Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

On the energy cost of robustness and resiliency in IP networks

Identifieur interne : 000004 ( PascalFrancis/Corpus ); précédent : 000003; suivant : 000005

On the energy cost of robustness and resiliency in IP networks

Auteurs : B. Addis ; A. Capone ; G. Carello ; L. G. Gianoli ; B. Sanso

Source :

RBID : Pascal:15-0025640

Descripteurs français

English descriptors

Abstract

Despite the growing concern for the energy consumption of the Internet, green strategies for network and traffic management cannot undermine Quality of Service (QoS) and network survivability. In particular, two very important issues that may be affected by green networking techniques are resilience to node and link failures, and robustness to traffic variations. In this paper, we study how achieving different levels of resiliency and robustness impacts the network energy-aware efficiency. We propose novel optimization models to minimize the energy consumption of IP networks that explicitly guarantee network survivability to failures and robustness to traffic variations. Energy consumption is reduced by putting in sleep mode idle line cards and nodes according to traffic variations in different periods of the day. To guarantee network survivability we consider two different schemes, dedicated and shared protection, which assign a backup path to each traffic demand and some spare capacity on the links along the path. Robustness to traffic variations is provided by tuning the capacity margin on active links in order to accommodate load variations of different magnitude. Furthermore, we impose some inter-period constraints to guarantee network stability and preserve device lifetime. Both exact and heuristic methods are proposed. Experimentations carried out on realistic networks operated with flow-based routing protocols (like MPLS) allow us to quantitatively analyze the trade-off between energy cost and level of protection and robustness. Results show that significant savings, up to 30%, may be achieved even when both survivability and robustness are fully guaranteed, both with exact and heuristic approaches.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1389-1286
A03   1    @0 Comput. netw. : (1999)
A05       @2 75
A06       @3 p. a
A08 01  1  ENG  @1 On the energy cost of robustness and resiliency in IP networks
A11 01  1    @1 ADDIS (B.)
A11 02  1    @1 CAPONE (A.)
A11 03  1    @1 CARELLO (G.)
A11 04  1    @1 GIANOLI (L. G.)
A11 05  1    @1 SANSO (B.)
A14 01      @1 Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria @3 ITA @Z 2 aut. @Z 3 aut. @Z 4 aut.
A14 02      @1 LORIA (UMR 7503 CNRS), Université de Lorraine, INRIA Nancy-Grand Est @3 FRA @Z 1 aut.
A14 03      @1 École Polytechnique de Montréal, Département de Génie Électrique @3 CAN @Z 4 aut. @Z 5 aut.
A20       @1 239-259
A21       @1 2014
A23 01      @0 ENG
A43 01      @1 INIST @2 17220 @5 354000503580850160
A44       @0 0000 @1 © 2015 INIST-CNRS. All rights reserved.
A45       @0 52 ref.
A47 01  1    @0 15-0025640
A60       @1 P
A61       @0 A
A64 01  1    @0 Computer networks : (1999)
A66 01      @0 GBR
C01 01    ENG  @0 Despite the growing concern for the energy consumption of the Internet, green strategies for network and traffic management cannot undermine Quality of Service (QoS) and network survivability. In particular, two very important issues that may be affected by green networking techniques are resilience to node and link failures, and robustness to traffic variations. In this paper, we study how achieving different levels of resiliency and robustness impacts the network energy-aware efficiency. We propose novel optimization models to minimize the energy consumption of IP networks that explicitly guarantee network survivability to failures and robustness to traffic variations. Energy consumption is reduced by putting in sleep mode idle line cards and nodes according to traffic variations in different periods of the day. To guarantee network survivability we consider two different schemes, dedicated and shared protection, which assign a backup path to each traffic demand and some spare capacity on the links along the path. Robustness to traffic variations is provided by tuning the capacity margin on active links in order to accommodate load variations of different magnitude. Furthermore, we impose some inter-period constraints to guarantee network stability and preserve device lifetime. Both exact and heuristic methods are proposed. Experimentations carried out on realistic networks operated with flow-based routing protocols (like MPLS) allow us to quantitatively analyze the trade-off between energy cost and level of protection and robustness. Results show that significant savings, up to 30%, may be achieved even when both survivability and robustness are fully guaranteed, both with exact and heuristic approaches.
C02 01  X    @0 001D02B04
C02 02  X    @0 001D04B02B
C02 03  X    @0 001D04B03A
C03 01  X  FRE  @0 Protocole internet @5 06
C03 01  X  ENG  @0 Internet protocol @5 06
C03 01  X  SPA  @0 Protocolo internet @5 06
C03 02  X  FRE  @0 Internet @5 07
C03 02  X  ENG  @0 Internet @5 07
C03 02  X  SPA  @0 Internet @5 07
C03 03  X  FRE  @0 Développement durable @5 08
C03 03  X  ENG  @0 Sustainable development @5 08
C03 03  X  SPA  @0 Desarrollo sostenible @5 08
C03 04  X  FRE  @0 Qualité service @5 09
C03 04  X  ENG  @0 Service quality @5 09
C03 04  X  SPA  @0 Calidad servicio @5 09
C03 05  X  FRE  @0 Tolérance faute @5 10
C03 05  X  ENG  @0 Fault tolerance @5 10
C03 05  X  SPA  @0 Tolerancia falta @5 10
C03 06  X  FRE  @0 Disponibilité @5 11
C03 06  X  ENG  @0 Availability @5 11
C03 06  X  SPA  @0 Disponibilidad @5 11
C03 07  X  FRE  @0 Sensibilité contexte @5 12
C03 07  X  ENG  @0 Context aware @5 12
C03 07  X  SPA  @0 Sensibilidad contexto @5 12
C03 08  X  FRE  @0 Système tolérant les pannes @5 13
C03 08  X  ENG  @0 Fault tolerant system @5 13
C03 08  X  SPA  @0 Sistema tolerando faltas @5 13
C03 09  X  FRE  @0 Multiprotocole @5 14
C03 09  X  ENG  @0 Multiprotocol @5 14
C03 09  X  SPA  @0 Multiprotocolo @5 14
C03 10  X  FRE  @0 Protocole transmission @5 15
C03 10  X  ENG  @0 Transmission protocol @5 15
C03 10  X  SPA  @0 Protocolo transmisión @5 15
C03 11  X  FRE  @0 Consommation énergie @5 18
C03 11  X  ENG  @0 Energy consumption @5 18
C03 11  X  SPA  @0 Consumo energía @5 18
C03 12  X  FRE  @0 Gestion réseau @5 19
C03 12  X  ENG  @0 Network management @5 19
C03 12  X  SPA  @0 Gestión red @5 19
C03 13  X  FRE  @0 Télétrafic @5 20
C03 13  X  ENG  @0 Teletraffic @5 20
C03 13  X  SPA  @0 Teletráfico @5 20
C03 14  X  FRE  @0 Gestion trafic @5 21
C03 14  X  ENG  @0 Traffic management @5 21
C03 14  X  SPA  @0 Gestión tráfico @5 21
C03 15  X  FRE  @0 Gestion de la qualité @5 22
C03 15  X  ENG  @0 Quality management @5 22
C03 15  X  SPA  @0 Gestión de calidad @5 22
C03 16  X  FRE  @0 Coût énergie @5 23
C03 16  X  ENG  @0 Energy cost @5 23
C03 16  X  SPA  @0 Coste energía @5 23
C03 17  X  FRE  @0 Robustesse @5 24
C03 17  X  ENG  @0 Robustness @5 24
C03 17  X  SPA  @0 Robustez @5 24
C03 18  X  FRE  @0 Service réseau @5 25
C03 18  X  ENG  @0 Network service @5 25
C03 18  X  SPA  @0 Servicio de red @5 25
C03 19  X  FRE  @0 Résilience @5 26
C03 19  X  ENG  @0 Resilience @5 26
C03 19  X  SPA  @0 Resiliencia @5 26
C03 20  X  FRE  @0 Panne @5 27
C03 20  X  ENG  @0 Breakdown @5 27
C03 20  X  SPA  @0 Pana @5 27
C03 21  X  FRE  @0 Optimisation @5 28
C03 21  X  ENG  @0 Optimization @5 28
C03 21  X  SPA  @0 Optimización @5 28
C03 22  X  FRE  @0 Modélisation @5 29
C03 22  X  ENG  @0 Modeling @5 29
C03 22  X  SPA  @0 Modelización @5 29
C03 23  X  FRE  @0 Stabilité @5 30
C03 23  X  ENG  @0 Stability @5 30
C03 23  X  SPA  @0 Estabilidad @5 30
C03 24  X  FRE  @0 Méthode heuristique @5 31
C03 24  X  ENG  @0 Heuristic method @5 31
C03 24  X  SPA  @0 Método heurístico @5 31
C03 25  X  FRE  @0 Economies d'énergie @5 41
C03 25  X  ENG  @0 Energy savings @5 41
C03 25  X  SPA  @0 Ahorros energía @5 41
C03 26  X  FRE  @0 . @4 INC @5 82
C03 27  X  FRE  @0 Protocole routage @4 CD @5 96
C03 27  X  ENG  @0 Routing protocols @4 CD @5 96
C03 27  X  SPA  @0 Protocolo de enrutamiento @4 CD @5 96
N21       @1 040
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 15-0025640 INIST
ET : On the energy cost of robustness and resiliency in IP networks
AU : ADDIS (B.); CAPONE (A.); CARELLO (G.); GIANOLI (L. G.); SANSO (B.)
AF : Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria/Italie (2 aut., 3 aut., 4 aut.); LORIA (UMR 7503 CNRS), Université de Lorraine, INRIA Nancy-Grand Est/France (1 aut.); École Polytechnique de Montréal, Département de Génie Électrique/Canada (4 aut., 5 aut.)
DT : Publication en série; Niveau analytique
SO : Computer networks : (1999); ISSN 1389-1286; Royaume-Uni; Da. 2014; Vol. 75; No. p. a; Pp. 239-259; Bibl. 52 ref.
LA : Anglais
EA : Despite the growing concern for the energy consumption of the Internet, green strategies for network and traffic management cannot undermine Quality of Service (QoS) and network survivability. In particular, two very important issues that may be affected by green networking techniques are resilience to node and link failures, and robustness to traffic variations. In this paper, we study how achieving different levels of resiliency and robustness impacts the network energy-aware efficiency. We propose novel optimization models to minimize the energy consumption of IP networks that explicitly guarantee network survivability to failures and robustness to traffic variations. Energy consumption is reduced by putting in sleep mode idle line cards and nodes according to traffic variations in different periods of the day. To guarantee network survivability we consider two different schemes, dedicated and shared protection, which assign a backup path to each traffic demand and some spare capacity on the links along the path. Robustness to traffic variations is provided by tuning the capacity margin on active links in order to accommodate load variations of different magnitude. Furthermore, we impose some inter-period constraints to guarantee network stability and preserve device lifetime. Both exact and heuristic methods are proposed. Experimentations carried out on realistic networks operated with flow-based routing protocols (like MPLS) allow us to quantitatively analyze the trade-off between energy cost and level of protection and robustness. Results show that significant savings, up to 30%, may be achieved even when both survivability and robustness are fully guaranteed, both with exact and heuristic approaches.
CC : 001D02B04; 001D04B02B; 001D04B03A
FD : Protocole internet; Internet; Développement durable; Qualité service; Tolérance faute; Disponibilité; Sensibilité contexte; Système tolérant les pannes; Multiprotocole; Protocole transmission; Consommation énergie; Gestion réseau; Télétrafic; Gestion trafic; Gestion de la qualité; Coût énergie; Robustesse; Service réseau; Résilience; Panne; Optimisation; Modélisation; Stabilité; Méthode heuristique; Economies d'énergie; .; Protocole routage
ED : Internet protocol; Internet; Sustainable development; Service quality; Fault tolerance; Availability; Context aware; Fault tolerant system; Multiprotocol; Transmission protocol; Energy consumption; Network management; Teletraffic; Traffic management; Quality management; Energy cost; Robustness; Network service; Resilience; Breakdown; Optimization; Modeling; Stability; Heuristic method; Energy savings; Routing protocols
SD : Protocolo internet; Internet; Desarrollo sostenible; Calidad servicio; Tolerancia falta; Disponibilidad; Sensibilidad contexto; Sistema tolerando faltas; Multiprotocolo; Protocolo transmisión; Consumo energía; Gestión red; Teletráfico; Gestión tráfico; Gestión de calidad; Coste energía; Robustez; Servicio de red; Resiliencia; Pana; Optimización; Modelización; Estabilidad; Método heurístico; Ahorros energía; Protocolo de enrutamiento
LO : INIST-17220.354000503580850160
ID : 15-0025640

Links to Exploration step

Pascal:15-0025640

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">On the energy cost of robustness and resiliency in IP networks</title>
<author>
<name sortKey="Addis, B" sort="Addis, B" uniqKey="Addis B" first="B." last="Addis">B. Addis</name>
<affiliation>
<inist:fA14 i1="02">
<s1>LORIA (UMR 7503 CNRS), Université de Lorraine, INRIA Nancy-Grand Est</s1>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Capone, A" sort="Capone, A" uniqKey="Capone A" first="A." last="Capone">A. Capone</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria</s1>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Carello, G" sort="Carello, G" uniqKey="Carello G" first="G." last="Carello">G. Carello</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria</s1>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gianoli, L G" sort="Gianoli, L G" uniqKey="Gianoli L" first="L. G." last="Gianoli">L. G. Gianoli</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria</s1>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>École Polytechnique de Montréal, Département de Génie Électrique</s1>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sanso, B" sort="Sanso, B" uniqKey="Sanso B" first="B." last="Sanso">B. Sanso</name>
<affiliation>
<inist:fA14 i1="03">
<s1>École Polytechnique de Montréal, Département de Génie Électrique</s1>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">15-0025640</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 15-0025640 INIST</idno>
<idno type="RBID">Pascal:15-0025640</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000004</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">On the energy cost of robustness and resiliency in IP networks</title>
<author>
<name sortKey="Addis, B" sort="Addis, B" uniqKey="Addis B" first="B." last="Addis">B. Addis</name>
<affiliation>
<inist:fA14 i1="02">
<s1>LORIA (UMR 7503 CNRS), Université de Lorraine, INRIA Nancy-Grand Est</s1>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Capone, A" sort="Capone, A" uniqKey="Capone A" first="A." last="Capone">A. Capone</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria</s1>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Carello, G" sort="Carello, G" uniqKey="Carello G" first="G." last="Carello">G. Carello</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria</s1>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gianoli, L G" sort="Gianoli, L G" uniqKey="Gianoli L" first="L. G." last="Gianoli">L. G. Gianoli</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria</s1>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>École Polytechnique de Montréal, Département de Génie Électrique</s1>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sanso, B" sort="Sanso, B" uniqKey="Sanso B" first="B." last="Sanso">B. Sanso</name>
<affiliation>
<inist:fA14 i1="03">
<s1>École Polytechnique de Montréal, Département de Génie Électrique</s1>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Computer networks : (1999)</title>
<title level="j" type="abbreviated">Comput. netw. : (1999)</title>
<idno type="ISSN">1389-1286</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Computer networks : (1999)</title>
<title level="j" type="abbreviated">Comput. netw. : (1999)</title>
<idno type="ISSN">1389-1286</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Availability</term>
<term>Breakdown</term>
<term>Context aware</term>
<term>Energy consumption</term>
<term>Energy cost</term>
<term>Energy savings</term>
<term>Fault tolerance</term>
<term>Fault tolerant system</term>
<term>Heuristic method</term>
<term>Internet</term>
<term>Internet protocol</term>
<term>Modeling</term>
<term>Multiprotocol</term>
<term>Network management</term>
<term>Network service</term>
<term>Optimization</term>
<term>Quality management</term>
<term>Resilience</term>
<term>Robustness</term>
<term>Routing protocols</term>
<term>Service quality</term>
<term>Stability</term>
<term>Sustainable development</term>
<term>Teletraffic</term>
<term>Traffic management</term>
<term>Transmission protocol</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Protocole internet</term>
<term>Internet</term>
<term>Développement durable</term>
<term>Qualité service</term>
<term>Tolérance faute</term>
<term>Disponibilité</term>
<term>Sensibilité contexte</term>
<term>Système tolérant les pannes</term>
<term>Multiprotocole</term>
<term>Protocole transmission</term>
<term>Consommation énergie</term>
<term>Gestion réseau</term>
<term>Télétrafic</term>
<term>Gestion trafic</term>
<term>Gestion de la qualité</term>
<term>Coût énergie</term>
<term>Robustesse</term>
<term>Service réseau</term>
<term>Résilience</term>
<term>Panne</term>
<term>Optimisation</term>
<term>Modélisation</term>
<term>Stabilité</term>
<term>Méthode heuristique</term>
<term>Economies d'énergie</term>
<term>.</term>
<term>Protocole routage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Despite the growing concern for the energy consumption of the Internet, green strategies for network and traffic management cannot undermine Quality of Service (QoS) and network survivability. In particular, two very important issues that may be affected by green networking techniques are resilience to node and link failures, and robustness to traffic variations. In this paper, we study how achieving different levels of resiliency and robustness impacts the network energy-aware efficiency. We propose novel optimization models to minimize the energy consumption of IP networks that explicitly guarantee network survivability to failures and robustness to traffic variations. Energy consumption is reduced by putting in sleep mode idle line cards and nodes according to traffic variations in different periods of the day. To guarantee network survivability we consider two different schemes, dedicated and shared protection, which assign a backup path to each traffic demand and some spare capacity on the links along the path. Robustness to traffic variations is provided by tuning the capacity margin on active links in order to accommodate load variations of different magnitude. Furthermore, we impose some inter-period constraints to guarantee network stability and preserve device lifetime. Both exact and heuristic methods are proposed. Experimentations carried out on realistic networks operated with flow-based routing protocols (like MPLS) allow us to quantitatively analyze the trade-off between energy cost and level of protection and robustness. Results show that significant savings, up to 30%, may be achieved even when both survivability and robustness are fully guaranteed, both with exact and heuristic approaches.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1389-1286</s0>
</fA01>
<fA03 i2="1">
<s0>Comput. netw. : (1999)</s0>
</fA03>
<fA05>
<s2>75</s2>
</fA05>
<fA06>
<s3>p. a</s3>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>On the energy cost of robustness and resiliency in IP networks</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ADDIS (B.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CAPONE (A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CARELLO (G.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GIANOLI (L. G.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SANSO (B.)</s1>
</fA11>
<fA14 i1="01">
<s1>Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria</s1>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>LORIA (UMR 7503 CNRS), Université de Lorraine, INRIA Nancy-Grand Est</s1>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>École Polytechnique de Montréal, Département de Génie Électrique</s1>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>239-259</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17220</s2>
<s5>354000503580850160</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2015 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>52 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>15-0025640</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Computer networks : (1999)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Despite the growing concern for the energy consumption of the Internet, green strategies for network and traffic management cannot undermine Quality of Service (QoS) and network survivability. In particular, two very important issues that may be affected by green networking techniques are resilience to node and link failures, and robustness to traffic variations. In this paper, we study how achieving different levels of resiliency and robustness impacts the network energy-aware efficiency. We propose novel optimization models to minimize the energy consumption of IP networks that explicitly guarantee network survivability to failures and robustness to traffic variations. Energy consumption is reduced by putting in sleep mode idle line cards and nodes according to traffic variations in different periods of the day. To guarantee network survivability we consider two different schemes, dedicated and shared protection, which assign a backup path to each traffic demand and some spare capacity on the links along the path. Robustness to traffic variations is provided by tuning the capacity margin on active links in order to accommodate load variations of different magnitude. Furthermore, we impose some inter-period constraints to guarantee network stability and preserve device lifetime. Both exact and heuristic methods are proposed. Experimentations carried out on realistic networks operated with flow-based routing protocols (like MPLS) allow us to quantitatively analyze the trade-off between energy cost and level of protection and robustness. Results show that significant savings, up to 30%, may be achieved even when both survivability and robustness are fully guaranteed, both with exact and heuristic approaches.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02B04</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D04B02B</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D04B03A</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Protocole internet</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Internet protocol</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Protocolo internet</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Internet</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Internet</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Internet</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Développement durable</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Sustainable development</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Desarrollo sostenible</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Qualité service</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Service quality</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Calidad servicio</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Tolérance faute</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Fault tolerance</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Tolerancia falta</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Disponibilité</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Availability</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Disponibilidad</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Sensibilité contexte</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Context aware</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Sensibilidad contexto</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Système tolérant les pannes</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Fault tolerant system</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Sistema tolerando faltas</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Multiprotocole</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Multiprotocol</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Multiprotocolo</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Protocole transmission</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Transmission protocol</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Protocolo transmisión</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Consommation énergie</s0>
<s5>18</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Energy consumption</s0>
<s5>18</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Consumo energía</s0>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Gestion réseau</s0>
<s5>19</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Network management</s0>
<s5>19</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Gestión red</s0>
<s5>19</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Télétrafic</s0>
<s5>20</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Teletraffic</s0>
<s5>20</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Teletráfico</s0>
<s5>20</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Gestion trafic</s0>
<s5>21</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Traffic management</s0>
<s5>21</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Gestión tráfico</s0>
<s5>21</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Gestion de la qualité</s0>
<s5>22</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Quality management</s0>
<s5>22</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Gestión de calidad</s0>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Coût énergie</s0>
<s5>23</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Energy cost</s0>
<s5>23</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Coste energía</s0>
<s5>23</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Robustesse</s0>
<s5>24</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Robustness</s0>
<s5>24</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Robustez</s0>
<s5>24</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Service réseau</s0>
<s5>25</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Network service</s0>
<s5>25</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Servicio de red</s0>
<s5>25</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Résilience</s0>
<s5>26</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Resilience</s0>
<s5>26</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Resiliencia</s0>
<s5>26</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Panne</s0>
<s5>27</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Breakdown</s0>
<s5>27</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Pana</s0>
<s5>27</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Optimisation</s0>
<s5>28</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Optimization</s0>
<s5>28</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Optimización</s0>
<s5>28</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>29</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>29</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>29</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Stabilité</s0>
<s5>30</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Stability</s0>
<s5>30</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Estabilidad</s0>
<s5>30</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Méthode heuristique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Heuristic method</s0>
<s5>31</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Método heurístico</s0>
<s5>31</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Economies d'énergie</s0>
<s5>41</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Energy savings</s0>
<s5>41</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Ahorros energía</s0>
<s5>41</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>.</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Protocole routage</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Routing protocols</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Protocolo de enrutamiento</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>040</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 15-0025640 INIST</NO>
<ET>On the energy cost of robustness and resiliency in IP networks</ET>
<AU>ADDIS (B.); CAPONE (A.); CARELLO (G.); GIANOLI (L. G.); SANSO (B.)</AU>
<AF>Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria/Italie (2 aut., 3 aut., 4 aut.); LORIA (UMR 7503 CNRS), Université de Lorraine, INRIA Nancy-Grand Est/France (1 aut.); École Polytechnique de Montréal, Département de Génie Électrique/Canada (4 aut., 5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Computer networks : (1999); ISSN 1389-1286; Royaume-Uni; Da. 2014; Vol. 75; No. p. a; Pp. 239-259; Bibl. 52 ref.</SO>
<LA>Anglais</LA>
<EA>Despite the growing concern for the energy consumption of the Internet, green strategies for network and traffic management cannot undermine Quality of Service (QoS) and network survivability. In particular, two very important issues that may be affected by green networking techniques are resilience to node and link failures, and robustness to traffic variations. In this paper, we study how achieving different levels of resiliency and robustness impacts the network energy-aware efficiency. We propose novel optimization models to minimize the energy consumption of IP networks that explicitly guarantee network survivability to failures and robustness to traffic variations. Energy consumption is reduced by putting in sleep mode idle line cards and nodes according to traffic variations in different periods of the day. To guarantee network survivability we consider two different schemes, dedicated and shared protection, which assign a backup path to each traffic demand and some spare capacity on the links along the path. Robustness to traffic variations is provided by tuning the capacity margin on active links in order to accommodate load variations of different magnitude. Furthermore, we impose some inter-period constraints to guarantee network stability and preserve device lifetime. Both exact and heuristic methods are proposed. Experimentations carried out on realistic networks operated with flow-based routing protocols (like MPLS) allow us to quantitatively analyze the trade-off between energy cost and level of protection and robustness. Results show that significant savings, up to 30%, may be achieved even when both survivability and robustness are fully guaranteed, both with exact and heuristic approaches.</EA>
<CC>001D02B04; 001D04B02B; 001D04B03A</CC>
<FD>Protocole internet; Internet; Développement durable; Qualité service; Tolérance faute; Disponibilité; Sensibilité contexte; Système tolérant les pannes; Multiprotocole; Protocole transmission; Consommation énergie; Gestion réseau; Télétrafic; Gestion trafic; Gestion de la qualité; Coût énergie; Robustesse; Service réseau; Résilience; Panne; Optimisation; Modélisation; Stabilité; Méthode heuristique; Economies d'énergie; .; Protocole routage</FD>
<ED>Internet protocol; Internet; Sustainable development; Service quality; Fault tolerance; Availability; Context aware; Fault tolerant system; Multiprotocol; Transmission protocol; Energy consumption; Network management; Teletraffic; Traffic management; Quality management; Energy cost; Robustness; Network service; Resilience; Breakdown; Optimization; Modeling; Stability; Heuristic method; Energy savings; Routing protocols</ED>
<SD>Protocolo internet; Internet; Desarrollo sostenible; Calidad servicio; Tolerancia falta; Disponibilidad; Sensibilidad contexto; Sistema tolerando faltas; Multiprotocolo; Protocolo transmisión; Consumo energía; Gestión red; Teletráfico; Gestión tráfico; Gestión de calidad; Coste energía; Robustez; Servicio de red; Resiliencia; Pana; Optimización; Modelización; Estabilidad; Método heurístico; Ahorros energía; Protocolo de enrutamiento</SD>
<LO>INIST-17220.354000503580850160</LO>
<ID>15-0025640</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000004 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000004 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:15-0025640
   |texte=   On the energy cost of robustness and resiliency in IP networks
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022