Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A combined multi-scale/irregular algorithm for the vectorization of noisy digital contours

Identifieur interne : 000081 ( PascalFrancis/Corpus ); précédent : 000080; suivant : 000082

A combined multi-scale/irregular algorithm for the vectorization of noisy digital contours

Auteurs : Antoine Vacavant ; Tristan Roussillon ; Bertrand Kerautret ; Jacques-Olivier Lachaud

Source :

RBID : Pascal:13-0182220

Descripteurs français

English descriptors

Abstract

This paper proposes and evaluates a new method for reconstructing a polygonal representation from arbitrary digital contours that are possibly damaged or coming from the segmentation of noisy data. The method consists in two stages. In the first stage, a multi-scale analysis of the contour is conducted so as to identify noisy or damaged parts of the contour as well as the intensity of the perturbation. All the identified scales are then merged so that the input data is covered by a set of pixels whose size is increased according to the local intensity of noise. The second stage consists in transforming this set of resized pixels into an irregular isothetic object composed of an ordered set of rectangular and axis-aligned cells. Its topology is stored as a Reeb graph, which allows an easy pruning of its unnecessary spurious edges. Every remaining connected part has the topology of a circle and a polygonal representation is independently computed for each of them. Four different geometrical algorithms, including a new one, are reviewed for the latter task. These vectorization algorithms are experimentally evaluated and the whole method is also compared to previous works on both synthetic and true digital images. For fair comparisons, when possible, several error measures between the reconstruction and the ground truth are given for the different techniques.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1077-3142
A02 01      @0 CVIUF4
A03   1    @0 Comput. vis. image underst. : (Print)
A05       @2 117
A06       @2 4
A08 01  1  ENG  @1 A combined multi-scale/irregular algorithm for the vectorization of noisy digital contours
A09 01  1  ENG  @1 Discrete Geometry for Computer Imagery
A11 01  1    @1 VACAVANT (Antoine)
A11 02  1    @1 ROUSSILLON (Tristan)
A11 03  1    @1 KERAUTRET (Bertrand)
A11 04  1    @1 LACHAUD (Jacques-Olivier)
A12 01  1    @1 DEBLED-RENNESSON (Isabelle) @9 ed.
A12 02  1    @1 DOMENJOUD (Eric) @9 ed.
A12 03  1    @1 KERAUTRET (Bertrand) @9 ed.
A12 04  1    @1 EVEN (Philippe) @9 ed.
A14 01      @1 Clermont Université, Université d'Auvergne, ISIT, BP10448 @2 63000 Clermont-Ferrand @3 FRA @Z 1 aut.
A14 02      @1 CNRS, UMR6284, BP10448 @2 63000 Clermont-Ferrand @3 FRA @Z 1 aut.
A14 03      @1 Université de Lyon, CNRS @2 Lyon @3 FRA @Z 2 aut.
A14 04      @1 Université Lyon 2, LIRIS, UMR5205 CNRS @2 69676, Lyon @3 FRA @Z 2 aut.
A14 05      @1 Université de Nancy, LORIA, UMR7503 CNRS @2 54506, Nancy @3 FRA @Z 3 aut.
A14 06      @1 Université de Savoie, LAMA, UMR5127 CNRS @2 73376, Chambéry @3 FRA @Z 3 aut. @Z 4 aut.
A15 01      @1 LORIA (Lorraine Research Laboratory in Computer Science and its Applications), UMR 7503, Lorraine University @2 Nancy @3 FRA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut.
A20       @1 438-450
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 15463A @5 354000502487160120
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 38 ref.
A47 01  1    @0 13-0182220
A60       @1 P
A61       @0 A
A64 01  1    @0 Computer vision and image understanding : (Print)
A66 01      @0 NLD
C01 01    ENG  @0 This paper proposes and evaluates a new method for reconstructing a polygonal representation from arbitrary digital contours that are possibly damaged or coming from the segmentation of noisy data. The method consists in two stages. In the first stage, a multi-scale analysis of the contour is conducted so as to identify noisy or damaged parts of the contour as well as the intensity of the perturbation. All the identified scales are then merged so that the input data is covered by a set of pixels whose size is increased according to the local intensity of noise. The second stage consists in transforming this set of resized pixels into an irregular isothetic object composed of an ordered set of rectangular and axis-aligned cells. Its topology is stored as a Reeb graph, which allows an easy pruning of its unnecessary spurious edges. Every remaining connected part has the topology of a circle and a polygonal representation is independently computed for each of them. Four different geometrical algorithms, including a new one, are reviewed for the latter task. These vectorization algorithms are experimentally evaluated and the whole method is also compared to previous works on both synthetic and true digital images. For fair comparisons, when possible, several error measures between the reconstruction and the ground truth are given for the different techniques.
C02 01  X    @0 001D02A05
C02 02  X    @0 001D02C03
C03 01  X  FRE  @0 Vision ordinateur @5 01
C03 01  X  ENG  @0 Computer vision @5 01
C03 01  X  SPA  @0 Visión ordenador @5 01
C03 02  X  FRE  @0 Détection contour @5 06
C03 02  X  ENG  @0 Edge detection @5 06
C03 02  X  SPA  @0 Detección contorno @5 06
C03 03  X  FRE  @0 Topologie @5 07
C03 03  X  ENG  @0 Topology @5 07
C03 03  X  SPA  @0 Topología @5 07
C03 04  X  FRE  @0 Géométrie algorithmique @5 08
C03 04  X  ENG  @0 Computational geometry @5 08
C03 04  X  SPA  @0 Geometría computacional @5 08
C03 05  X  FRE  @0 Image numérique @5 09
C03 05  X  ENG  @0 Digital image @5 09
C03 05  X  SPA  @0 Imagen numérica @5 09
C03 06  X  FRE  @0 Grille @5 10
C03 06  X  ENG  @0 Grid @5 10
C03 06  X  SPA  @0 Rejilla @5 10
C03 07  X  FRE  @0 Endommagement @5 18
C03 07  X  ENG  @0 Damaging @5 18
C03 07  X  SPA  @0 Deterioración @5 18
C03 08  X  FRE  @0 Réalité terrain @5 19
C03 08  X  ENG  @0 Ground truth @5 19
C03 08  X  SPA  @0 Realidad terreno @5 19
C03 09  X  FRE  @0 Vectorisation @5 23
C03 09  X  ENG  @0 Vectorization @5 23
C03 09  X  SPA  @0 Vectorización @5 23
C03 10  X  FRE  @0 Segmentation @5 24
C03 10  X  ENG  @0 Segmentation @5 24
C03 10  X  SPA  @0 Segmentación @5 24
C03 11  X  FRE  @0 Rapport signal bruit @5 25
C03 11  X  ENG  @0 Signal to noise ratio @5 25
C03 11  X  SPA  @0 Relación señal ruido @5 25
C03 12  X  FRE  @0 Recouvrement ensemble @5 26
C03 12  X  ENG  @0 Set covering @5 26
C03 12  X  SPA  @0 Cubierta conjunto @5 26
C03 13  X  FRE  @0 Ensemble ordonné @5 27
C03 13  X  ENG  @0 Ordered set @5 27
C03 13  X  SPA  @0 Conjunto ordenado @5 27
C03 14  X  FRE  @0 Elagage @5 28
C03 14  X  ENG  @0 Pruning(tree) @5 28
C03 14  X  SPA  @0 Poda @5 28
C03 15  X  FRE  @0 Estimation erreur @5 29
C03 15  X  ENG  @0 Error estimation @5 29
C03 15  X  SPA  @0 Estimación error @5 29
C03 16  X  FRE  @0 . @4 INC @5 82
C03 17  X  FRE  @0 Algorithme irrégulier @4 CD @5 96
C03 17  X  ENG  @0 Irregular Algorithm @4 CD @5 96
C03 17  X  SPA  @0 Algoritmo irregular @4 CD @5 96
N21       @1 161
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 13-0182220 INIST
ET : A combined multi-scale/irregular algorithm for the vectorization of noisy digital contours
AU : VACAVANT (Antoine); ROUSSILLON (Tristan); KERAUTRET (Bertrand); LACHAUD (Jacques-Olivier); DEBLED-RENNESSON (Isabelle); DOMENJOUD (Eric); KERAUTRET (Bertrand); EVEN (Philippe)
AF : Clermont Université, Université d'Auvergne, ISIT, BP10448/63000 Clermont-Ferrand/France (1 aut.); CNRS, UMR6284, BP10448/63000 Clermont-Ferrand/France (1 aut.); Université de Lyon, CNRS/Lyon/France (2 aut.); Université Lyon 2, LIRIS, UMR5205 CNRS/69676, Lyon/France (2 aut.); Université de Nancy, LORIA, UMR7503 CNRS/54506, Nancy/France (3 aut.); Université de Savoie, LAMA, UMR5127 CNRS/73376, Chambéry/France (3 aut., 4 aut.); LORIA (Lorraine Research Laboratory in Computer Science and its Applications), UMR 7503, Lorraine University/Nancy/France (1 aut., 2 aut., 3 aut., 4 aut.)
DT : Publication en série; Niveau analytique
SO : Computer vision and image understanding : (Print); ISSN 1077-3142; Coden CVIUF4; Pays-Bas; Da. 2013; Vol. 117; No. 4; Pp. 438-450; Bibl. 38 ref.
LA : Anglais
EA : This paper proposes and evaluates a new method for reconstructing a polygonal representation from arbitrary digital contours that are possibly damaged or coming from the segmentation of noisy data. The method consists in two stages. In the first stage, a multi-scale analysis of the contour is conducted so as to identify noisy or damaged parts of the contour as well as the intensity of the perturbation. All the identified scales are then merged so that the input data is covered by a set of pixels whose size is increased according to the local intensity of noise. The second stage consists in transforming this set of resized pixels into an irregular isothetic object composed of an ordered set of rectangular and axis-aligned cells. Its topology is stored as a Reeb graph, which allows an easy pruning of its unnecessary spurious edges. Every remaining connected part has the topology of a circle and a polygonal representation is independently computed for each of them. Four different geometrical algorithms, including a new one, are reviewed for the latter task. These vectorization algorithms are experimentally evaluated and the whole method is also compared to previous works on both synthetic and true digital images. For fair comparisons, when possible, several error measures between the reconstruction and the ground truth are given for the different techniques.
CC : 001D02A05; 001D02C03
FD : Vision ordinateur; Détection contour; Topologie; Géométrie algorithmique; Image numérique; Grille; Endommagement; Réalité terrain; Vectorisation; Segmentation; Rapport signal bruit; Recouvrement ensemble; Ensemble ordonné; Elagage; Estimation erreur; .; Algorithme irrégulier
ED : Computer vision; Edge detection; Topology; Computational geometry; Digital image; Grid; Damaging; Ground truth; Vectorization; Segmentation; Signal to noise ratio; Set covering; Ordered set; Pruning(tree); Error estimation; Irregular Algorithm
SD : Visión ordenador; Detección contorno; Topología; Geometría computacional; Imagen numérica; Rejilla; Deterioración; Realidad terreno; Vectorización; Segmentación; Relación señal ruido; Cubierta conjunto; Conjunto ordenado; Poda; Estimación error; Algoritmo irregular
LO : INIST-15463A.354000502487160120
ID : 13-0182220

Links to Exploration step

Pascal:13-0182220

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">A combined multi-scale/irregular algorithm for the vectorization of noisy digital contours</title>
<author>
<name sortKey="Vacavant, Antoine" sort="Vacavant, Antoine" uniqKey="Vacavant A" first="Antoine" last="Vacavant">Antoine Vacavant</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Clermont Université, Université d'Auvergne, ISIT, BP10448</s1>
<s2>63000 Clermont-Ferrand</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>CNRS, UMR6284, BP10448</s1>
<s2>63000 Clermont-Ferrand</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Roussillon, Tristan" sort="Roussillon, Tristan" uniqKey="Roussillon T" first="Tristan" last="Roussillon">Tristan Roussillon</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Université de Lyon, CNRS</s1>
<s2>Lyon</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Université Lyon 2, LIRIS, UMR5205 CNRS</s1>
<s2>69676, Lyon</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kerautret, Bertrand" sort="Kerautret, Bertrand" uniqKey="Kerautret B" first="Bertrand" last="Kerautret">Bertrand Kerautret</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Université de Nancy, LORIA, UMR7503 CNRS</s1>
<s2>54506, Nancy</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="06">
<s1>Université de Savoie, LAMA, UMR5127 CNRS</s1>
<s2>73376, Chambéry</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lachaud, Jacques Olivier" sort="Lachaud, Jacques Olivier" uniqKey="Lachaud J" first="Jacques-Olivier" last="Lachaud">Jacques-Olivier Lachaud</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Université de Savoie, LAMA, UMR5127 CNRS</s1>
<s2>73376, Chambéry</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0182220</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0182220 INIST</idno>
<idno type="RBID">Pascal:13-0182220</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000081</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">A combined multi-scale/irregular algorithm for the vectorization of noisy digital contours</title>
<author>
<name sortKey="Vacavant, Antoine" sort="Vacavant, Antoine" uniqKey="Vacavant A" first="Antoine" last="Vacavant">Antoine Vacavant</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Clermont Université, Université d'Auvergne, ISIT, BP10448</s1>
<s2>63000 Clermont-Ferrand</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>CNRS, UMR6284, BP10448</s1>
<s2>63000 Clermont-Ferrand</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Roussillon, Tristan" sort="Roussillon, Tristan" uniqKey="Roussillon T" first="Tristan" last="Roussillon">Tristan Roussillon</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Université de Lyon, CNRS</s1>
<s2>Lyon</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Université Lyon 2, LIRIS, UMR5205 CNRS</s1>
<s2>69676, Lyon</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kerautret, Bertrand" sort="Kerautret, Bertrand" uniqKey="Kerautret B" first="Bertrand" last="Kerautret">Bertrand Kerautret</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Université de Nancy, LORIA, UMR7503 CNRS</s1>
<s2>54506, Nancy</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="06">
<s1>Université de Savoie, LAMA, UMR5127 CNRS</s1>
<s2>73376, Chambéry</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lachaud, Jacques Olivier" sort="Lachaud, Jacques Olivier" uniqKey="Lachaud J" first="Jacques-Olivier" last="Lachaud">Jacques-Olivier Lachaud</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Université de Savoie, LAMA, UMR5127 CNRS</s1>
<s2>73376, Chambéry</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Computer vision and image understanding : (Print)</title>
<title level="j" type="abbreviated">Comput. vis. image underst. : (Print)</title>
<idno type="ISSN">1077-3142</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Computer vision and image understanding : (Print)</title>
<title level="j" type="abbreviated">Comput. vis. image underst. : (Print)</title>
<idno type="ISSN">1077-3142</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computational geometry</term>
<term>Computer vision</term>
<term>Damaging</term>
<term>Digital image</term>
<term>Edge detection</term>
<term>Error estimation</term>
<term>Grid</term>
<term>Ground truth</term>
<term>Irregular Algorithm</term>
<term>Ordered set</term>
<term>Pruning(tree)</term>
<term>Segmentation</term>
<term>Set covering</term>
<term>Signal to noise ratio</term>
<term>Topology</term>
<term>Vectorization</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Vision ordinateur</term>
<term>Détection contour</term>
<term>Topologie</term>
<term>Géométrie algorithmique</term>
<term>Image numérique</term>
<term>Grille</term>
<term>Endommagement</term>
<term>Réalité terrain</term>
<term>Vectorisation</term>
<term>Segmentation</term>
<term>Rapport signal bruit</term>
<term>Recouvrement ensemble</term>
<term>Ensemble ordonné</term>
<term>Elagage</term>
<term>Estimation erreur</term>
<term>.</term>
<term>Algorithme irrégulier</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper proposes and evaluates a new method for reconstructing a polygonal representation from arbitrary digital contours that are possibly damaged or coming from the segmentation of noisy data. The method consists in two stages. In the first stage, a multi-scale analysis of the contour is conducted so as to identify noisy or damaged parts of the contour as well as the intensity of the perturbation. All the identified scales are then merged so that the input data is covered by a set of pixels whose size is increased according to the local intensity of noise. The second stage consists in transforming this set of resized pixels into an irregular isothetic object composed of an ordered set of rectangular and axis-aligned cells. Its topology is stored as a Reeb graph, which allows an easy pruning of its unnecessary spurious edges. Every remaining connected part has the topology of a circle and a polygonal representation is independently computed for each of them. Four different geometrical algorithms, including a new one, are reviewed for the latter task. These vectorization algorithms are experimentally evaluated and the whole method is also compared to previous works on both synthetic and true digital images. For fair comparisons, when possible, several error measures between the reconstruction and the ground truth are given for the different techniques.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1077-3142</s0>
</fA01>
<fA02 i1="01">
<s0>CVIUF4</s0>
</fA02>
<fA03 i2="1">
<s0>Comput. vis. image underst. : (Print)</s0>
</fA03>
<fA05>
<s2>117</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>A combined multi-scale/irregular algorithm for the vectorization of noisy digital contours</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Discrete Geometry for Computer Imagery</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>VACAVANT (Antoine)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ROUSSILLON (Tristan)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KERAUTRET (Bertrand)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LACHAUD (Jacques-Olivier)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>DEBLED-RENNESSON (Isabelle)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>DOMENJOUD (Eric)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>KERAUTRET (Bertrand)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>EVEN (Philippe)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Clermont Université, Université d'Auvergne, ISIT, BP10448</s1>
<s2>63000 Clermont-Ferrand</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>CNRS, UMR6284, BP10448</s1>
<s2>63000 Clermont-Ferrand</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Université de Lyon, CNRS</s1>
<s2>Lyon</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Université Lyon 2, LIRIS, UMR5205 CNRS</s1>
<s2>69676, Lyon</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Université de Nancy, LORIA, UMR7503 CNRS</s1>
<s2>54506, Nancy</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Université de Savoie, LAMA, UMR5127 CNRS</s1>
<s2>73376, Chambéry</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>LORIA (Lorraine Research Laboratory in Computer Science and its Applications), UMR 7503, Lorraine University</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA15>
<fA20>
<s1>438-450</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>15463A</s2>
<s5>354000502487160120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>38 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0182220</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Computer vision and image understanding : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This paper proposes and evaluates a new method for reconstructing a polygonal representation from arbitrary digital contours that are possibly damaged or coming from the segmentation of noisy data. The method consists in two stages. In the first stage, a multi-scale analysis of the contour is conducted so as to identify noisy or damaged parts of the contour as well as the intensity of the perturbation. All the identified scales are then merged so that the input data is covered by a set of pixels whose size is increased according to the local intensity of noise. The second stage consists in transforming this set of resized pixels into an irregular isothetic object composed of an ordered set of rectangular and axis-aligned cells. Its topology is stored as a Reeb graph, which allows an easy pruning of its unnecessary spurious edges. Every remaining connected part has the topology of a circle and a polygonal representation is independently computed for each of them. Four different geometrical algorithms, including a new one, are reviewed for the latter task. These vectorization algorithms are experimentally evaluated and the whole method is also compared to previous works on both synthetic and true digital images. For fair comparisons, when possible, several error measures between the reconstruction and the ground truth are given for the different techniques.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02A05</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D02C03</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Vision ordinateur</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Computer vision</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Visión ordenador</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Détection contour</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Edge detection</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Detección contorno</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Topologie</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Topology</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Topología</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Géométrie algorithmique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Computational geometry</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Geometría computacional</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Image numérique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Digital image</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Imagen numérica</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Grille</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Grid</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Rejilla</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Endommagement</s0>
<s5>18</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Damaging</s0>
<s5>18</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Deterioración</s0>
<s5>18</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Réalité terrain</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Ground truth</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Realidad terreno</s0>
<s5>19</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Vectorisation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Vectorization</s0>
<s5>23</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Vectorización</s0>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Segmentation</s0>
<s5>24</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Segmentation</s0>
<s5>24</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Segmentación</s0>
<s5>24</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Rapport signal bruit</s0>
<s5>25</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Signal to noise ratio</s0>
<s5>25</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Relación señal ruido</s0>
<s5>25</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Recouvrement ensemble</s0>
<s5>26</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Set covering</s0>
<s5>26</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Cubierta conjunto</s0>
<s5>26</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Ensemble ordonné</s0>
<s5>27</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Ordered set</s0>
<s5>27</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Conjunto ordenado</s0>
<s5>27</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Elagage</s0>
<s5>28</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Pruning(tree)</s0>
<s5>28</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Poda</s0>
<s5>28</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Estimation erreur</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Error estimation</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Estimación error</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>.</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Algorithme irrégulier</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Irregular Algorithm</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Algoritmo irregular</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>161</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 13-0182220 INIST</NO>
<ET>A combined multi-scale/irregular algorithm for the vectorization of noisy digital contours</ET>
<AU>VACAVANT (Antoine); ROUSSILLON (Tristan); KERAUTRET (Bertrand); LACHAUD (Jacques-Olivier); DEBLED-RENNESSON (Isabelle); DOMENJOUD (Eric); KERAUTRET (Bertrand); EVEN (Philippe)</AU>
<AF>Clermont Université, Université d'Auvergne, ISIT, BP10448/63000 Clermont-Ferrand/France (1 aut.); CNRS, UMR6284, BP10448/63000 Clermont-Ferrand/France (1 aut.); Université de Lyon, CNRS/Lyon/France (2 aut.); Université Lyon 2, LIRIS, UMR5205 CNRS/69676, Lyon/France (2 aut.); Université de Nancy, LORIA, UMR7503 CNRS/54506, Nancy/France (3 aut.); Université de Savoie, LAMA, UMR5127 CNRS/73376, Chambéry/France (3 aut., 4 aut.); LORIA (Lorraine Research Laboratory in Computer Science and its Applications), UMR 7503, Lorraine University/Nancy/France (1 aut., 2 aut., 3 aut., 4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Computer vision and image understanding : (Print); ISSN 1077-3142; Coden CVIUF4; Pays-Bas; Da. 2013; Vol. 117; No. 4; Pp. 438-450; Bibl. 38 ref.</SO>
<LA>Anglais</LA>
<EA>This paper proposes and evaluates a new method for reconstructing a polygonal representation from arbitrary digital contours that are possibly damaged or coming from the segmentation of noisy data. The method consists in two stages. In the first stage, a multi-scale analysis of the contour is conducted so as to identify noisy or damaged parts of the contour as well as the intensity of the perturbation. All the identified scales are then merged so that the input data is covered by a set of pixels whose size is increased according to the local intensity of noise. The second stage consists in transforming this set of resized pixels into an irregular isothetic object composed of an ordered set of rectangular and axis-aligned cells. Its topology is stored as a Reeb graph, which allows an easy pruning of its unnecessary spurious edges. Every remaining connected part has the topology of a circle and a polygonal representation is independently computed for each of them. Four different geometrical algorithms, including a new one, are reviewed for the latter task. These vectorization algorithms are experimentally evaluated and the whole method is also compared to previous works on both synthetic and true digital images. For fair comparisons, when possible, several error measures between the reconstruction and the ground truth are given for the different techniques.</EA>
<CC>001D02A05; 001D02C03</CC>
<FD>Vision ordinateur; Détection contour; Topologie; Géométrie algorithmique; Image numérique; Grille; Endommagement; Réalité terrain; Vectorisation; Segmentation; Rapport signal bruit; Recouvrement ensemble; Ensemble ordonné; Elagage; Estimation erreur; .; Algorithme irrégulier</FD>
<ED>Computer vision; Edge detection; Topology; Computational geometry; Digital image; Grid; Damaging; Ground truth; Vectorization; Segmentation; Signal to noise ratio; Set covering; Ordered set; Pruning(tree); Error estimation; Irregular Algorithm</ED>
<SD>Visión ordenador; Detección contorno; Topología; Geometría computacional; Imagen numérica; Rejilla; Deterioración; Realidad terreno; Vectorización; Segmentación; Relación señal ruido; Cubierta conjunto; Conjunto ordenado; Poda; Estimación error; Algoritmo irregular</SD>
<LO>INIST-15463A.354000502487160120</LO>
<ID>13-0182220</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000081 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000081 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:13-0182220
   |texte=   A combined multi-scale/irregular algorithm for the vectorization of noisy digital contours
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022