Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fast protein structure alignment using Gaussian overlap scoring of backbone peptide fragment similarity

Identifieur interne : 000093 ( PascalFrancis/Corpus ); précédent : 000092; suivant : 000094

Fast protein structure alignment using Gaussian overlap scoring of backbone peptide fragment similarity

Auteurs : David W. Ritchie ; Anisah W. Ghoorah ; Lazaros Mavridis ; Vishwesh Venkatraman

Source :

RBID : Pascal:13-0022044

Descripteurs français

English descriptors

Abstract

Motivation: Aligning and comparing protein structures is important for understanding their evolutionary and functional relationships. With the rapid growth of protein structure databases in recent years, the need to align, superpose and compare protein structures rapidly and accurately has never been greater. Many structural alignment algorithms have been described in the past 20 years. However, achieving an algorithm that is both accurate and fast remains a considerable challenge. Results: We have developed a novel protein structure alignment algorithm called 'Kpax', which exploits the highly predictable covalent geometry of Cα atoms to define multiple local coordinate frames in which backbone peptide fragments may be oriented and compared using sensitive Gaussian overlap scoring functions. A global alignment and hence a structural superposition may then be found rapidly using dynamic programming with secondary structure-specific gap penalties. When superposing pairs of structures, Kpax tends to give tighter secondary structure overlays than several popular structure alignment algorithms. When searching the CATH database, Kpax is faster and more accurate than the very efficient Yakusa algorithm, and it gives almost the same high level of fold recognition as TM-Align while being more than 100 times faster.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1367-4803
A03   1    @0 Bioinformatics : (Oxf., Print)
A05       @2 28
A06       @2 24
A08 01  1  ENG  @1 Fast protein structure alignment using Gaussian overlap scoring of backbone peptide fragment similarity
A11 01  1    @1 RITCHIE (David W.)
A11 02  1    @1 GHOORAH (Anisah W.)
A11 03  1    @1 MAVRIDIS (Lazaros)
A11 04  1    @1 VENKATRAMAN (Vishwesh)
A14 01      @1 Inria Nancy, 615 Rue du Jardin Botanique @2 54600 Villers-lès-Nancy @3 FRA @Z 1 aut. @Z 2 aut.
A14 02      @1 Université de Lorraine, LORIA @2 54506 Nancy @3 FRA @Z 2 aut.
A14 03      @1 University of St. Andrews @2 St. Andrews KY16 9AJ, Scotland @3 GBR @Z 3 aut.
A14 04      @1 Norwegian University of Science and Technology, Høgskoleringen 5 @2 Trondheim @3 NOR @Z 4 aut.
A20       @1 3274-3281
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 21331 @5 354000505476120160
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/4
A47 01  1    @0 13-0022044
A60       @1 P
A61       @0 A
A64 01  1    @0 Bioinformatics : (Oxford. Print)
A66 01      @0 GBR
C01 01    ENG  @0 Motivation: Aligning and comparing protein structures is important for understanding their evolutionary and functional relationships. With the rapid growth of protein structure databases in recent years, the need to align, superpose and compare protein structures rapidly and accurately has never been greater. Many structural alignment algorithms have been described in the past 20 years. However, achieving an algorithm that is both accurate and fast remains a considerable challenge. Results: We have developed a novel protein structure alignment algorithm called 'Kpax', which exploits the highly predictable covalent geometry of Cα atoms to define multiple local coordinate frames in which backbone peptide fragments may be oriented and compared using sensitive Gaussian overlap scoring functions. A global alignment and hence a structural superposition may then be found rapidly using dynamic programming with secondary structure-specific gap penalties. When superposing pairs of structures, Kpax tends to give tighter secondary structure overlays than several popular structure alignment algorithms. When searching the CATH database, Kpax is faster and more accurate than the very efficient Yakusa algorithm, and it gives almost the same high level of fold recognition as TM-Align while being more than 100 times faster.
C02 01  X    @0 002A01B
C03 01  X  FRE  @0 Protéine @5 05
C03 01  X  ENG  @0 Protein @5 05
C03 01  X  SPA  @0 Proteína @5 05
C03 02  X  FRE  @0 Structure @5 06
C03 02  X  ENG  @0 Structure @5 06
C03 02  X  SPA  @0 Estructura @5 06
C03 03  X  FRE  @0 Chevauchement @5 07
C03 03  X  ENG  @0 Overlap @5 07
C03 03  X  SPA  @0 Imbricación @5 07
C03 04  X  FRE  @0 Sonorisation (film) @5 08
C03 04  X  ENG  @0 Scoring @5 08
C03 04  X  SPA  @0 Sonorización (pelicula) @5 08
C03 05  X  FRE  @0 Fragment peptidique @5 09
C03 05  X  ENG  @0 Peptide fragment @5 09
C03 05  X  SPA  @0 Fragmento peptídico @5 09
C03 06  X  FRE  @0 Peptide @5 10
C03 06  X  ENG  @0 Peptides @5 10
C03 06  X  SPA  @0 Péptido @5 10
C03 07  X  FRE  @0 Similitude @5 11
C03 07  X  ENG  @0 Similarity @5 11
C03 07  X  SPA  @0 Similitud @5 11
C03 08  X  FRE  @0 Alignement structure @4 INC @5 79
N21       @1 014
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 13-0022044 INIST
ET : Fast protein structure alignment using Gaussian overlap scoring of backbone peptide fragment similarity
AU : RITCHIE (David W.); GHOORAH (Anisah W.); MAVRIDIS (Lazaros); VENKATRAMAN (Vishwesh)
AF : Inria Nancy, 615 Rue du Jardin Botanique/54600 Villers-lès-Nancy/France (1 aut., 2 aut.); Université de Lorraine, LORIA/54506 Nancy/France (2 aut.); University of St. Andrews/St. Andrews KY16 9AJ, Scotland/Royaume-Uni (3 aut.); Norwegian University of Science and Technology, Høgskoleringen 5/Trondheim/Norvège (4 aut.)
DT : Publication en série; Niveau analytique
SO : Bioinformatics : (Oxford. Print); ISSN 1367-4803; Royaume-Uni; Da. 2012; Vol. 28; No. 24; Pp. 3274-3281; Bibl. 1 p.1/4
LA : Anglais
EA : Motivation: Aligning and comparing protein structures is important for understanding their evolutionary and functional relationships. With the rapid growth of protein structure databases in recent years, the need to align, superpose and compare protein structures rapidly and accurately has never been greater. Many structural alignment algorithms have been described in the past 20 years. However, achieving an algorithm that is both accurate and fast remains a considerable challenge. Results: We have developed a novel protein structure alignment algorithm called 'Kpax', which exploits the highly predictable covalent geometry of Cα atoms to define multiple local coordinate frames in which backbone peptide fragments may be oriented and compared using sensitive Gaussian overlap scoring functions. A global alignment and hence a structural superposition may then be found rapidly using dynamic programming with secondary structure-specific gap penalties. When superposing pairs of structures, Kpax tends to give tighter secondary structure overlays than several popular structure alignment algorithms. When searching the CATH database, Kpax is faster and more accurate than the very efficient Yakusa algorithm, and it gives almost the same high level of fold recognition as TM-Align while being more than 100 times faster.
CC : 002A01B
FD : Protéine; Structure; Chevauchement; Sonorisation (film); Fragment peptidique; Peptide; Similitude; Alignement structure
ED : Protein; Structure; Overlap; Scoring; Peptide fragment; Peptides; Similarity
SD : Proteína; Estructura; Imbricación; Sonorización (pelicula); Fragmento peptídico; Péptido; Similitud
LO : INIST-21331.354000505476120160
ID : 13-0022044

Links to Exploration step

Pascal:13-0022044

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Fast protein structure alignment using Gaussian overlap scoring of backbone peptide fragment similarity</title>
<author>
<name sortKey="Ritchie, David W" sort="Ritchie, David W" uniqKey="Ritchie D" first="David W." last="Ritchie">David W. Ritchie</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Inria Nancy, 615 Rue du Jardin Botanique</s1>
<s2>54600 Villers-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ghoorah, Anisah W" sort="Ghoorah, Anisah W" uniqKey="Ghoorah A" first="Anisah W." last="Ghoorah">Anisah W. Ghoorah</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Inria Nancy, 615 Rue du Jardin Botanique</s1>
<s2>54600 Villers-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Université de Lorraine, LORIA</s1>
<s2>54506 Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mavridis, Lazaros" sort="Mavridis, Lazaros" uniqKey="Mavridis L" first="Lazaros" last="Mavridis">Lazaros Mavridis</name>
<affiliation>
<inist:fA14 i1="03">
<s1>University of St. Andrews</s1>
<s2>St. Andrews KY16 9AJ, Scotland</s2>
<s3>GBR</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Venkatraman, Vishwesh" sort="Venkatraman, Vishwesh" uniqKey="Venkatraman V" first="Vishwesh" last="Venkatraman">Vishwesh Venkatraman</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Norwegian University of Science and Technology, Høgskoleringen 5</s1>
<s2>Trondheim</s2>
<s3>NOR</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0022044</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0022044 INIST</idno>
<idno type="RBID">Pascal:13-0022044</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000093</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Fast protein structure alignment using Gaussian overlap scoring of backbone peptide fragment similarity</title>
<author>
<name sortKey="Ritchie, David W" sort="Ritchie, David W" uniqKey="Ritchie D" first="David W." last="Ritchie">David W. Ritchie</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Inria Nancy, 615 Rue du Jardin Botanique</s1>
<s2>54600 Villers-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ghoorah, Anisah W" sort="Ghoorah, Anisah W" uniqKey="Ghoorah A" first="Anisah W." last="Ghoorah">Anisah W. Ghoorah</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Inria Nancy, 615 Rue du Jardin Botanique</s1>
<s2>54600 Villers-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Université de Lorraine, LORIA</s1>
<s2>54506 Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mavridis, Lazaros" sort="Mavridis, Lazaros" uniqKey="Mavridis L" first="Lazaros" last="Mavridis">Lazaros Mavridis</name>
<affiliation>
<inist:fA14 i1="03">
<s1>University of St. Andrews</s1>
<s2>St. Andrews KY16 9AJ, Scotland</s2>
<s3>GBR</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Venkatraman, Vishwesh" sort="Venkatraman, Vishwesh" uniqKey="Venkatraman V" first="Vishwesh" last="Venkatraman">Vishwesh Venkatraman</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Norwegian University of Science and Technology, Høgskoleringen 5</s1>
<s2>Trondheim</s2>
<s3>NOR</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Bioinformatics : (Oxford. Print)</title>
<title level="j" type="abbreviated">Bioinformatics : (Oxf., Print)</title>
<idno type="ISSN">1367-4803</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Bioinformatics : (Oxford. Print)</title>
<title level="j" type="abbreviated">Bioinformatics : (Oxf., Print)</title>
<idno type="ISSN">1367-4803</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Overlap</term>
<term>Peptide fragment</term>
<term>Peptides</term>
<term>Protein</term>
<term>Scoring</term>
<term>Similarity</term>
<term>Structure</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Protéine</term>
<term>Structure</term>
<term>Chevauchement</term>
<term>Sonorisation (film)</term>
<term>Fragment peptidique</term>
<term>Peptide</term>
<term>Similitude</term>
<term>Alignement structure</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Motivation: Aligning and comparing protein structures is important for understanding their evolutionary and functional relationships. With the rapid growth of protein structure databases in recent years, the need to align, superpose and compare protein structures rapidly and accurately has never been greater. Many structural alignment algorithms have been described in the past 20 years. However, achieving an algorithm that is both accurate and fast remains a considerable challenge. Results: We have developed a novel protein structure alignment algorithm called 'Kpax', which exploits the highly predictable covalent geometry of C
<sub>α</sub>
atoms to define multiple local coordinate frames in which backbone peptide fragments may be oriented and compared using sensitive Gaussian overlap scoring functions. A global alignment and hence a structural superposition may then be found rapidly using dynamic programming with secondary structure-specific gap penalties. When superposing pairs of structures, Kpax tends to give tighter secondary structure overlays than several popular structure alignment algorithms. When searching the CATH database, Kpax is faster and more accurate than the very efficient Yakusa algorithm, and it gives almost the same high level of fold recognition as TM-Align while being more than 100 times faster.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1367-4803</s0>
</fA01>
<fA03 i2="1">
<s0>Bioinformatics : (Oxf., Print)</s0>
</fA03>
<fA05>
<s2>28</s2>
</fA05>
<fA06>
<s2>24</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Fast protein structure alignment using Gaussian overlap scoring of backbone peptide fragment similarity</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>RITCHIE (David W.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GHOORAH (Anisah W.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MAVRIDIS (Lazaros)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>VENKATRAMAN (Vishwesh)</s1>
</fA11>
<fA14 i1="01">
<s1>Inria Nancy, 615 Rue du Jardin Botanique</s1>
<s2>54600 Villers-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Université de Lorraine, LORIA</s1>
<s2>54506 Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>University of St. Andrews</s1>
<s2>St. Andrews KY16 9AJ, Scotland</s2>
<s3>GBR</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Norwegian University of Science and Technology, Høgskoleringen 5</s1>
<s2>Trondheim</s2>
<s3>NOR</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>3274-3281</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21331</s2>
<s5>354000505476120160</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0022044</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Bioinformatics : (Oxford. Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Motivation: Aligning and comparing protein structures is important for understanding their evolutionary and functional relationships. With the rapid growth of protein structure databases in recent years, the need to align, superpose and compare protein structures rapidly and accurately has never been greater. Many structural alignment algorithms have been described in the past 20 years. However, achieving an algorithm that is both accurate and fast remains a considerable challenge. Results: We have developed a novel protein structure alignment algorithm called 'Kpax', which exploits the highly predictable covalent geometry of C
<sub>α</sub>
atoms to define multiple local coordinate frames in which backbone peptide fragments may be oriented and compared using sensitive Gaussian overlap scoring functions. A global alignment and hence a structural superposition may then be found rapidly using dynamic programming with secondary structure-specific gap penalties. When superposing pairs of structures, Kpax tends to give tighter secondary structure overlays than several popular structure alignment algorithms. When searching the CATH database, Kpax is faster and more accurate than the very efficient Yakusa algorithm, and it gives almost the same high level of fold recognition as TM-Align while being more than 100 times faster.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A01B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Protéine</s0>
<s5>05</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Protein</s0>
<s5>05</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Proteína</s0>
<s5>05</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Structure</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Structure</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Estructura</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Chevauchement</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Overlap</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Imbricación</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Sonorisation (film)</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Scoring</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Sonorización (pelicula)</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Fragment peptidique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Peptide fragment</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Fragmento peptídico</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Peptide</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Peptides</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Péptido</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Similitude</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Similarity</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Similitud</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Alignement structure</s0>
<s4>INC</s4>
<s5>79</s5>
</fC03>
<fN21>
<s1>014</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 13-0022044 INIST</NO>
<ET>Fast protein structure alignment using Gaussian overlap scoring of backbone peptide fragment similarity</ET>
<AU>RITCHIE (David W.); GHOORAH (Anisah W.); MAVRIDIS (Lazaros); VENKATRAMAN (Vishwesh)</AU>
<AF>Inria Nancy, 615 Rue du Jardin Botanique/54600 Villers-lès-Nancy/France (1 aut., 2 aut.); Université de Lorraine, LORIA/54506 Nancy/France (2 aut.); University of St. Andrews/St. Andrews KY16 9AJ, Scotland/Royaume-Uni (3 aut.); Norwegian University of Science and Technology, Høgskoleringen 5/Trondheim/Norvège (4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Bioinformatics : (Oxford. Print); ISSN 1367-4803; Royaume-Uni; Da. 2012; Vol. 28; No. 24; Pp. 3274-3281; Bibl. 1 p.1/4</SO>
<LA>Anglais</LA>
<EA>Motivation: Aligning and comparing protein structures is important for understanding their evolutionary and functional relationships. With the rapid growth of protein structure databases in recent years, the need to align, superpose and compare protein structures rapidly and accurately has never been greater. Many structural alignment algorithms have been described in the past 20 years. However, achieving an algorithm that is both accurate and fast remains a considerable challenge. Results: We have developed a novel protein structure alignment algorithm called 'Kpax', which exploits the highly predictable covalent geometry of C
<sub>α</sub>
atoms to define multiple local coordinate frames in which backbone peptide fragments may be oriented and compared using sensitive Gaussian overlap scoring functions. A global alignment and hence a structural superposition may then be found rapidly using dynamic programming with secondary structure-specific gap penalties. When superposing pairs of structures, Kpax tends to give tighter secondary structure overlays than several popular structure alignment algorithms. When searching the CATH database, Kpax is faster and more accurate than the very efficient Yakusa algorithm, and it gives almost the same high level of fold recognition as TM-Align while being more than 100 times faster.</EA>
<CC>002A01B</CC>
<FD>Protéine; Structure; Chevauchement; Sonorisation (film); Fragment peptidique; Peptide; Similitude; Alignement structure</FD>
<ED>Protein; Structure; Overlap; Scoring; Peptide fragment; Peptides; Similarity</ED>
<SD>Proteína; Estructura; Imbricación; Sonorización (pelicula); Fragmento peptídico; Péptido; Similitud</SD>
<LO>INIST-21331.354000505476120160</LO>
<ID>13-0022044</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000093 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000093 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:13-0022044
   |texte=   Fast protein structure alignment using Gaussian overlap scoring of backbone peptide fragment similarity
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022