Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanistic aspects of ester–carbonate exchange in polycarbonate/cycloaliphatic polyester with model reactions

Identifieur interne : 002F83 ( Istex/Corpus ); précédent : 002F82; suivant : 002F84

Mechanistic aspects of ester–carbonate exchange in polycarbonate/cycloaliphatic polyester with model reactions

Auteurs : M. Jayakannan ; P. Anilkumar

Source :

RBID : ISTEX:C9B814EC52ADB3A75F497F89A7B9C11020AD849C

English descriptors

Abstract

The reactive blending of bisphenol A polycarbonate (PC) with poly(1,4‐cyclohexanedimethylene‐1,4‐cyclohexanedicarboxylate) (PCCD) was investigated with a new high‐temperature solution‐blending methodology. The ester–carbonate exchange reaction (transesterification) in the blends was studied with NMR and Fourier transform infrared. The composition analysis of the PC/PCCD blends was performed with 1H NMR, and the molecular weights were determined with viscosity methods. 1,4‐Dimethylcyclohexanedicarboxylate, 1,4‐cyclohexanedicarboxylic acid, and 1,4‐cyclohexanedimethanol were reacted with PC to study the tendency of polyester chain‐end reactions such as transesterification, acidolysis, and alcoholysis. These model reactions revealed that the reactive blending was affected by both alcoholysis and transesterification, whereas acidolysis was absent. The model reaction products were used to study the mechanistic aspects of PC/PCCD reactive blending, which indicated the formation of three stable triads; two corresponded to symmetrical and unsymmetrical aromatic–cycloaliphatic esters, and the other corresponded to aromatic–cycloaliphatic ethers. The composition analysis confirmed that in PC/PCCD reactive blending, the exchange reaction predominantly occurred in the polymer main chains, and the influence of the end groups was insignificant. The effect of the catalyst concentration and PC/PCCD composition on the extent of the exchange reaction was also investigated. Thermal analysis by differential scanning calorimetry revealed that the ester–carbonate exchange enhanced the compatibilization of PC/PCCD, and a single glass‐transition temperature was observed for the miscible blends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3996–4008, 2004
The reactive blending of bisphenol A polycarbonate (PC) with poly(1,4‐cyclohexanedimethylene‐1,4‐cyclohexanedicarboxylate) (PCCD) was investigated with NMR and Fourier transform infrared spectroscopy. Model reactions were carried out through the reaction of PC with 1,4‐dimethylcyclohexanedicarboxylate, 1,4‐cyclohexanedicarboxylic acid, and 1,4‐cyclohexanedimethanol to study the tendency of polyester chain‐end reactions such as transesterification, acidolysis, and alcoholysis. These model reactions revealed that the reactive blending was affected by both alcoholysis and transesterification, whereas acidolysis was absent. NMR analysis confirmed that in PC/PCCD reactive blending, the exchange reaction predominantly occurred in the polymer main chains, and the influence of the end groups was insignificant.

Url:
DOI: 10.1002/pola.20281

Links to Exploration step

ISTEX:C9B814EC52ADB3A75F497F89A7B9C11020AD849C

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mechanistic aspects of ester–carbonate exchange in polycarbonate/cycloaliphatic polyester with model reactions</title>
<author>
<name sortKey="Jayakannan, M" sort="Jayakannan, M" uniqKey="Jayakannan M" first="M." last="Jayakannan">M. Jayakannan</name>
<affiliation>
<mods:affiliation>Polymer Science Division, Regional Research Laboratory, Thiruvananthapuram 695019, India</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: jayakannan18@yahoo.co.in</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Polymer Science Division, Regional Research Laboratory, Thiruvananthapuram 695019, India</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Anilkumar, P" sort="Anilkumar, P" uniqKey="Anilkumar P" first="P." last="Anilkumar">P. Anilkumar</name>
<affiliation>
<mods:affiliation>Polymer Science Division, Regional Research Laboratory, Thiruvananthapuram 695019, India</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:C9B814EC52ADB3A75F497F89A7B9C11020AD849C</idno>
<date when="2004" year="2004">2004</date>
<idno type="doi">10.1002/pola.20281</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-14W9MXS4-3/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002F83</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002F83</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Mechanistic aspects of ester–carbonate exchange in polycarbonate/cycloaliphatic polyester with model reactions</title>
<author>
<name sortKey="Jayakannan, M" sort="Jayakannan, M" uniqKey="Jayakannan M" first="M." last="Jayakannan">M. Jayakannan</name>
<affiliation>
<mods:affiliation>Polymer Science Division, Regional Research Laboratory, Thiruvananthapuram 695019, India</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: jayakannan18@yahoo.co.in</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Polymer Science Division, Regional Research Laboratory, Thiruvananthapuram 695019, India</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Anilkumar, P" sort="Anilkumar, P" uniqKey="Anilkumar P" first="P." last="Anilkumar">P. Anilkumar</name>
<affiliation>
<mods:affiliation>Polymer Science Division, Regional Research Laboratory, Thiruvananthapuram 695019, India</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Polymer Science Part A: Polymer Chemistry</title>
<title level="j" type="alt">JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY</title>
<idno type="ISSN">0887-624X</idno>
<idno type="eISSN">1099-0518</idno>
<imprint>
<biblScope unit="vol">42</biblScope>
<biblScope unit="issue">16</biblScope>
<biblScope unit="page" from="3996">3996</biblScope>
<biblScope unit="page" to="4008">4008</biblScope>
<biblScope unit="page-count">13</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2004-08-15">2004-08-15</date>
</imprint>
<idno type="ISSN">0887-624X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0887-624X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Acidolysis</term>
<term>Alcoholysis</term>
<term>Anilkumar</term>
<term>Appl</term>
<term>Appl polym</term>
<term>Aroh</term>
<term>Aromatic</term>
<term>Aromatic peaks</term>
<term>Aromatic protons</term>
<term>Bisphenol</term>
<term>Blend</term>
<term>Carbonate</term>
<term>Carbonate exchange</term>
<term>Carbonate exchange reaction</term>
<term>Carbonate exchange reactions</term>
<term>Catalyst</term>
<term>Cdcl3</term>
<term>Chda</term>
<term>Chdm</term>
<term>Chem</term>
<term>Clear solution</term>
<term>Coch3</term>
<term>Composition analysis</term>
<term>Cycloaliphatic</term>
<term>Decarboxylation</term>
<term>Dmcd</term>
<term>Ester</term>
<term>Ester linkages</term>
<term>Exchange reaction</term>
<term>Ftir</term>
<term>High temperatures</term>
<term>Identical conditions</term>
<term>Inherent viscosity</term>
<term>Jayakannan</term>
<term>Macromol</term>
<term>Macromol chem</term>
<term>Macromol chem phys</term>
<term>Macromolecule</term>
<term>Mechanistic aspects</term>
<term>Mmol</term>
<term>Model reactions</term>
<term>Molar</term>
<term>Molecular weight</term>
<term>Molecular weights</term>
<term>Odcb</term>
<term>Pccd</term>
<term>Phenol</term>
<term>Phenol ends</term>
<term>Phys</term>
<term>Polyester blends</term>
<term>Polym</term>
<term>Polym chem</term>
<term>Polym phys</term>
<term>Polymer</term>
<term>Polymer blends</term>
<term>Proton</term>
<term>Reactive</term>
<term>Resultant product</term>
<term>Titanium catalyst</term>
<term>Triad</term>
<term>Various amounts</term>
<term>Zhang</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The reactive blending of bisphenol A polycarbonate (PC) with poly(1,4‐cyclohexanedimethylene‐1,4‐cyclohexanedicarboxylate) (PCCD) was investigated with a new high‐temperature solution‐blending methodology. The ester–carbonate exchange reaction (transesterification) in the blends was studied with NMR and Fourier transform infrared. The composition analysis of the PC/PCCD blends was performed with 1H NMR, and the molecular weights were determined with viscosity methods. 1,4‐Dimethylcyclohexanedicarboxylate, 1,4‐cyclohexanedicarboxylic acid, and 1,4‐cyclohexanedimethanol were reacted with PC to study the tendency of polyester chain‐end reactions such as transesterification, acidolysis, and alcoholysis. These model reactions revealed that the reactive blending was affected by both alcoholysis and transesterification, whereas acidolysis was absent. The model reaction products were used to study the mechanistic aspects of PC/PCCD reactive blending, which indicated the formation of three stable triads; two corresponded to symmetrical and unsymmetrical aromatic–cycloaliphatic esters, and the other corresponded to aromatic–cycloaliphatic ethers. The composition analysis confirmed that in PC/PCCD reactive blending, the exchange reaction predominantly occurred in the polymer main chains, and the influence of the end groups was insignificant. The effect of the catalyst concentration and PC/PCCD composition on the extent of the exchange reaction was also investigated. Thermal analysis by differential scanning calorimetry revealed that the ester–carbonate exchange enhanced the compatibilization of PC/PCCD, and a single glass‐transition temperature was observed for the miscible blends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3996–4008, 2004</div>
<div type="abstract" xml:lang="en">The reactive blending of bisphenol A polycarbonate (PC) with poly(1,4‐cyclohexanedimethylene‐1,4‐cyclohexanedicarboxylate) (PCCD) was investigated with NMR and Fourier transform infrared spectroscopy. Model reactions were carried out through the reaction of PC with 1,4‐dimethylcyclohexanedicarboxylate, 1,4‐cyclohexanedicarboxylic acid, and 1,4‐cyclohexanedimethanol to study the tendency of polyester chain‐end reactions such as transesterification, acidolysis, and alcoholysis. These model reactions revealed that the reactive blending was affected by both alcoholysis and transesterification, whereas acidolysis was absent. NMR analysis confirmed that in PC/PCCD reactive blending, the exchange reaction predominantly occurred in the polymer main chains, and the influence of the end groups was insignificant.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>ester</json:string>
<json:string>pccd</json:string>
<json:string>polym</json:string>
<json:string>carbonate</json:string>
<json:string>reactive</json:string>
<json:string>dmcd</json:string>
<json:string>polymer</json:string>
<json:string>appl</json:string>
<json:string>chdm</json:string>
<json:string>appl polym</json:string>
<json:string>aroh</json:string>
<json:string>carbonate exchange reaction</json:string>
<json:string>odcb</json:string>
<json:string>acidolysis</json:string>
<json:string>chem</json:string>
<json:string>macromolecule</json:string>
<json:string>bisphenol</json:string>
<json:string>exchange reaction</json:string>
<json:string>alcoholysis</json:string>
<json:string>mmol</json:string>
<json:string>macromol</json:string>
<json:string>molecular weights</json:string>
<json:string>model reactions</json:string>
<json:string>phenol</json:string>
<json:string>ftir</json:string>
<json:string>cycloaliphatic</json:string>
<json:string>jayakannan</json:string>
<json:string>anilkumar</json:string>
<json:string>coch3</json:string>
<json:string>phys</json:string>
<json:string>cdcl3</json:string>
<json:string>ester linkages</json:string>
<json:string>zhang</json:string>
<json:string>chda</json:string>
<json:string>titanium catalyst</json:string>
<json:string>decarboxylation</json:string>
<json:string>triad</json:string>
<json:string>polym chem</json:string>
<json:string>phenol ends</json:string>
<json:string>resultant product</json:string>
<json:string>composition analysis</json:string>
<json:string>molar</json:string>
<json:string>carbonate exchange</json:string>
<json:string>carbonate exchange reactions</json:string>
<json:string>clear solution</json:string>
<json:string>mechanistic aspects</json:string>
<json:string>various amounts</json:string>
<json:string>polyester blends</json:string>
<json:string>macromol chem phys</json:string>
<json:string>proton</json:string>
<json:string>aromatic</json:string>
<json:string>catalyst</json:string>
<json:string>blend</json:string>
<json:string>inherent viscosity</json:string>
<json:string>high temperatures</json:string>
<json:string>aromatic protons</json:string>
<json:string>molecular weight</json:string>
<json:string>aromatic peaks</json:string>
<json:string>macromol chem</json:string>
<json:string>identical conditions</json:string>
<json:string>polym phys</json:string>
<json:string>polymer blends</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>M. Jayakannan</name>
<affiliations>
<json:string>Polymer Science Division, Regional Research Laboratory, Thiruvananthapuram 695019, India</json:string>
<json:string>E-mail: jayakannan18@yahoo.co.in</json:string>
<json:string>Correspondence address: Polymer Science Division, Regional Research Laboratory, Thiruvananthapuram 695019, India</json:string>
</affiliations>
</json:item>
<json:item>
<name>P. Anilkumar</name>
<affiliations>
<json:string>Polymer Science Division, Regional Research Laboratory, Thiruvananthapuram 695019, India</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>polycarbonates, polyesters, polymer blends, transesterifications</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>reactive blending</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>exchange reaction</value>
</json:item>
</subject>
<articleId>
<json:string>POLA20281</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-14W9MXS4-3</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>The reactive blending of bisphenol A polycarbonate (PC) with poly(1,4‐cyclohexanedimethylene‐1,4‐cyclohexanedicarboxylate) (PCCD) was investigated with a new high‐temperature solution‐blending methodology. The ester–carbonate exchange reaction (transesterification) in the blends was studied with NMR and Fourier transform infrared. The composition analysis of the PC/PCCD blends was performed with 1H NMR, and the molecular weights were determined with viscosity methods. 1,4‐Dimethylcyclohexanedicarboxylate, 1,4‐cyclohexanedicarboxylic acid, and 1,4‐cyclohexanedimethanol were reacted with PC to study the tendency of polyester chain‐end reactions such as transesterification, acidolysis, and alcoholysis. These model reactions revealed that the reactive blending was affected by both alcoholysis and transesterification, whereas acidolysis was absent. The model reaction products were used to study the mechanistic aspects of PC/PCCD reactive blending, which indicated the formation of three stable triads; two corresponded to symmetrical and unsymmetrical aromatic–cycloaliphatic esters, and the other corresponded to aromatic–cycloaliphatic ethers. The composition analysis confirmed that in PC/PCCD reactive blending, the exchange reaction predominantly occurred in the polymer main chains, and the influence of the end groups was insignificant. The effect of the catalyst concentration and PC/PCCD composition on the extent of the exchange reaction was also investigated. Thermal analysis by differential scanning calorimetry revealed that the ester–carbonate exchange enhanced the compatibilization of PC/PCCD, and a single glass‐transition temperature was observed for the miscible blends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3996–4008, 2004</abstract>
<qualityIndicators>
<score>9.7</score>
<pdfWordCount>6042</pdfWordCount>
<pdfCharCount>35583</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>13</pdfPageCount>
<pdfPageSize>630 x 810 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>225</abstractWordCount>
<abstractCharCount>1781</abstractCharCount>
<keywordCount>3</keywordCount>
</qualityIndicators>
<title>Mechanistic aspects of ester–carbonate exchange in polycarbonate/cycloaliphatic polyester with model reactions</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Polymer Science Part A: Polymer Chemistry</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1099-0518</json:string>
</doi>
<issn>
<json:string>0887-624X</json:string>
</issn>
<eissn>
<json:string>1099-0518</json:string>
</eissn>
<publisherId>
<json:string>POLA</json:string>
</publisherId>
<volume>42</volume>
<issue>16</issue>
<pages>
<first>3996</first>
<last>4008</last>
<total>13</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Article</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date></date>
<geogName></geogName>
<orgName></orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName></persName>
<placeName></placeName>
<ref_url></ref_url>
<ref_bibl></ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-14W9MXS4-3</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - polymer science</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - chemistry</json:string>
<json:string>3 - polymers</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Materials Science</json:string>
<json:string>3 - Materials Chemistry</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Chemistry</json:string>
<json:string>3 - Organic Chemistry</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Materials Science</json:string>
<json:string>3 - Polymers and Plastics</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2004</publicationDate>
<copyrightDate>2004</copyrightDate>
<doi>
<json:string>10.1002/pola.20281</json:string>
</doi>
<id>C9B814EC52ADB3A75F497F89A7B9C11020AD849C</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-14W9MXS4-3/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-14W9MXS4-3/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/WNG-14W9MXS4-3/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Mechanistic aspects of ester–carbonate exchange in polycarbonate/cycloaliphatic polyester with model reactions</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<licence>Copyright © 2004 Wiley Periodicals, Inc.</licence>
</availability>
<date type="published" when="2004-08-15"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Mechanistic aspects of ester–carbonate exchange in polycarbonate/cycloaliphatic polyester with model reactions</title>
<title level="a" type="short" xml:lang="en">Polycarbonate/Cycloaliphatic Polyester</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">M.</forename>
<surname>Jayakannan</surname>
</persName>
<email>jayakannan18@yahoo.co.in</email>
<affiliation>
<address>
<addrLine>Polymer Science Division</addrLine>
<addrLine>Regional Research Laboratory</addrLine>
<addrLine>Thiruvananthapuram 695019</addrLine>
<country key="IN">INDIA</country>
<country key="IN"></country>
</address>
</affiliation>
<affiliation>Polymer Science Division, Regional Research Laboratory, Thiruvananthapuram 695019, India</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">P.</forename>
<surname>Anilkumar</surname>
</persName>
<affiliation>
<address>
<addrLine>Polymer Science Division</addrLine>
<addrLine>Regional Research Laboratory</addrLine>
<addrLine>Thiruvananthapuram 695019</addrLine>
<country key="IN">INDIA</country>
<country key="IN"></country>
</address>
</affiliation>
</author>
<idno type="istex">C9B814EC52ADB3A75F497F89A7B9C11020AD849C</idno>
<idno type="ark">ark:/67375/WNG-14W9MXS4-3</idno>
<idno type="DOI">10.1002/pola.20281</idno>
<idno type="unit">POLA20281</idno>
<idno type="toTypesetVersion">file:POLA.POLA20281.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of Polymer Science Part A: Polymer Chemistry</title>
<title level="j" type="alt">JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY</title>
<idno type="pISSN">0887-624X</idno>
<idno type="eISSN">1099-0518</idno>
<idno type="book-DOI">10.1002/(ISSN)1099-0518</idno>
<idno type="book-part-DOI">10.1002/pola.v42:16</idno>
<idno type="product">POLA</idno>
<imprint>
<biblScope unit="vol">42</biblScope>
<biblScope unit="issue">16</biblScope>
<biblScope unit="page" from="3996">3996</biblScope>
<biblScope unit="page" to="4008">4008</biblScope>
<biblScope unit="page-count">13</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2004-08-15"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>The reactive blending of bisphenol A polycarbonate (PC) with poly(1,4‐cyclohexanedimethylene‐1,4‐cyclohexanedicarboxylate) (PCCD) was investigated with a new high‐temperature solution‐blending methodology. The ester–carbonate exchange reaction (transesterification) in the blends was studied with NMR and Fourier transform infrared. The composition analysis of the PC/PCCD blends was performed with
<hi rend="superscript">1</hi>
H NMR, and the molecular weights were determined with viscosity methods. 1,4‐Dimethylcyclohexanedicarboxylate, 1,4‐cyclohexanedicarboxylic acid, and 1,4‐cyclohexanedimethanol were reacted with PC to study the tendency of polyester chain‐end reactions such as transesterification, acidolysis, and alcoholysis. These model reactions revealed that the reactive blending was affected by both alcoholysis and transesterification, whereas acidolysis was absent. The model reaction products were used to study the mechanistic aspects of PC/PCCD reactive blending, which indicated the formation of three stable triads; two corresponded to symmetrical and unsymmetrical aromatic–cycloaliphatic esters, and the other corresponded to aromatic–cycloaliphatic ethers. The composition analysis confirmed that in PC/PCCD reactive blending, the exchange reaction predominantly occurred in the polymer main chains, and the influence of the end groups was insignificant. The effect of the catalyst concentration and PC/PCCD composition on the extent of the exchange reaction was also investigated. Thermal analysis by differential scanning calorimetry revealed that the ester–carbonate exchange enhanced the compatibilization of PC/PCCD, and a single glass‐transition temperature was observed for the miscible blends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3996–4008, 2004</p>
</abstract>
<abstract xml:lang="en" style="graphical">
<p>The reactive blending of bisphenol A polycarbonate (PC) with poly(1,4‐cyclohexanedimethylene‐1,4‐cyclohexanedicarboxylate) (PCCD) was investigated with NMR and Fourier transform infrared spectroscopy. Model reactions were carried out through the reaction of PC with 1,4‐dimethylcyclohexanedicarboxylate, 1,4‐cyclohexanedicarboxylic acid, and 1,4‐cyclohexanedimethanol to study the tendency of polyester chain‐end reactions such as transesterification, acidolysis, and alcoholysis. These model reactions revealed that the reactive blending was affected by both alcoholysis and transesterification, whereas acidolysis was absent. NMR analysis confirmed that in PC/PCCD reactive blending, the exchange reaction predominantly occurred in the polymer main chains, and the influence of the end groups was insignificant.
<figure type="box">
<media mimeType="image" url="urn:x-wiley:0887624X:media:POLA20281:gra001"></media>
<media mimeType="image/gif" url="" rendition="webLoRes"></media>
<media mimeType="image/gif" url="" rendition="webOriginal"></media>
<media mimeType="image/gif" url="" rendition="webHiRes"></media>
</figure>
</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">polycarbonates, polyesters, polymer blends, transesterifications</term>
<term xml:id="kwd2">reactive blending</term>
<term xml:id="kwd3">exchange reaction</term>
</keywords>
<keywords rend="articleCategory">
<term>Article</term>
</keywords>
<keywords rend="tocHeading1">
<term>Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-14W9MXS4-3/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1099-0518</doi>
<issn type="print">0887-624X</issn>
<issn type="electronic">1099-0518</issn>
<idGroup>
<id type="product" value="POLA"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY">Journal of Polymer Science Part A: Polymer Chemistry</title>
<title type="short">J. Polym. Sci. A Polym. Chem.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="160">
<doi origin="wiley" registered="yes">10.1002/pola.v42:16</doi>
<numberingGroup>
<numbering type="journalVolume" number="42">42</numbering>
<numbering type="journalIssue">16</numbering>
</numberingGroup>
<coverDate startDate="2004-08-15">15 August 2004</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="100" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/pola.20281</doi>
<idGroup>
<id type="unit" value="POLA20281"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="13"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Article</title>
<title type="tocHeading1">Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2004 Wiley Periodicals, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2004-03-16"></event>
<event type="manuscriptAccepted" date="2004-04-23"></event>
<event type="firstOnline" date="2004-07-09"></event>
<event type="publishedOnlineFinalForm" date="2004-07-09"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.6 mode:FullText source:FullText result:FullText mathml2tex" date="2010-04-23"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-07"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">3996</numbering>
<numbering type="pageLast">4008</numbering>
</numberingGroup>
<correspondenceTo>Polymer Science Division, Regional Research Laboratory, Thiruvananthapuram 695019, India</correspondenceTo>
<objectNameGroup>
<objectName elementName="figure">Scheme</objectName>
</objectNameGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:POLA.POLA20281.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="12"></count>
<count type="tableTotal" number="2"></count>
<count type="referenceTotal" number="78"></count>
<count type="wordTotal" number="7418"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Mechanistic aspects of ester–carbonate exchange in polycarbonate/cycloaliphatic polyester with model reactions</title>
<title type="short" xml:lang="en">Polycarbonate/Cycloaliphatic Polyester</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>M.</givenNames>
<familyName>Jayakannan</familyName>
</personName>
<contactDetails>
<email>jayakannan18@yahoo.co.in</email>
</contactDetails>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>P.</givenNames>
<familyName>Anilkumar</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="IN" type="organization">
<unparsedAffiliation>Polymer Science Division, Regional Research Laboratory, Thiruvananthapuram 695019, India</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">polycarbonates, polyesters, polymer blends, transesterifications</keyword>
<keyword xml:id="kwd2">reactive blending</keyword>
<keyword xml:id="kwd3">exchange reaction</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>Department of Science and Technology, New Delhi, India</fundingAgency>
<fundingNumber>SR/FTP/CSA–20/2003</fundingNumber>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>The reactive blending of bisphenol A polycarbonate (PC) with poly(1,4‐cyclohexanedimethylene‐1,4‐cyclohexanedicarboxylate) (PCCD) was investigated with a new high‐temperature solution‐blending methodology. The ester–carbonate exchange reaction (transesterification) in the blends was studied with NMR and Fourier transform infrared. The composition analysis of the PC/PCCD blends was performed with
<sup>1</sup>
H NMR, and the molecular weights were determined with viscosity methods. 1,4‐Dimethylcyclohexanedicarboxylate, 1,4‐cyclohexanedicarboxylic acid, and 1,4‐cyclohexanedimethanol were reacted with PC to study the tendency of polyester chain‐end reactions such as transesterification, acidolysis, and alcoholysis. These model reactions revealed that the reactive blending was affected by both alcoholysis and transesterification, whereas acidolysis was absent. The model reaction products were used to study the mechanistic aspects of PC/PCCD reactive blending, which indicated the formation of three stable triads; two corresponded to symmetrical and unsymmetrical aromatic–cycloaliphatic esters, and the other corresponded to aromatic–cycloaliphatic ethers. The composition analysis confirmed that in PC/PCCD reactive blending, the exchange reaction predominantly occurred in the polymer main chains, and the influence of the end groups was insignificant. The effect of the catalyst concentration and PC/PCCD composition on the extent of the exchange reaction was also investigated. Thermal analysis by differential scanning calorimetry revealed that the ester–carbonate exchange enhanced the compatibilization of PC/PCCD, and a single glass‐transition temperature was observed for the miscible blends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3996–4008, 2004</p>
</abstract>
<abstract type="graphical" xml:lang="en">
<p>The reactive blending of bisphenol A polycarbonate (PC) with poly(1,4‐cyclohexanedimethylene‐1,4‐cyclohexanedicarboxylate) (PCCD) was investigated with NMR and Fourier transform infrared spectroscopy. Model reactions were carried out through the reaction of PC with 1,4‐dimethylcyclohexanedicarboxylate, 1,4‐cyclohexanedicarboxylic acid, and 1,4‐cyclohexanedimethanol to study the tendency of polyester chain‐end reactions such as transesterification, acidolysis, and alcoholysis. These model reactions revealed that the reactive blending was affected by both alcoholysis and transesterification, whereas acidolysis was absent. NMR analysis confirmed that in PC/PCCD reactive blending, the exchange reaction predominantly occurred in the polymer main chains, and the influence of the end groups was insignificant.
<blockFixed type="graphic">
<mediaResourceGroup>
<mediaResource alt="image" eRights="yes" copyright="Wiley Periodicals, Inc." href="urn:x-wiley:0887624X:media:POLA20281:gra001"></mediaResource>
<mediaResource alt="thumbnail image" rendition="webLoRes" mimeType="image/gif" href=""></mediaResource>
<mediaResource alt="original image" rendition="webOriginal" mimeType="image/gif" href=""></mediaResource>
<mediaResource alt="magnified image" rendition="webHiRes" mimeType="image/gif" href=""></mediaResource>
</mediaResourceGroup>
</blockFixed>
</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Mechanistic aspects of ester–carbonate exchange in polycarbonate/cycloaliphatic polyester with model reactions</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Polycarbonate/Cycloaliphatic Polyester</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Mechanistic aspects of ester–carbonate exchange in polycarbonate/cycloaliphatic polyester with model reactions</title>
</titleInfo>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Jayakannan</namePart>
<affiliation>Polymer Science Division, Regional Research Laboratory, Thiruvananthapuram 695019, India</affiliation>
<affiliation>E-mail: jayakannan18@yahoo.co.in</affiliation>
<affiliation>Correspondence address: Polymer Science Division, Regional Research Laboratory, Thiruvananthapuram 695019, India</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P.</namePart>
<namePart type="family">Anilkumar</namePart>
<affiliation>Polymer Science Division, Regional Research Laboratory, Thiruvananthapuram 695019, India</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2004-08-15</dateIssued>
<dateCaptured encoding="w3cdtf">2004-03-16</dateCaptured>
<dateValid encoding="w3cdtf">2004-04-23</dateValid>
<copyrightDate encoding="w3cdtf">2004</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">12</extent>
<extent unit="tables">2</extent>
<extent unit="references">78</extent>
<extent unit="words">7418</extent>
</physicalDescription>
<abstract lang="en">The reactive blending of bisphenol A polycarbonate (PC) with poly(1,4‐cyclohexanedimethylene‐1,4‐cyclohexanedicarboxylate) (PCCD) was investigated with a new high‐temperature solution‐blending methodology. The ester–carbonate exchange reaction (transesterification) in the blends was studied with NMR and Fourier transform infrared. The composition analysis of the PC/PCCD blends was performed with 1H NMR, and the molecular weights were determined with viscosity methods. 1,4‐Dimethylcyclohexanedicarboxylate, 1,4‐cyclohexanedicarboxylic acid, and 1,4‐cyclohexanedimethanol were reacted with PC to study the tendency of polyester chain‐end reactions such as transesterification, acidolysis, and alcoholysis. These model reactions revealed that the reactive blending was affected by both alcoholysis and transesterification, whereas acidolysis was absent. The model reaction products were used to study the mechanistic aspects of PC/PCCD reactive blending, which indicated the formation of three stable triads; two corresponded to symmetrical and unsymmetrical aromatic–cycloaliphatic esters, and the other corresponded to aromatic–cycloaliphatic ethers. The composition analysis confirmed that in PC/PCCD reactive blending, the exchange reaction predominantly occurred in the polymer main chains, and the influence of the end groups was insignificant. The effect of the catalyst concentration and PC/PCCD composition on the extent of the exchange reaction was also investigated. Thermal analysis by differential scanning calorimetry revealed that the ester–carbonate exchange enhanced the compatibilization of PC/PCCD, and a single glass‐transition temperature was observed for the miscible blends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3996–4008, 2004</abstract>
<abstract type="graphical" lang="en">The reactive blending of bisphenol A polycarbonate (PC) with poly(1,4‐cyclohexanedimethylene‐1,4‐cyclohexanedicarboxylate) (PCCD) was investigated with NMR and Fourier transform infrared spectroscopy. Model reactions were carried out through the reaction of PC with 1,4‐dimethylcyclohexanedicarboxylate, 1,4‐cyclohexanedicarboxylic acid, and 1,4‐cyclohexanedimethanol to study the tendency of polyester chain‐end reactions such as transesterification, acidolysis, and alcoholysis. These model reactions revealed that the reactive blending was affected by both alcoholysis and transesterification, whereas acidolysis was absent. NMR analysis confirmed that in PC/PCCD reactive blending, the exchange reaction predominantly occurred in the polymer main chains, and the influence of the end groups was insignificant.</abstract>
<note type="funding">Department of Science and Technology, New Delhi, India - No. SR/FTP/CSA–20/2003; </note>
<subject lang="en">
<genre>keywords</genre>
<topic>polycarbonates, polyesters, polymer blends, transesterifications</topic>
<topic>reactive blending</topic>
<topic>exchange reaction</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Polymer Science Part A: Polymer Chemistry</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Polym. Sci. A Polym. Chem.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Article</topic>
</subject>
<identifier type="ISSN">0887-624X</identifier>
<identifier type="eISSN">1099-0518</identifier>
<identifier type="DOI">10.1002/(ISSN)1099-0518</identifier>
<identifier type="PublisherID">POLA</identifier>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>42</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>16</number>
</detail>
<extent unit="pages">
<start>3996</start>
<end>4008</end>
<total>13</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">C9B814EC52ADB3A75F497F89A7B9C11020AD849C</identifier>
<identifier type="ark">ark:/67375/WNG-14W9MXS4-3</identifier>
<identifier type="DOI">10.1002/pola.20281</identifier>
<identifier type="ArticleID">POLA20281</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2004 Wiley Periodicals, Inc.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-14W9MXS4-3/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F83 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002F83 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:C9B814EC52ADB3A75F497F89A7B9C11020AD849C
   |texte=   Mechanistic aspects of ester–carbonate exchange in polycarbonate/cycloaliphatic polyester with model reactions
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022