of maximal free line segments tangent to at least four polytopes. Furthermore, these bounds also hold for possibly occluded lines rather than maximal free line segments. Finally, we present an O(n2k2 log n) time and O(nk2) space algorithm that, given a scene of k possibly intersecting convex polyhedra, computes all the minimal free line segments that are tangent to any four of the polytopes and are isolated transversals to the set of edges they intersect; in particular, we compute at least one line segment per connected component of tangent lines.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0097-5397
A03   1    @0 SIAM j. comput. : (Print)
A05       @2 37
A06       @2 2
A08 01  1  ENG  @1 LINES AND FREE LINE SEGMENTS TANGENT TO ARBITRARY THREE-DIMENSIONAL CONVEX POLYHEDRA
A11 01  1    @1 BRÖNNIMANN (Hervé)
A11 02  1    @1 DEVILLERS (Olivier)
A11 03  1    @1 DUJMOVIC (Vida)
A11 04  1    @1 EVERETT (Hazel)
A11 05  1    @1 GLISSE (Marc)
A11 06  1    @1 GOAOC (Xavier)
A11 07  1    @1 LAZARD (Sylvain)
A11 08  1    @1 NA (Hyeon-Suk)
A11 09  1    @1 WHITESIDES (Sue)
A14 01      @1 Polytechnic University @2 Brooklyn, NY 11201 @3 USA @Z 1 aut.
A14 02      @1 INRIA Sophia-Antipolis @2 Sophia-Antipolis @3 FRA @Z 2 aut.
A14 03      @1 School of Computer Science, Carleton University @2 Ottawa, ON @3 CAN @Z 3 aut.
A14 04      @1 LORIA-INRIA Lorraine, University Nancy 2 @2 Nancy @3 FRA @Z 4 aut. @Z 5 aut. @Z 6 aut. @Z 7 aut.
A14 05      @1 School of Computing, Soongsil University @2 Seoul @3 KOR @Z 8 aut.
A14 06      @1 School of Computer Science, McGill University @2 Montréal, QC @3 CAN @Z 9 aut.
A20       @1 522-551
A21       @1 2008
A23 01      @0 ENG
A43 01      @1 INIST @2 16063 @5 354000183013260090
A44       @0 0000 @1 © 2008 INIST-CNRS. All rights reserved.
A45       @0 25 ref.
A47 01  1    @0 08-0208367
A60       @1 P
A61       @0 A
A64 01  1    @0 SIAM journal on computing : (Print)
A66 01      @0 USA
C01 01    ENG  @0 Motivated by visibility problems in three dimensions, we investigate the complexity and construction of the set of tangent lines in a scene of three-dimensional polyhedra. We prove that the set of lines tangent to four possibly intersecting convex polyhedra in R3 with a total of n edges consists of Θ(n2) connected components in the worst case. In the generic case, each connected component is a single line, but our result still holds for arbitrarily degenerate scenes. More generally, we show that a set of k possibly intersecting convex polyhedra with a total of n edges admits, in the worst case, Θ(n2k2) connected components of maximal free line segments tangent to at least four polytopes. Furthermore, these bounds also hold for possibly occluded lines rather than maximal free line segments. Finally, we present an O(n2k2 log n) time and O(nk2) space algorithm that, given a scene of k possibly intersecting convex polyhedra, computes all the minimal free line segments that are tangent to any four of the polytopes and are isolated transversals to the set of edges they intersect; in particular, we compute at least one line segment per connected component of tangent lines.
C02 01  X    @0 001D02A08
C02 02  X    @0 001A02F02
C02 03  X    @0 001D02A05
C03 01  X  FRE  @0 Segment droite @5 17
C03 01  X  ENG  @0 Line segment @5 17
C03 01  X  SPA  @0 Segmento recta @5 17
C03 02  3  FRE  @0 Calcul 3 dimensions @5 18
C03 02  3  ENG  @0 Three-dimensional calculations @5 18
C03 03  X  FRE  @0 Visibilité @5 19
C03 03  X  ENG  @0 Visibility @5 19
C03 03  X  SPA  @0 Visibilidad @5 19
C03 04  X  FRE  @0 Complexité @5 20
C03 04  X  ENG  @0 Complexity @5 20
C03 04  X  SPA  @0 Complejidad @5 20
C03 05  X  FRE  @0 Construction @5 21
C03 05  X  ENG  @0 Construction @5 21
C03 05  X  SPA  @0 Construcción @5 21
C03 06  X  FRE  @0 Polytope @5 22
C03 06  X  ENG  @0 Polytope @5 22
C03 06  X  SPA  @0 Politope @5 22
C03 07  X  FRE  @0 Algorithme @5 23
C03 07  X  ENG  @0 Algorithm @5 23
C03 07  X  SPA  @0 Algoritmo @5 23
C03 08  X  FRE  @0 Composante connexe @4 INC @5 70
C03 09  X  FRE  @0 Pire cas @4 INC @5 71
C03 10  X  FRE  @0 52Bxx @4 INC @5 72
C03 11  X  FRE  @0 68Wxx @4 INC @5 73
C03 12  X  FRE  @0 Transversal(graphe) @4 INC @5 74
C03 13  X  FRE  @0 Ensemble contour @4 CD @5 96
C03 13  X  ENG  @0 Edge set @4 CD @5 96
N21       @1 133
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 08-0208367 INIST
ET : LINES AND FREE LINE SEGMENTS TANGENT TO ARBITRARY THREE-DIMENSIONAL CONVEX POLYHEDRA
AU : BRÖNNIMANN (Hervé); DEVILLERS (Olivier); DUJMOVIC (Vida); EVERETT (Hazel); GLISSE (Marc); GOAOC (Xavier); LAZARD (Sylvain); NA (Hyeon-Suk); WHITESIDES (Sue)
AF : Polytechnic University/Brooklyn, NY 11201/Etats-Unis (1 aut.); INRIA Sophia-Antipolis/Sophia-Antipolis/France (2 aut.); School of Computer Science, Carleton University/Ottawa, ON/Canada (3 aut.); LORIA-INRIA Lorraine, University Nancy 2/Nancy/France (4 aut., 5 aut., 6 aut., 7 aut.); School of Computing, Soongsil University/Seoul/Corée, République de (8 aut.); School of Computer Science, McGill University/Montréal, QC/Canada (9 aut.)
DT : Publication en série; Niveau analytique
SO : SIAM journal on computing : (Print); ISSN 0097-5397; Etats-Unis; Da. 2008; Vol. 37; No. 2; Pp. 522-551; Bibl. 25 ref.
LA : Anglais
EA : Motivated by visibility problems in three dimensions, we investigate the complexity and construction of the set of tangent lines in a scene of three-dimensional polyhedra. We prove that the set of lines tangent to four possibly intersecting convex polyhedra in R3 with a total of n edges consists of Θ(n2) connected components in the worst case. In the generic case, each connected component is a single line, but our result still holds for arbitrarily degenerate scenes. More generally, we show that a set of k possibly intersecting convex polyhedra with a total of n edges admits, in the worst case, Θ(n2k2) connected components of maximal free line segments tangent to at least four polytopes. Furthermore, these bounds also hold for possibly occluded lines rather than maximal free line segments. Finally, we present an O(n2k2 log n) time and O(nk2) space algorithm that, given a scene of k possibly intersecting convex polyhedra, computes all the minimal free line segments that are tangent to any four of the polytopes and are isolated transversals to the set of edges they intersect; in particular, we compute at least one line segment per connected component of tangent lines.
CC : 001D02A08; 001A02F02; 001D02A05
FD : Segment droite; Calcul 3 dimensions; Visibilité; Complexité; Construction; Polytope; Algorithme; Composante connexe; Pire cas; 52Bxx; 68Wxx; Transversal(graphe); Ensemble contour
ED : Line segment; Three-dimensional calculations; Visibility; Complexity; Construction; Polytope; Algorithm; Edge set
SD : Segmento recta; Visibilidad; Complejidad; Construcción; Politope; Algoritmo
LO : INIST-16063.354000183013260090
ID : 08-0208367

Links to Exploration step

Pascal:08-0208367

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">LINES AND FREE LINE SEGMENTS TANGENT TO ARBITRARY THREE-DIMENSIONAL CONVEX POLYHEDRA</title>
<author>
<name sortKey="Bronnimann, Herve" sort="Bronnimann, Herve" uniqKey="Bronnimann H" first="Hervé" last="Brönnimann">Hervé Brönnimann</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Polytechnic University</s1>
<s2>Brooklyn, NY 11201</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Devillers, Olivier" sort="Devillers, Olivier" uniqKey="Devillers O" first="Olivier" last="Devillers">Olivier Devillers</name>
<affiliation>
<inist:fA14 i1="02">
<s1>INRIA Sophia-Antipolis</s1>
<s2>Sophia-Antipolis</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dujmovic, Vida" sort="Dujmovic, Vida" uniqKey="Dujmovic V" first="Vida" last="Dujmovic">Vida Dujmovic</name>
<affiliation>
<inist:fA14 i1="03">
<s1>School of Computer Science, Carleton University</s1>
<s2>Ottawa, ON</s2>
<s3>CAN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Everett, Hazel" sort="Everett, Hazel" uniqKey="Everett H" first="Hazel" last="Everett">Hazel Everett</name>
<affiliation>
<inist:fA14 i1="04">
<s1>LORIA-INRIA Lorraine, University Nancy 2</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Glisse, Marc" sort="Glisse, Marc" uniqKey="Glisse M" first="Marc" last="Glisse">Marc Glisse</name>
<affiliation>
<inist:fA14 i1="04">
<s1>LORIA-INRIA Lorraine, University Nancy 2</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Goaoc, Xavier" sort="Goaoc, Xavier" uniqKey="Goaoc X" first="Xavier" last="Goaoc">Xavier Goaoc</name>
<affiliation>
<inist:fA14 i1="04">
<s1>LORIA-INRIA Lorraine, University Nancy 2</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lazard, Sylvain" sort="Lazard, Sylvain" uniqKey="Lazard S" first="Sylvain" last="Lazard">Sylvain Lazard</name>
<affiliation>
<inist:fA14 i1="04">
<s1>LORIA-INRIA Lorraine, University Nancy 2</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Na, Hyeon Suk" sort="Na, Hyeon Suk" uniqKey="Na H" first="Hyeon-Suk" last="Na">Hyeon-Suk Na</name>
<affiliation>
<inist:fA14 i1="05">
<s1>School of Computing, Soongsil University</s1>
<s2>Seoul</s2>
<s3>KOR</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Whitesides, Sue" sort="Whitesides, Sue" uniqKey="Whitesides S" first="Sue" last="Whitesides">Sue Whitesides</name>
<affiliation>
<inist:fA14 i1="06">
<s1>School of Computer Science, McGill University</s1>
<s2>Montréal, QC</s2>
<s3>CAN</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0208367</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0208367 INIST</idno>
<idno type="RBID">Pascal:08-0208367</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000317</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">LINES AND FREE LINE SEGMENTS TANGENT TO ARBITRARY THREE-DIMENSIONAL CONVEX POLYHEDRA</title>
<author>
<name sortKey="Bronnimann, Herve" sort="Bronnimann, Herve" uniqKey="Bronnimann H" first="Hervé" last="Brönnimann">Hervé Brönnimann</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Polytechnic University</s1>
<s2>Brooklyn, NY 11201</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Devillers, Olivier" sort="Devillers, Olivier" uniqKey="Devillers O" first="Olivier" last="Devillers">Olivier Devillers</name>
<affiliation>
<inist:fA14 i1="02">
<s1>INRIA Sophia-Antipolis</s1>
<s2>Sophia-Antipolis</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dujmovic, Vida" sort="Dujmovic, Vida" uniqKey="Dujmovic V" first="Vida" last="Dujmovic">Vida Dujmovic</name>
<affiliation>
<inist:fA14 i1="03">
<s1>School of Computer Science, Carleton University</s1>
<s2>Ottawa, ON</s2>
<s3>CAN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Everett, Hazel" sort="Everett, Hazel" uniqKey="Everett H" first="Hazel" last="Everett">Hazel Everett</name>
<affiliation>
<inist:fA14 i1="04">
<s1>LORIA-INRIA Lorraine, University Nancy 2</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Glisse, Marc" sort="Glisse, Marc" uniqKey="Glisse M" first="Marc" last="Glisse">Marc Glisse</name>
<affiliation>
<inist:fA14 i1="04">
<s1>LORIA-INRIA Lorraine, University Nancy 2</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Goaoc, Xavier" sort="Goaoc, Xavier" uniqKey="Goaoc X" first="Xavier" last="Goaoc">Xavier Goaoc</name>
<affiliation>
<inist:fA14 i1="04">
<s1>LORIA-INRIA Lorraine, University Nancy 2</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lazard, Sylvain" sort="Lazard, Sylvain" uniqKey="Lazard S" first="Sylvain" last="Lazard">Sylvain Lazard</name>
<affiliation>
<inist:fA14 i1="04">
<s1>LORIA-INRIA Lorraine, University Nancy 2</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Na, Hyeon Suk" sort="Na, Hyeon Suk" uniqKey="Na H" first="Hyeon-Suk" last="Na">Hyeon-Suk Na</name>
<affiliation>
<inist:fA14 i1="05">
<s1>School of Computing, Soongsil University</s1>
<s2>Seoul</s2>
<s3>KOR</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Whitesides, Sue" sort="Whitesides, Sue" uniqKey="Whitesides S" first="Sue" last="Whitesides">Sue Whitesides</name>
<affiliation>
<inist:fA14 i1="06">
<s1>School of Computer Science, McGill University</s1>
<s2>Montréal, QC</s2>
<s3>CAN</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">SIAM journal on computing : (Print)</title>
<title level="j" type="abbreviated">SIAM j. comput. : (Print)</title>
<idno type="ISSN">0097-5397</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">SIAM journal on computing : (Print)</title>
<title level="j" type="abbreviated">SIAM j. comput. : (Print)</title>
<idno type="ISSN">0097-5397</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithm</term>
<term>Complexity</term>
<term>Construction</term>
<term>Edge set</term>
<term>Line segment</term>
<term>Polytope</term>
<term>Three-dimensional calculations</term>
<term>Visibility</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Segment droite</term>
<term>Calcul 3 dimensions</term>
<term>Visibilité</term>
<term>Complexité</term>
<term>Construction</term>
<term>Polytope</term>
<term>Algorithme</term>
<term>Composante connexe</term>
<term>Pire cas</term>
<term>52Bxx</term>
<term>68Wxx</term>
<term>Transversal(graphe)</term>
<term>Ensemble contour</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Motivated by visibility problems in three dimensions, we investigate the complexity and construction of the set of tangent lines in a scene of three-dimensional polyhedra. We prove that the set of lines tangent to four possibly intersecting convex polyhedra in R
<sup>3</sup>
with a total of n edges consists of Θ(n
<sup>2</sup>
) connected components in the worst case. In the generic case, each connected component is a single line, but our result still holds for arbitrarily degenerate scenes. More generally, we show that a set of k possibly intersecting convex polyhedra with a total of n edges admits, in the worst case, Θ(n
<sup>2</sup>
k
<sup>2</sup>
) connected components of maximal free line segments tangent to at least four polytopes. Furthermore, these bounds also hold for possibly occluded lines rather than maximal free line segments. Finally, we present an O(n
<sup>2</sup>
k
<sup>2</sup>
log n) time and O(nk
<sup>2</sup>
) space algorithm that, given a scene of k possibly intersecting convex polyhedra, computes all the minimal free line segments that are tangent to any four of the polytopes and are isolated transversals to the set of edges they intersect; in particular, we compute at least one line segment per connected component of tangent lines.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0097-5397</s0>
</fA01>
<fA03 i2="1">
<s0>SIAM j. comput. : (Print)</s0>
</fA03>
<fA05>
<s2>37</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>LINES AND FREE LINE SEGMENTS TANGENT TO ARBITRARY THREE-DIMENSIONAL CONVEX POLYHEDRA</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BRÖNNIMANN (Hervé)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DEVILLERS (Olivier)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DUJMOVIC (Vida)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>EVERETT (Hazel)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>GLISSE (Marc)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>GOAOC (Xavier)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>LAZARD (Sylvain)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>NA (Hyeon-Suk)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>WHITESIDES (Sue)</s1>
</fA11>
<fA14 i1="01">
<s1>Polytechnic University</s1>
<s2>Brooklyn, NY 11201</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>INRIA Sophia-Antipolis</s1>
<s2>Sophia-Antipolis</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>School of Computer Science, Carleton University</s1>
<s2>Ottawa, ON</s2>
<s3>CAN</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>LORIA-INRIA Lorraine, University Nancy 2</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>School of Computing, Soongsil University</s1>
<s2>Seoul</s2>
<s3>KOR</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>School of Computer Science, McGill University</s1>
<s2>Montréal, QC</s2>
<s3>CAN</s3>
<sZ>9 aut.</sZ>
</fA14>
<fA20>
<s1>522-551</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16063</s2>
<s5>354000183013260090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>25 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0208367</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>SIAM journal on computing : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Motivated by visibility problems in three dimensions, we investigate the complexity and construction of the set of tangent lines in a scene of three-dimensional polyhedra. We prove that the set of lines tangent to four possibly intersecting convex polyhedra in R
<sup>3</sup>
with a total of n edges consists of Θ(n
<sup>2</sup>
) connected components in the worst case. In the generic case, each connected component is a single line, but our result still holds for arbitrarily degenerate scenes. More generally, we show that a set of k possibly intersecting convex polyhedra with a total of n edges admits, in the worst case, Θ(n
<sup>2</sup>
k
<sup>2</sup>
) connected components of maximal free line segments tangent to at least four polytopes. Furthermore, these bounds also hold for possibly occluded lines rather than maximal free line segments. Finally, we present an O(n
<sup>2</sup>
k
<sup>2</sup>
log n) time and O(nk
<sup>2</sup>
) space algorithm that, given a scene of k possibly intersecting convex polyhedra, computes all the minimal free line segments that are tangent to any four of the polytopes and are isolated transversals to the set of edges they intersect; in particular, we compute at least one line segment per connected component of tangent lines.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02A08</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001A02F02</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D02A05</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Segment droite</s0>
<s5>17</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Line segment</s0>
<s5>17</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Segmento recta</s0>
<s5>17</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Calcul 3 dimensions</s0>
<s5>18</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Three-dimensional calculations</s0>
<s5>18</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Visibilité</s0>
<s5>19</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Visibility</s0>
<s5>19</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Visibilidad</s0>
<s5>19</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Complexité</s0>
<s5>20</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Complexity</s0>
<s5>20</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Complejidad</s0>
<s5>20</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Construction</s0>
<s5>21</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Construction</s0>
<s5>21</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Construcción</s0>
<s5>21</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Polytope</s0>
<s5>22</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Polytope</s0>
<s5>22</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Politope</s0>
<s5>22</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Algorithme</s0>
<s5>23</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Algorithm</s0>
<s5>23</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Algoritmo</s0>
<s5>23</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Composante connexe</s0>
<s4>INC</s4>
<s5>70</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Pire cas</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>52Bxx</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>68Wxx</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Transversal(graphe)</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Ensemble contour</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Edge set</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>133</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 08-0208367 INIST</NO>
<ET>LINES AND FREE LINE SEGMENTS TANGENT TO ARBITRARY THREE-DIMENSIONAL CONVEX POLYHEDRA</ET>
<AU>BRÖNNIMANN (Hervé); DEVILLERS (Olivier); DUJMOVIC (Vida); EVERETT (Hazel); GLISSE (Marc); GOAOC (Xavier); LAZARD (Sylvain); NA (Hyeon-Suk); WHITESIDES (Sue)</AU>
<AF>Polytechnic University/Brooklyn, NY 11201/Etats-Unis (1 aut.); INRIA Sophia-Antipolis/Sophia-Antipolis/France (2 aut.); School of Computer Science, Carleton University/Ottawa, ON/Canada (3 aut.); LORIA-INRIA Lorraine, University Nancy 2/Nancy/France (4 aut., 5 aut., 6 aut., 7 aut.); School of Computing, Soongsil University/Seoul/Corée, République de (8 aut.); School of Computer Science, McGill University/Montréal, QC/Canada (9 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>SIAM journal on computing : (Print); ISSN 0097-5397; Etats-Unis; Da. 2008; Vol. 37; No. 2; Pp. 522-551; Bibl. 25 ref.</SO>
<LA>Anglais</LA>
<EA>Motivated by visibility problems in three dimensions, we investigate the complexity and construction of the set of tangent lines in a scene of three-dimensional polyhedra. We prove that the set of lines tangent to four possibly intersecting convex polyhedra in R
<sup>3</sup>
with a total of n edges consists of Θ(n
<sup>2</sup>
) connected components in the worst case. In the generic case, each connected component is a single line, but our result still holds for arbitrarily degenerate scenes. More generally, we show that a set of k possibly intersecting convex polyhedra with a total of n edges admits, in the worst case, Θ(n
<sup>2</sup>
k
<sup>2</sup>
) connected components of maximal free line segments tangent to at least four polytopes. Furthermore, these bounds also hold for possibly occluded lines rather than maximal free line segments. Finally, we present an O(n
<sup>2</sup>
k
<sup>2</sup>
log n) time and O(nk
<sup>2</sup>
) space algorithm that, given a scene of k possibly intersecting convex polyhedra, computes all the minimal free line segments that are tangent to any four of the polytopes and are isolated transversals to the set of edges they intersect; in particular, we compute at least one line segment per connected component of tangent lines.</EA>
<CC>001D02A08; 001A02F02; 001D02A05</CC>
<FD>Segment droite; Calcul 3 dimensions; Visibilité; Complexité; Construction; Polytope; Algorithme; Composante connexe; Pire cas; 52Bxx; 68Wxx; Transversal(graphe); Ensemble contour</FD>
<ED>Line segment; Three-dimensional calculations; Visibility; Complexity; Construction; Polytope; Algorithm; Edge set</ED>
<SD>Segmento recta; Visibilidad; Complejidad; Construcción; Politope; Algoritmo</SD>
<LO>INIST-16063.354000183013260090</LO>
<ID>08-0208367</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000317 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000317 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:08-0208367
   |texte=   LINES AND FREE LINE SEGMENTS TANGENT TO ARBITRARY THREE-DIMENSIONAL CONVEX POLYHEDRA
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022