Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Connection methods in linear logic and proof nets construction

Identifieur interne : 000A16 ( PascalFrancis/Checkpoint ); précédent : 000A15; suivant : 000A17

Connection methods in linear logic and proof nets construction

Auteurs : D. Galmiche [France]

Source :

RBID : Pascal:00-0103869

Descripteurs français

English descriptors

Abstract

Linear logic (LL) is the logical foundation of some type-theoretic languages and also of environments for specification and theorem proving. In this paper, we analyse the relationships between the proof net notion of LL and the connection notion used for efficient proof search in different logics. Aiming at using proof nets as a tool for automated deduction in linear logic, we define a connection-based characterization of provability in Multiplicative Linear Logic (MLL). We show that an algorithm for proof net construction can be seen as a proof-search connection method. This central result is illustrated with a specific algorithm that is able to construct, for a provable MLL sequent, a set of connections, a proof net and a sequent proof. From these results we expect to extend to other LL fragments, we analyse what happens with the additive connectives of LL by tackling the additive fragment in a similar way.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:00-0103869

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Connection methods in linear logic and proof nets construction</title>
<author>
<name sortKey="Galmiche, D" sort="Galmiche, D" uniqKey="Galmiche D" first="D." last="Galmiche">D. Galmiche</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>LORIA - Université Henri Poincaré, Campus Scientifique - B.P. 239</s1>
<s2>54506 Vandœuvre-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Vandœuvre-lès-Nancy</settlement>
</placeName>
<orgName type="university">Université Henri Poincaré</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">00-0103869</idno>
<date when="2000">2000</date>
<idno type="stanalyst">PASCAL 00-0103869 INIST</idno>
<idno type="RBID">Pascal:00-0103869</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000A66</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000016</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000A16</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000A16</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Connection methods in linear logic and proof nets construction</title>
<author>
<name sortKey="Galmiche, D" sort="Galmiche, D" uniqKey="Galmiche D" first="D." last="Galmiche">D. Galmiche</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>LORIA - Université Henri Poincaré, Campus Scientifique - B.P. 239</s1>
<s2>54506 Vandœuvre-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Vandœuvre-lès-Nancy</settlement>
</placeName>
<orgName type="university">Université Henri Poincaré</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Theoretical computer science</title>
<title level="j" type="abbreviated">Theor. comput. sci.</title>
<idno type="ISSN">0304-3975</idno>
<imprint>
<date when="2000">2000</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Theoretical computer science</title>
<title level="j" type="abbreviated">Theor. comput. sci.</title>
<idno type="ISSN">0304-3975</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Additive</term>
<term>Algorithm</term>
<term>Completeness</term>
<term>Connection method</term>
<term>Decision procedure</term>
<term>Deduction</term>
<term>Linear logic</term>
<term>Logical programming</term>
<term>Proof net</term>
<term>Proof theory</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Programmation logique</term>
<term>Déduction</term>
<term>Théorie preuve</term>
<term>Complétude</term>
<term>Algorithme</term>
<term>Additif</term>
<term>Logique linéaire</term>
<term>Méthode connexion</term>
<term>Procédure décision</term>
<term>Réseau preuve</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Linear logic (LL) is the logical foundation of some type-theoretic languages and also of environments for specification and theorem proving. In this paper, we analyse the relationships between the proof net notion of LL and the connection notion used for efficient proof search in different logics. Aiming at using proof nets as a tool for automated deduction in linear logic, we define a connection-based characterization of provability in Multiplicative Linear Logic (MLL). We show that an algorithm for proof net construction can be seen as a proof-search connection method. This central result is illustrated with a specific algorithm that is able to construct, for a provable MLL sequent, a set of connections, a proof net and a sequent proof. From these results we expect to extend to other LL fragments, we analyse what happens with the additive connectives of LL by tackling the additive fragment in a similar way.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0304-3975</s0>
</fA01>
<fA02 i1="01">
<s0>TCSCDI</s0>
</fA02>
<fA03 i2="1">
<s0>Theor. comput. sci.</s0>
</fA03>
<fA05>
<s2>232</s2>
</fA05>
<fA06>
<s2>1-2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Connection methods in linear logic and proof nets construction</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Proof-search in Type-theoretic Languages</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>GALMICHE (D.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>GALMICHE (Didier)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>PYM (David J.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>LORIA - Université Henri Poincaré, Campus Scientifique - B.P. 239</s1>
<s2>54506 Vandœuvre-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>LORIA - Université Henri Poincaré, Campus Scientifique, B.P. 239</s1>
<s2>54506 Vandoeuvre-les-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Queen Mary & Westfield College, Department of Computer Science, University of London, Mile End Road</s1>
<s2>London, E1 4NS</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>231-272</s1>
</fA20>
<fA21>
<s1>2000</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17243</s2>
<s5>354000081470930080</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2000 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>48 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>00-0103869</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Theoretical computer science</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Linear logic (LL) is the logical foundation of some type-theoretic languages and also of environments for specification and theorem proving. In this paper, we analyse the relationships between the proof net notion of LL and the connection notion used for efficient proof search in different logics. Aiming at using proof nets as a tool for automated deduction in linear logic, we define a connection-based characterization of provability in Multiplicative Linear Logic (MLL). We show that an algorithm for proof net construction can be seen as a proof-search connection method. This central result is illustrated with a specific algorithm that is able to construct, for a provable MLL sequent, a set of connections, a proof net and a sequent proof. From these results we expect to extend to other LL fragments, we analyse what happens with the additive connectives of LL by tackling the additive fragment in a similar way.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001A02A01B</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001A02A01D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001A02A01F</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Programmation logique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Logical programming</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Programación lógica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Déduction</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Deduction</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Deducción</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Théorie preuve</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Proof theory</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Teoría demonstración</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Complétude</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Completeness</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Completitud</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Algorithme</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Algorithm</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Algoritmo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Additif</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Additive</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Aditivo</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Logique linéaire</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Linear logic</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Méthode connexion</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Connection method</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Procédure décision</s0>
<s4>CD</s4>
<s5>98</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Decision procedure</s0>
<s4>CD</s4>
<s5>98</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Réseau preuve</s0>
<s4>CD</s4>
<s5>99</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Proof net</s0>
<s4>CD</s4>
<s5>99</s5>
</fC03>
<fN21>
<s1>073</s1>
</fN21>
</pA>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Grand Est</li>
<li>Lorraine (région)</li>
</region>
<settlement>
<li>Vandœuvre-lès-Nancy</li>
</settlement>
<orgName>
<li>Université Henri Poincaré</li>
</orgName>
</list>
<tree>
<country name="France">
<region name="Grand Est">
<name sortKey="Galmiche, D" sort="Galmiche, D" uniqKey="Galmiche D" first="D." last="Galmiche">D. Galmiche</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A16 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 000A16 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:00-0103869
   |texte=   Connection methods in linear logic and proof nets construction
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022