Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Survey of Procedural Noise Functions

Identifieur interne : 002234 ( Istex/Corpus ); précédent : 002233; suivant : 002235

A Survey of Procedural Noise Functions

Auteurs : A. Lagae ; S. Lefebvre ; R. Cook ; T. Derose ; G. Drettakis ; D. S. Ebert ; J. P. Lewis ; K. Perlin ; M. Zwicker

Source :

RBID : ISTEX:9391BC871812BA2A4D2164D65ACDBCF4B0DD799E

English descriptors

Abstract

Procedural noise functions are widely used in computer graphics, from off‐line rendering in movie production to interactive video games. The ability to add complex and intricate details at low memory and authoring cost is one of its main attractions. This survey is motivated by the inherent importance of noise in graphics, the widespread use of noise in industry and the fact that many recent research developments justify the need for an up‐to‐date survey. Our goal is to provide both a valuable entry point into the field of procedural noise functions, as well as a comprehensive view of the field to the informed reader. In this report, we cover procedural noise functions in all their aspects. We outline recent advances in research on this topic, discussing and comparing recent and well‐established methods. We first formally define procedural noise functions based on stochastic processes and then classify and review existing procedural noise functions. We discuss how procedural noise functions are used for modelling and how they are applied to surfaces. We then introduce analysis tools and apply them to evaluate and compare the major approaches to noise generation. We finally identify several directions for future work.

Url:
DOI: 10.1111/j.1467-8659.2010.01827.x

Links to Exploration step

ISTEX:9391BC871812BA2A4D2164D65ACDBCF4B0DD799E

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Survey of Procedural Noise Functions</title>
<author>
<name sortKey="Lagae, A" sort="Lagae, A" uniqKey="Lagae A" first="A." last="Lagae">A. Lagae</name>
<affiliation>
<mods:affiliation>Katholieke Universiteit Leuven, Belgium</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>REVES/INRIA Sophia‐Antipolis, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lefebvre, S" sort="Lefebvre, S" uniqKey="Lefebvre S" first="S." last="Lefebvre">S. Lefebvre</name>
<affiliation>
<mods:affiliation>REVES/INRIA Sophia‐Antipolis, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>ALICE/INRIA Nancy Grand‐Est/Loria, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cook, R" sort="Cook, R" uniqKey="Cook R" first="R." last="Cook">R. Cook</name>
<affiliation>
<mods:affiliation>Pixar Animation Studios, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Derose, T" sort="Derose, T" uniqKey="Derose T" first="T." last="Derose">T. Derose</name>
<affiliation>
<mods:affiliation>Pixar Animation Studios, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Drettakis, G" sort="Drettakis, G" uniqKey="Drettakis G" first="G." last="Drettakis">G. Drettakis</name>
<affiliation>
<mods:affiliation>REVES/INRIA Sophia‐Antipolis, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ebert, D S" sort="Ebert, D S" uniqKey="Ebert D" first="D. S." last="Ebert">D. S. Ebert</name>
<affiliation>
<mods:affiliation>Purdue University, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lewis, J P" sort="Lewis, J P" uniqKey="Lewis J" first="J. P." last="Lewis">J. P. Lewis</name>
<affiliation>
<mods:affiliation>Weta Digital, New Zealand</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Perlin, K" sort="Perlin, K" uniqKey="Perlin K" first="K." last="Perlin">K. Perlin</name>
<affiliation>
<mods:affiliation>New York University, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zwicker, M" sort="Zwicker, M" uniqKey="Zwicker M" first="M." last="Zwicker">M. Zwicker</name>
<affiliation>
<mods:affiliation>University of Bern, Switzerland</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:9391BC871812BA2A4D2164D65ACDBCF4B0DD799E</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1111/j.1467-8659.2010.01827.x</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-69HTHX3X-T/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002234</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002234</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">A Survey of Procedural Noise Functions</title>
<author>
<name sortKey="Lagae, A" sort="Lagae, A" uniqKey="Lagae A" first="A." last="Lagae">A. Lagae</name>
<affiliation>
<mods:affiliation>Katholieke Universiteit Leuven, Belgium</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>REVES/INRIA Sophia‐Antipolis, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lefebvre, S" sort="Lefebvre, S" uniqKey="Lefebvre S" first="S." last="Lefebvre">S. Lefebvre</name>
<affiliation>
<mods:affiliation>REVES/INRIA Sophia‐Antipolis, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>ALICE/INRIA Nancy Grand‐Est/Loria, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cook, R" sort="Cook, R" uniqKey="Cook R" first="R." last="Cook">R. Cook</name>
<affiliation>
<mods:affiliation>Pixar Animation Studios, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Derose, T" sort="Derose, T" uniqKey="Derose T" first="T." last="Derose">T. Derose</name>
<affiliation>
<mods:affiliation>Pixar Animation Studios, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Drettakis, G" sort="Drettakis, G" uniqKey="Drettakis G" first="G." last="Drettakis">G. Drettakis</name>
<affiliation>
<mods:affiliation>REVES/INRIA Sophia‐Antipolis, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ebert, D S" sort="Ebert, D S" uniqKey="Ebert D" first="D. S." last="Ebert">D. S. Ebert</name>
<affiliation>
<mods:affiliation>Purdue University, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lewis, J P" sort="Lewis, J P" uniqKey="Lewis J" first="J. P." last="Lewis">J. P. Lewis</name>
<affiliation>
<mods:affiliation>Weta Digital, New Zealand</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Perlin, K" sort="Perlin, K" uniqKey="Perlin K" first="K." last="Perlin">K. Perlin</name>
<affiliation>
<mods:affiliation>New York University, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zwicker, M" sort="Zwicker, M" uniqKey="Zwicker M" first="M." last="Zwicker">M. Zwicker</name>
<affiliation>
<mods:affiliation>University of Bern, Switzerland</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Computer Graphics Forum</title>
<title level="j" type="alt">COMPUTER GRAPHICS FORUM</title>
<idno type="ISSN">0167-7055</idno>
<idno type="eISSN">1467-8659</idno>
<imprint>
<biblScope unit="vol">29</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="2579">2579</biblScope>
<biblScope unit="page" to="2600">2600</biblScope>
<biblScope unit="page-count">22</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2010-12">2010-12</date>
</imprint>
<idno type="ISSN">0167-7055</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0167-7055</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Algorithm</term>
<term>Aliasing</term>
<term>Amplitude distribution</term>
<term>Analysis tools</term>
<term>Anisotropic</term>
<term>Anisotropic noise</term>
<term>Authors computer graphics forum</term>
<term>Autocorrelation</term>
<term>Autocorrelation function</term>
<term>Better gradient noise</term>
<term>Blackwell</term>
<term>Blackwell publishing</term>
<term>Cellular texture basis function</term>
<term>Colour</term>
<term>Colour table</term>
<term>Computer graphics</term>
<term>Computer graphics forum</term>
<term>Computer science</term>
<term>Convolution</term>
<term>Count probability power</term>
<term>Derose</term>
<term>Dischler</term>
<term>Distribution radially</term>
<term>Eurographics</term>
<term>Eurographics association</term>
<term>Explicit noises</term>
<term>Fourier</term>
<term>Fractal</term>
<term>Frequency content</term>
<term>Frequency domain</term>
<term>Future work</term>
<term>Gabor</term>
<term>Gabor kernel</term>
<term>Gabor noise</term>
<term>Gaussian</term>
<term>Ghazanfarpour</term>
<term>Graphics</term>
<term>Graphics hardware</term>
<term>Histogram</term>
<term>Ieee transactions</term>
<term>Integer lattice</term>
<term>Intensity distribution</term>
<term>Kernel</term>
<term>Lagae</term>
<term>Lattice</term>
<term>Lattice gradient</term>
<term>Lattice gradient noises</term>
<term>Lefebvre</term>
<term>Lter</term>
<term>Ltered</term>
<term>Ltering</term>
<term>Memory access</term>
<term>Modelling</term>
<term>More detail</term>
<term>Noise</term>
<term>Noise algorithms</term>
<term>Noise bands</term>
<term>Noise function</term>
<term>Noise functions</term>
<term>Noise generation</term>
<term>Noise pattern</term>
<term>Noise patterns</term>
<term>Noise tiles</term>
<term>Noise value</term>
<term>Noise values</term>
<term>Other lattices</term>
<term>Periodogram</term>
<term>Perlin</term>
<term>Perlin noise</term>
<term>Pixel</term>
<term>Poisson</term>
<term>Poisson process</term>
<term>Power spectrum</term>
<term>Power spectrum estimate</term>
<term>Power spectrum intensity</term>
<term>Procedural</term>
<term>Procedural noise</term>
<term>Procedural noise function</term>
<term>Procedural noise functions</term>
<term>Procedural techniques</term>
<term>Procedural textures</term>
<term>Procedural texturing</term>
<term>Radial frequency</term>
<term>Radially</term>
<term>Random phase</term>
<term>Several authors</term>
<term>Shader</term>
<term>Siggraph</term>
<term>Solid noise</term>
<term>Solid texturing</term>
<term>Sparse</term>
<term>Sparse convolution noise</term>
<term>Sparse convolution noises</term>
<term>Spatial domain</term>
<term>Spectral control</term>
<term>Spectrum</term>
<term>Spot noise</term>
<term>Stochastic</term>
<term>Stochastic processes</term>
<term>Stochastic subdivision</term>
<term>Storage requirements</term>
<term>Subbands</term>
<term>Surface noise</term>
<term>Texture</term>
<term>Texture basis function</term>
<term>Texture coordinates</term>
<term>Texture mapping</term>
<term>Texture space</term>
<term>Texture synthesis</term>
<term>Texturing</term>
<term>Undesired anisotropy</term>
<term>Visual aspect</term>
<term>Wavelet</term>
<term>Wavelet noise</term>
<term>White noise</term>
<term>Wijk</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Procedural noise functions are widely used in computer graphics, from off‐line rendering in movie production to interactive video games. The ability to add complex and intricate details at low memory and authoring cost is one of its main attractions. This survey is motivated by the inherent importance of noise in graphics, the widespread use of noise in industry and the fact that many recent research developments justify the need for an up‐to‐date survey. Our goal is to provide both a valuable entry point into the field of procedural noise functions, as well as a comprehensive view of the field to the informed reader. In this report, we cover procedural noise functions in all their aspects. We outline recent advances in research on this topic, discussing and comparing recent and well‐established methods. We first formally define procedural noise functions based on stochastic processes and then classify and review existing procedural noise functions. We discuss how procedural noise functions are used for modelling and how they are applied to surfaces. We then introduce analysis tools and apply them to evaluate and compare the major approaches to noise generation. We finally identify several directions for future work.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>graphics</json:string>
<json:string>power spectrum</json:string>
<json:string>convolution</json:string>
<json:string>perlin</json:string>
<json:string>lagae</json:string>
<json:string>gabor</json:string>
<json:string>anisotropic</json:string>
<json:string>procedural noise functions</json:string>
<json:string>ltering</json:string>
<json:string>noise functions</json:string>
<json:string>perlin noise</json:string>
<json:string>eurographics</json:string>
<json:string>lter</json:string>
<json:string>gabor noise</json:string>
<json:string>sparse convolution noise</json:string>
<json:string>computer graphics</json:string>
<json:string>blackwell publishing</json:string>
<json:string>eurographics association</json:string>
<json:string>authors computer graphics forum</json:string>
<json:string>noise function</json:string>
<json:string>wavelet</json:string>
<json:string>anisotropic noise</json:string>
<json:string>siggraph</json:string>
<json:string>solid noise</json:string>
<json:string>fourier</json:string>
<json:string>sparse convolution noises</json:string>
<json:string>pixel</json:string>
<json:string>wavelet noise</json:string>
<json:string>texturing</json:string>
<json:string>ltered</json:string>
<json:string>frequency domain</json:string>
<json:string>gabor kernel</json:string>
<json:string>procedural noise function</json:string>
<json:string>colour</json:string>
<json:string>stochastic</json:string>
<json:string>modelling</json:string>
<json:string>poisson</json:string>
<json:string>procedural textures</json:string>
<json:string>fractal</json:string>
<json:string>radially</json:string>
<json:string>spectral control</json:string>
<json:string>amplitude distribution</json:string>
<json:string>autocorrelation</json:string>
<json:string>dischler</json:string>
<json:string>kernel</json:string>
<json:string>histogram</json:string>
<json:string>surface noise</json:string>
<json:string>procedural noise</json:string>
<json:string>stochastic processes</json:string>
<json:string>shader</json:string>
<json:string>better gradient noise</json:string>
<json:string>noise</json:string>
<json:string>spot noise</json:string>
<json:string>lefebvre</json:string>
<json:string>periodogram</json:string>
<json:string>noise pattern</json:string>
<json:string>procedural</json:string>
<json:string>derose</json:string>
<json:string>spatial domain</json:string>
<json:string>subbands</json:string>
<json:string>aliasing</json:string>
<json:string>wijk</json:string>
<json:string>explicit noises</json:string>
<json:string>ghazanfarpour</json:string>
<json:string>lattice</json:string>
<json:string>several authors</json:string>
<json:string>computer graphics forum</json:string>
<json:string>gaussian</json:string>
<json:string>algorithm</json:string>
<json:string>count probability power</json:string>
<json:string>noise bands</json:string>
<json:string>frequency content</json:string>
<json:string>noise patterns</json:string>
<json:string>radial frequency</json:string>
<json:string>power spectrum estimate</json:string>
<json:string>graphics hardware</json:string>
<json:string>analysis tools</json:string>
<json:string>sparse</json:string>
<json:string>lattice gradient noises</json:string>
<json:string>distribution radially</json:string>
<json:string>storage requirements</json:string>
<json:string>texture synthesis</json:string>
<json:string>noise values</json:string>
<json:string>solid texturing</json:string>
<json:string>noise generation</json:string>
<json:string>colour table</json:string>
<json:string>future work</json:string>
<json:string>spectrum</json:string>
<json:string>texture</json:string>
<json:string>noise tiles</json:string>
<json:string>autocorrelation function</json:string>
<json:string>random phase</json:string>
<json:string>visual aspect</json:string>
<json:string>white noise</json:string>
<json:string>procedural techniques</json:string>
<json:string>memory access</json:string>
<json:string>more detail</json:string>
<json:string>power spectrum intensity</json:string>
<json:string>procedural texturing</json:string>
<json:string>texture mapping</json:string>
<json:string>intensity distribution</json:string>
<json:string>stochastic subdivision</json:string>
<json:string>other lattices</json:string>
<json:string>computer science</json:string>
<json:string>integer lattice</json:string>
<json:string>texture coordinates</json:string>
<json:string>poisson process</json:string>
<json:string>texture space</json:string>
<json:string>noise algorithms</json:string>
<json:string>undesired anisotropy</json:string>
<json:string>noise value</json:string>
<json:string>lattice gradient</json:string>
<json:string>texture basis function</json:string>
<json:string>cellular texture basis function</json:string>
<json:string>ieee transactions</json:string>
<json:string>blackwell</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>A. Lagae</name>
<affiliations>
<json:string>Katholieke Universiteit Leuven, Belgium</json:string>
<json:string>REVES/INRIA Sophia‐Antipolis, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>S. Lefebvre</name>
<affiliations>
<json:string>REVES/INRIA Sophia‐Antipolis, France</json:string>
<json:string>ALICE/INRIA Nancy Grand‐Est/Loria, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>R. Cook</name>
<affiliations>
<json:string>Pixar Animation Studios, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>T. DeRose</name>
<affiliations>
<json:string>Pixar Animation Studios, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>G. Drettakis</name>
<affiliations>
<json:string>REVES/INRIA Sophia‐Antipolis, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>D.S. Ebert</name>
<affiliations>
<json:string>Purdue University, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>J.P. Lewis</name>
<affiliations>
<json:string>Weta Digital, New Zealand</json:string>
</affiliations>
</json:item>
<json:item>
<name>K. Perlin</name>
<affiliations>
<json:string>New York University, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>M. Zwicker</name>
<affiliations>
<json:string>University of Bern, Switzerland</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>procedural noise function</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>noise</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>stochastic process</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>procedural</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Perlin noise</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>wavelet noise</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>anisotropic noise</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>sparse convolution noise</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Gabor noise</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>spot noise</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>surface noise</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>solid noise</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>anti‐aliasing</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>filtering</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>stochastic modelling</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>procedural texture</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>procedural modelling</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>solid texture</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>texture synthesis</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>spectral analysis</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>power spectrum estimation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>I.3.3 [Computer Graphics]: Picture/Image Generation—I.3.7 [Computer Graphics]: Three‐Dimensional Graphics and Realism‐Colour, shading, shadowing, and texture</value>
</json:item>
</subject>
<articleId>
<json:string>CGF1827</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-69HTHX3X-T</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Procedural noise functions are widely used in computer graphics, from off‐line rendering in movie production to interactive video games. The ability to add complex and intricate details at low memory and authoring cost is one of its main attractions. This survey is motivated by the inherent importance of noise in graphics, the widespread use of noise in industry and the fact that many recent research developments justify the need for an up‐to‐date survey. Our goal is to provide both a valuable entry point into the field of procedural noise functions, as well as a comprehensive view of the field to the informed reader. In this report, we cover procedural noise functions in all their aspects. We outline recent advances in research on this topic, discussing and comparing recent and well‐established methods. We first formally define procedural noise functions based on stochastic processes and then classify and review existing procedural noise functions. We discuss how procedural noise functions are used for modelling and how they are applied to surfaces. We then introduce analysis tools and apply them to evaluate and compare the major approaches to noise generation. We finally identify several directions for future work.</abstract>
<qualityIndicators>
<refBibsNative>true</refBibsNative>
<abstractWordCount>194</abstractWordCount>
<abstractCharCount>1236</abstractCharCount>
<keywordCount>22</keywordCount>
<score>9.328</score>
<pdfWordCount>13443</pdfWordCount>
<pdfCharCount>82640</pdfCharCount>
<pdfVersion>1.4</pdfVersion>
<pdfPageCount>22</pdfPageCount>
<pdfPageSize>544.178 x 742.648 pts</pdfPageSize>
</qualityIndicators>
<title>A Survey of Procedural Noise Functions</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Computer Graphics Forum</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1467-8659</json:string>
</doi>
<issn>
<json:string>0167-7055</json:string>
</issn>
<eissn>
<json:string>1467-8659</json:string>
</eissn>
<publisherId>
<json:string>CGF</json:string>
</publisherId>
<volume>29</volume>
<issue>8</issue>
<pages>
<first>2579</first>
<last>2600</last>
<total>22</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date></date>
<geogName></geogName>
<orgName></orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName></persName>
<placeName></placeName>
<ref_url></ref_url>
<ref_bibl></ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-69HTHX3X-T</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - computer science, software engineering</json:string>
</wos>
<scienceMetrix>
<json:string>1 - applied sciences</json:string>
<json:string>2 - information & communication technologies</json:string>
<json:string>3 - software engineering</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Computer Science</json:string>
<json:string>3 - Computer Networks and Communications</json:string>
</scopus>
<inist>
<json:string>1 - sciences humaines et sociales</json:string>
</inist>
</categories>
<publicationDate>2010</publicationDate>
<copyrightDate>2010</copyrightDate>
<doi>
<json:string>10.1111/j.1467-8659.2010.01827.x</json:string>
</doi>
<id>9391BC871812BA2A4D2164D65ACDBCF4B0DD799E</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-69HTHX3X-T/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-69HTHX3X-T/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/WNG-69HTHX3X-T/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">A Survey of Procedural Noise Functions</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<licence>© 2010 The Authors Computer Graphics Forum © 2010 The Eurographics Association and Blackwell Publishing Ltd.</licence>
</availability>
<date type="published" when="2010-12"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">A Survey of Procedural Noise Functions</title>
<author xml:id="author-0000">
<persName>
<forename type="first">A.</forename>
<surname>Lagae</surname>
</persName>
<affiliation>
<address>
<addrLine></addrLine>
</address>
</affiliation>
<affiliation>
<address>
<addrLine></addrLine>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">S.</forename>
<surname>Lefebvre</surname>
</persName>
<affiliation>
<address>
<addrLine></addrLine>
</address>
</affiliation>
<affiliation>
<address>
<addrLine></addrLine>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">R.</forename>
<surname>Cook</surname>
</persName>
<affiliation>
<address>
<addrLine>Pixar Animation Studios</addrLine>
<country key="US">UNITED STATES</country>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">T.</forename>
<surname>DeRose</surname>
</persName>
<affiliation>
<address>
<addrLine>Pixar Animation Studios</addrLine>
<country key="US">UNITED STATES</country>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">G.</forename>
<surname>Drettakis</surname>
</persName>
<affiliation>
<address>
<addrLine>REVES/INRIA Sophia‐Antipolis</addrLine>
<country key="FR">FRANCE</country>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">D.S.</forename>
<surname>Ebert</surname>
</persName>
<affiliation>
<orgName type="institution">Purdue University</orgName>
<address>
<country key="US">UNITED STATES</country>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0006">
<persName>
<forename type="first">J.P.</forename>
<surname>Lewis</surname>
</persName>
<affiliation>
<address>
<addrLine>Weta Digital</addrLine>
<country key="NZ">NEW ZEALAND New Zealand</country>
<country key="NZ"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0007">
<persName>
<forename type="first">K.</forename>
<surname>Perlin</surname>
</persName>
<affiliation>
<orgName type="institution">New York University</orgName>
<address>
<country key="US">UNITED STATES</country>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0008">
<persName>
<forename type="first">M.</forename>
<surname>Zwicker</surname>
</persName>
<affiliation>
<orgName type="institution">University of Bern</orgName>
<address>
<country key="CH">SWITZERLAND</country>
<country key="CH"></country>
</address>
</affiliation>
</author>
<idno type="istex">9391BC871812BA2A4D2164D65ACDBCF4B0DD799E</idno>
<idno type="ark">ark:/67375/WNG-69HTHX3X-T</idno>
<idno type="DOI">10.1111/j.1467-8659.2010.01827.x</idno>
<idno type="unit">CGF1827</idno>
<idno type="toTypesetVersion">file:CGF.CGF1827.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Computer Graphics Forum</title>
<title level="j" type="alt">COMPUTER GRAPHICS FORUM</title>
<idno type="pISSN">0167-7055</idno>
<idno type="eISSN">1467-8659</idno>
<idno type="book-DOI">10.1111/(ISSN)1467-8659</idno>
<idno type="book-part-DOI">10.1111/cgf.2010.29.issue-8</idno>
<idno type="product">CGF</idno>
<idno type="publisherDivision">ST</idno>
<imprint>
<biblScope unit="vol">29</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="2579">2579</biblScope>
<biblScope unit="page" to="2600">2600</biblScope>
<biblScope unit="page-count">22</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2010-12"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>
<hi rend="italic">Procedural noise functions are widely used in computer graphics, from off‐line rendering in movie production to interactive video games. The ability to add complex and intricate details at low memory and authoring cost is one of its main attractions. This survey is motivated by the inherent importance of noise in graphics, the widespread use of noise in industry and the fact that many recent research developments justify the need for an up‐to‐date survey. Our goal is to provide both a valuable entry point into the field of procedural noise functions, as well as a comprehensive view of the field to the informed reader. In this report, we cover procedural noise functions in all their aspects. We outline recent advances in research on this topic, discussing and comparing recent and well‐established methods. We first formally define procedural noise functions based on stochastic processes and then classify and review existing procedural noise functions. We discuss how procedural noise functions are used for modelling and how they are applied to surfaces. We then introduce analysis tools and apply them to evaluate and compare the major approaches to noise generation. We finally identify several directions for future work.</hi>
</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="k1">procedural noise function</term>
<term xml:id="k2">noise</term>
<term xml:id="k3">stochastic process</term>
<term xml:id="k4">procedural</term>
<term xml:id="k5">Perlin noise</term>
<term xml:id="k6">wavelet noise</term>
<term xml:id="k7">anisotropic noise</term>
<term xml:id="k8">sparse convolution noise</term>
<term xml:id="k9">Gabor noise</term>
<term xml:id="k10">spot noise</term>
<term xml:id="k11">surface noise</term>
<term xml:id="k12">solid noise</term>
<term xml:id="k13">anti‐aliasing</term>
<term xml:id="k14">filtering</term>
<term xml:id="k15">stochastic modelling</term>
<term xml:id="k16">procedural texture</term>
<term xml:id="k17">procedural modelling</term>
<term xml:id="k18">solid texture</term>
<term xml:id="k19">texture synthesis</term>
<term xml:id="k20">spectral analysis</term>
<term xml:id="k21">power spectrum estimation</term>
<term xml:id="k22">I.3.3 [Computer Graphics]: Picture/Image Generation—I.3.7 [Computer Graphics]: Three‐Dimensional Graphics and Realism‐Colour, shading, shadowing, and texture</term>
</keywords>
<keywords rend="tocHeading1">
<term>Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-69HTHX3X-T/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1467-8659</doi>
<issn type="print">0167-7055</issn>
<issn type="electronic">1467-8659</issn>
<idGroup>
<id type="product" value="CGF"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="COMPUTER GRAPHICS FORUM">Computer Graphics Forum</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="12108">
<doi origin="wiley">10.1111/cgf.2010.29.issue-8</doi>
<numberingGroup>
<numbering type="journalVolume" number="29">29</numbering>
<numbering type="journalIssue" number="8">8</numbering>
</numberingGroup>
<coverDate startDate="2010-12">December 2010</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="23" status="forIssue">
<doi origin="wiley">10.1111/j.1467-8659.2010.01827.x</doi>
<idGroup>
<id type="unit" value="CGF1827"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="22"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Articles</title>
</titleGroup>
<copyright>© 2010 The Authors Computer Graphics Forum © 2010 The Eurographics Association and Blackwell Publishing Ltd.</copyright>
<eventGroup>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.25.1 mode:FullText" date="2010-11-10"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2010-10-04"></event>
<event type="firstOnline" date="2010-10-04"></event>
<event type="publishedOnlineFinalForm" date="2010-11-10"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-15"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-16"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="2579">2579</numbering>
<numbering type="pageLast" number="2600">2600</numbering>
</numberingGroup>
<objectNameGroup>
<objectName elementName="appendix">Appendix</objectName>
</objectNameGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:CGF.CGF1827.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="12"></count>
<count type="tableTotal" number="1"></count>
<count type="formulaTotal" number="121"></count>
<count type="referenceTotal" number="78"></count>
<count type="linksCrossRef" number="249"></count>
</countGroup>
<titleGroup>
<title type="main">A Survey of Procedural Noise Functions</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1 #a2">
<personName>
<givenNames>A.</givenNames>
<familyName>Lagae</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a2 #a3">
<personName>
<givenNames>S.</givenNames>
<familyName>Lefebvre</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a4">
<personName>
<givenNames>R.</givenNames>
<familyName>Cook</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4" affiliationRef="#a4">
<personName>
<givenNames>T.</givenNames>
<familyName>DeRose</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr5" affiliationRef="#a2">
<personName>
<givenNames>G.</givenNames>
<familyName>Drettakis</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr6" affiliationRef="#a5">
<personName>
<givenNames>D.S.</givenNames>
<familyName>Ebert</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr7" affiliationRef="#a6">
<personName>
<givenNames>J.P.</givenNames>
<familyName>Lewis</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr8" affiliationRef="#a7">
<personName>
<givenNames>K.</givenNames>
<familyName>Perlin</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr9" affiliationRef="#a8">
<personName>
<givenNames>M.</givenNames>
<familyName>Zwicker</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="BE">
<unparsedAffiliation>Katholieke Universiteit Leuven, Belgium</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="FR">
<unparsedAffiliation>REVES/INRIA Sophia‐Antipolis, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3" countryCode="FR">
<unparsedAffiliation>ALICE/INRIA Nancy Grand‐Est/Loria, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a4" countryCode="US">
<unparsedAffiliation>Pixar Animation Studios, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a5" countryCode="US">
<unparsedAffiliation>Purdue University, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a6" countryCode="NZ">
<unparsedAffiliation>Weta Digital, New Zealand</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a7" countryCode="US">
<unparsedAffiliation>New York University, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a8" countryCode="CH">
<unparsedAffiliation>University of Bern, Switzerland</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">procedural noise function</keyword>
<keyword xml:id="k2">noise</keyword>
<keyword xml:id="k3">stochastic process</keyword>
<keyword xml:id="k4">procedural</keyword>
<keyword xml:id="k5">Perlin noise</keyword>
<keyword xml:id="k6">wavelet noise</keyword>
<keyword xml:id="k7">anisotropic noise</keyword>
<keyword xml:id="k8">sparse convolution noise</keyword>
<keyword xml:id="k9">Gabor noise</keyword>
<keyword xml:id="k10">spot noise</keyword>
<keyword xml:id="k11">surface noise</keyword>
<keyword xml:id="k12">solid noise</keyword>
<keyword xml:id="k13">anti‐aliasing</keyword>
<keyword xml:id="k14">filtering</keyword>
<keyword xml:id="k15">stochastic modelling</keyword>
<keyword xml:id="k16">procedural texture</keyword>
<keyword xml:id="k17">procedural modelling</keyword>
<keyword xml:id="k18">solid texture</keyword>
<keyword xml:id="k19">texture synthesis</keyword>
<keyword xml:id="k20">spectral analysis</keyword>
<keyword xml:id="k21">power spectrum estimation</keyword>
</keywordGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k22">I.3.3 [Computer Graphics]: Picture/Image Generation—I.3.7 [Computer Graphics]: Three‐Dimensional Graphics and Realism‐Colour, shading, shadowing, and texture</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>
<i>Procedural noise functions are widely used in computer graphics, from off‐line rendering in movie production to interactive video games. The ability to add complex and intricate details at low memory and authoring cost is one of its main attractions. This survey is motivated by the inherent importance of noise in graphics, the widespread use of noise in industry and the fact that many recent research developments justify the need for an up‐to‐date survey. Our goal is to provide both a valuable entry point into the field of procedural noise functions, as well as a comprehensive view of the field to the informed reader. In this report, we cover procedural noise functions in all their aspects. We outline recent advances in research on this topic, discussing and comparing recent and well‐established methods. We first formally define procedural noise functions based on stochastic processes and then classify and review existing procedural noise functions. We discuss how procedural noise functions are used for modelling and how they are applied to surfaces. We then introduce analysis tools and apply them to evaluate and compare the major approaches to noise generation. We finally identify several directions for future work.</i>
</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>A Survey of Procedural Noise Functions</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>A Survey of Procedural Noise Functions</title>
</titleInfo>
<name type="personal">
<namePart type="given">A.</namePart>
<namePart type="family">Lagae</namePart>
<affiliation>Katholieke Universiteit Leuven, Belgium</affiliation>
<affiliation>REVES/INRIA Sophia‐Antipolis, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">Lefebvre</namePart>
<affiliation>REVES/INRIA Sophia‐Antipolis, France</affiliation>
<affiliation>ALICE/INRIA Nancy Grand‐Est/Loria, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">Cook</namePart>
<affiliation>Pixar Animation Studios, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T.</namePart>
<namePart type="family">DeRose</namePart>
<affiliation>Pixar Animation Studios, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G.</namePart>
<namePart type="family">Drettakis</namePart>
<affiliation>REVES/INRIA Sophia‐Antipolis, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D.S.</namePart>
<namePart type="family">Ebert</namePart>
<affiliation>Purdue University, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J.P.</namePart>
<namePart type="family">Lewis</namePart>
<affiliation>Weta Digital, New Zealand</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K.</namePart>
<namePart type="family">Perlin</namePart>
<affiliation>New York University, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Zwicker</namePart>
<affiliation>University of Bern, Switzerland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2010-12</dateIssued>
<copyrightDate encoding="w3cdtf">2010</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">12</extent>
<extent unit="tables">1</extent>
<extent unit="formulas">121</extent>
<extent unit="references">78</extent>
<extent unit="linksCrossRef">249</extent>
</physicalDescription>
<abstract lang="en">Procedural noise functions are widely used in computer graphics, from off‐line rendering in movie production to interactive video games. The ability to add complex and intricate details at low memory and authoring cost is one of its main attractions. This survey is motivated by the inherent importance of noise in graphics, the widespread use of noise in industry and the fact that many recent research developments justify the need for an up‐to‐date survey. Our goal is to provide both a valuable entry point into the field of procedural noise functions, as well as a comprehensive view of the field to the informed reader. In this report, we cover procedural noise functions in all their aspects. We outline recent advances in research on this topic, discussing and comparing recent and well‐established methods. We first formally define procedural noise functions based on stochastic processes and then classify and review existing procedural noise functions. We discuss how procedural noise functions are used for modelling and how they are applied to surfaces. We then introduce analysis tools and apply them to evaluate and compare the major approaches to noise generation. We finally identify several directions for future work.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>procedural noise function</topic>
<topic>noise</topic>
<topic>stochastic process</topic>
<topic>procedural</topic>
<topic>Perlin noise</topic>
<topic>wavelet noise</topic>
<topic>anisotropic noise</topic>
<topic>sparse convolution noise</topic>
<topic>Gabor noise</topic>
<topic>spot noise</topic>
<topic>surface noise</topic>
<topic>solid noise</topic>
<topic>anti‐aliasing</topic>
<topic>filtering</topic>
<topic>stochastic modelling</topic>
<topic>procedural texture</topic>
<topic>procedural modelling</topic>
<topic>solid texture</topic>
<topic>texture synthesis</topic>
<topic>spectral analysis</topic>
<topic>power spectrum estimation</topic>
</subject>
<subject lang="en">
<genre>keywords</genre>
<topic>I.3.3 [Computer Graphics]: Picture/Image Generation—I.3.7 [Computer Graphics]: Three‐Dimensional Graphics and Realism‐Colour, shading, shadowing, and texture</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Computer Graphics Forum</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0167-7055</identifier>
<identifier type="eISSN">1467-8659</identifier>
<identifier type="DOI">10.1111/(ISSN)1467-8659</identifier>
<identifier type="PublisherID">CGF</identifier>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>29</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>8</number>
</detail>
<extent unit="pages">
<start>2579</start>
<end>2600</end>
<total>22</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">9391BC871812BA2A4D2164D65ACDBCF4B0DD799E</identifier>
<identifier type="ark">ark:/67375/WNG-69HTHX3X-T</identifier>
<identifier type="DOI">10.1111/j.1467-8659.2010.01827.x</identifier>
<identifier type="ArticleID">CGF1827</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2010 The Authors Computer Graphics Forum © 2010 The Eurographics Association and Blackwell Publishing Ltd.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-69HTHX3X-T/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002234 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002234 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:9391BC871812BA2A4D2164D65ACDBCF4B0DD799E
   |texte=   A Survey of Procedural Noise Functions
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022