Serveur d'exploration sur le chêne en Belgique

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The effect of heat waves, elevated [CO2] and low soil water availability on northern red oak (Quercus rubra L.) seedlings

Identifieur interne : 000019 ( PascalFrancis/Corpus ); précédent : 000018; suivant : 000020

The effect of heat waves, elevated [CO2] and low soil water availability on northern red oak (Quercus rubra L.) seedlings

Auteurs : Ingvar Bauweraerts ; Timothy M. Wertin ; Maarten Ameye ; Mary Anne Mcguire ; Robert O. Teskey ; Kathy Steppe

Source :

RBID : Pascal:13-0089003

Descripteurs français

English descriptors

Abstract

The frequency and intensity of heat waves are predicted to increase. This study investigates whether heat waves would have the same impact as a constant increase in temperature with the same heat sum, and whether there would be any interactive effects of elevated [CO2] and soil moisture content. We grew Quercus rubra seedlings in treatment chambers maintained at either ambient or elevated [CO2] (380 or 700 μmol CO2 mol-1) with temperature treatments of ambient, ambient +3 °C, moderate heat wave (+6 °C every other week) or severe heat wave (+12 °C every fourth week) temperatures. Averaged over a 4-week period, and the entire growing season, the three elevated temperature treatments had the same average temperature and heat sum. Half the seedlings were watered to a soil water content near field capacity, half to about 50% of this value. Foliar gas exchange measurements were performed morning and afternoon (9:00 and 15:00 hours) before, during and after an applied heat wave in August 2010. Biomass accumulation was measured after five heat wave cycles. Under ambient [CO2] and well-watered conditions, biomass accumulation was highest in the +3 °C treatment, intermediate in the +6 °C heat wave and lowest in the +12 °C heat wave treatment. This response was mitigated by elevated [CO2]. Low soil moisture significantly decreased net photosynthesis (Anet) and biomass in all [CO2] and temperature treatments. The +12 °C heat wave reduced afternoon Anet by 23% in ambient [CO2]. Although this reduction was relatively greater under elevated [CO2], Anet values during this heat wave were still 34% higher than under ambient [CO2]. We concluded that heat waves affected biomass growth differently than the same amount of heat applied uniformly over the growing season, and that the plant response to heat waves also depends on [CO2] and soil moisture conditions.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1354-1013
A03   1    @0 Glob. chang. biol. : (Print)
A05       @2 19
A06       @2 2
A08 01  1  ENG  @1 The effect of heat waves, elevated [CO2] and low soil water availability on northern red oak (Quercus rubra L.) seedlings
A11 01  1    @1 BAUWERAERTS (Ingvar)
A11 02  1    @1 WERTIN (Timothy M.)
A11 03  1    @1 AMEYE (Maarten)
A11 04  1    @1 ANNE MCGUIRE (Mary)
A11 05  1    @1 TESKEY (Robert O.)
A11 06  1    @1 STEPPE (Kathy)
A14 01      @1 Laboratory of Plant Ecology, Department of Applied Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653 @2 Ghent, 9000 @3 BEL @Z 1 aut. @Z 3 aut. @Z 6 aut.
A14 02      @1 Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia @2 Athens, Georgia 30602 @3 USA @Z 2 aut. @Z 4 aut. @Z 5 aut.
A20       @1 517-528
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 27882 @5 354000508214960170
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/2
A47 01  1    @0 13-0089003
A60       @1 P
A61       @0 A
A64 01  1    @0 Global change biology : (Print)
A66 01      @0 GBR
C01 01    ENG  @0 The frequency and intensity of heat waves are predicted to increase. This study investigates whether heat waves would have the same impact as a constant increase in temperature with the same heat sum, and whether there would be any interactive effects of elevated [CO2] and soil moisture content. We grew Quercus rubra seedlings in treatment chambers maintained at either ambient or elevated [CO2] (380 or 700 μmol CO2 mol-1) with temperature treatments of ambient, ambient +3 °C, moderate heat wave (+6 °C every other week) or severe heat wave (+12 °C every fourth week) temperatures. Averaged over a 4-week period, and the entire growing season, the three elevated temperature treatments had the same average temperature and heat sum. Half the seedlings were watered to a soil water content near field capacity, half to about 50% of this value. Foliar gas exchange measurements were performed morning and afternoon (9:00 and 15:00 hours) before, during and after an applied heat wave in August 2010. Biomass accumulation was measured after five heat wave cycles. Under ambient [CO2] and well-watered conditions, biomass accumulation was highest in the +3 °C treatment, intermediate in the +6 °C heat wave and lowest in the +12 °C heat wave treatment. This response was mitigated by elevated [CO2]. Low soil moisture significantly decreased net photosynthesis (Anet) and biomass in all [CO2] and temperature treatments. The +12 °C heat wave reduced afternoon Anet by 23% in ambient [CO2]. Although this reduction was relatively greater under elevated [CO2], Anet values during this heat wave were still 34% higher than under ambient [CO2]. We concluded that heat waves affected biomass growth differently than the same amount of heat applied uniformly over the growing season, and that the plant response to heat waves also depends on [CO2] and soil moisture conditions.
C02 01  X    @0 002A14B01
C02 02  2    @0 001E02D10
C03 01  X  FRE  @0 Chaleur @5 01
C03 01  X  ENG  @0 Heat @5 01
C03 01  X  SPA  @0 Calor @5 01
C03 02  X  FRE  @0 Augmentation @5 02
C03 02  X  ENG  @0 Increase @5 02
C03 02  X  SPA  @0 Aumentación @5 02
C03 03  X  FRE  @0 Enrichissement milieu @5 03
C03 03  X  ENG  @0 Medium enrichment @5 03
C03 03  X  SPA  @0 Enriquecimiento medio @5 03
C03 04  X  FRE  @0 Sol @2 NT @5 04
C03 04  X  ENG  @0 Soils @2 NT @5 04
C03 04  X  SPA  @0 Suelo @2 NT @5 04
C03 05  X  FRE  @0 Stade juvénile plante @5 05
C03 05  X  ENG  @0 Plant juvenile growth stage @5 05
C03 05  X  SPA  @0 Estado juvenil planta @5 05
C03 06  X  FRE  @0 Climat @5 06
C03 06  X  ENG  @0 Climate @5 06
C03 06  X  SPA  @0 Clima @5 06
C03 07  X  FRE  @0 Sécheresse @5 07
C03 07  X  ENG  @0 Drought @5 07
C03 07  X  SPA  @0 Sequedad @5 07
C03 08  X  FRE  @0 Changement global @5 08
C03 08  X  ENG  @0 Global change @5 08
C03 08  X  SPA  @0 Cambio global @5 08
C03 09  X  FRE  @0 Réchauffement @5 09
C03 09  X  ENG  @0 Warming @5 09
C03 09  X  SPA  @0 Calefacción @5 09
C03 10  X  FRE  @0 Changement climatique @5 10
C03 10  X  ENG  @0 Climate change @5 10
C03 10  X  SPA  @0 Cambio climático @5 10
C03 11  X  FRE  @0 Croissance @5 11
C03 11  X  ENG  @0 Growth @5 11
C03 11  X  SPA  @0 Crecimiento @5 11
C03 12  X  FRE  @0 Inhibition @5 12
C03 12  X  ENG  @0 Inhibition @5 12
C03 12  X  SPA  @0 Inhibición @5 12
C03 13  X  FRE  @0 Photosynthèse @5 13
C03 13  X  ENG  @0 Photosynthesis @5 13
C03 13  X  SPA  @0 Fotosíntesis @5 13
C03 14  X  FRE  @0 Dioxyde de carbone @2 NK @2 FX @5 41
C03 14  X  ENG  @0 Carbon dioxide @2 NK @2 FX @5 41
C03 14  X  SPA  @0 Carbono dióxido @2 NK @2 FX @5 41
C03 15  X  FRE  @0 Quercus rubra @2 NS @5 49
C03 15  X  ENG  @0 Quercus rubra @2 NS @5 49
C03 15  X  SPA  @0 Quercus rubra @2 NS @5 49
C03 16  X  FRE  @0 Eau disponible @4 CD @5 96
C03 16  X  ENG  @0 Water availability @4 CD @5 96
C03 16  X  SPA  @0 Disponibilidad del agua @4 CD @5 96
C07 01  X  FRE  @0 Climatologie dynamique
C07 01  X  ENG  @0 Dynamical climatology
C07 01  X  SPA  @0 Climatología dinámica
C07 02  X  FRE  @0 Facteur milieu @5 17
C07 02  X  ENG  @0 Environmental factor @5 17
C07 02  X  SPA  @0 Factor medio @5 17
C07 03  X  FRE  @0 Fagaceae @2 NS
C07 03  X  ENG  @0 Fagaceae @2 NS
C07 03  X  SPA  @0 Fagaceae @2 NS
C07 04  X  FRE  @0 Dicotyledones @2 NS
C07 04  X  ENG  @0 Dicotyledones @2 NS
C07 04  X  SPA  @0 Dicotyledones @2 NS
C07 05  X  FRE  @0 Angiospermae @2 NS
C07 05  X  ENG  @0 Angiospermae @2 NS
C07 05  X  SPA  @0 Angiospermae @2 NS
C07 06  X  FRE  @0 Spermatophyta @2 NS
C07 06  X  ENG  @0 Spermatophyta @2 NS
C07 06  X  SPA  @0 Spermatophyta @2 NS
N21       @1 063
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 13-0089003 INIST
ET : The effect of heat waves, elevated [CO2] and low soil water availability on northern red oak (Quercus rubra L.) seedlings
AU : BAUWERAERTS (Ingvar); WERTIN (Timothy M.); AMEYE (Maarten); ANNE MCGUIRE (Mary); TESKEY (Robert O.); STEPPE (Kathy)
AF : Laboratory of Plant Ecology, Department of Applied Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653/Ghent, 9000/Belgique (1 aut., 3 aut., 6 aut.); Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia/Athens, Georgia 30602/Etats-Unis (2 aut., 4 aut., 5 aut.)
DT : Publication en série; Niveau analytique
SO : Global change biology : (Print); ISSN 1354-1013; Royaume-Uni; Da. 2013; Vol. 19; No. 2; Pp. 517-528; Bibl. 1 p.1/2
LA : Anglais
EA : The frequency and intensity of heat waves are predicted to increase. This study investigates whether heat waves would have the same impact as a constant increase in temperature with the same heat sum, and whether there would be any interactive effects of elevated [CO2] and soil moisture content. We grew Quercus rubra seedlings in treatment chambers maintained at either ambient or elevated [CO2] (380 or 700 μmol CO2 mol-1) with temperature treatments of ambient, ambient +3 °C, moderate heat wave (+6 °C every other week) or severe heat wave (+12 °C every fourth week) temperatures. Averaged over a 4-week period, and the entire growing season, the three elevated temperature treatments had the same average temperature and heat sum. Half the seedlings were watered to a soil water content near field capacity, half to about 50% of this value. Foliar gas exchange measurements were performed morning and afternoon (9:00 and 15:00 hours) before, during and after an applied heat wave in August 2010. Biomass accumulation was measured after five heat wave cycles. Under ambient [CO2] and well-watered conditions, biomass accumulation was highest in the +3 °C treatment, intermediate in the +6 °C heat wave and lowest in the +12 °C heat wave treatment. This response was mitigated by elevated [CO2]. Low soil moisture significantly decreased net photosynthesis (Anet) and biomass in all [CO2] and temperature treatments. The +12 °C heat wave reduced afternoon Anet by 23% in ambient [CO2]. Although this reduction was relatively greater under elevated [CO2], Anet values during this heat wave were still 34% higher than under ambient [CO2]. We concluded that heat waves affected biomass growth differently than the same amount of heat applied uniformly over the growing season, and that the plant response to heat waves also depends on [CO2] and soil moisture conditions.
CC : 002A14B01; 001E02D10
FD : Chaleur; Augmentation; Enrichissement milieu; Sol; Stade juvénile plante; Climat; Sécheresse; Changement global; Réchauffement; Changement climatique; Croissance; Inhibition; Photosynthèse; Dioxyde de carbone; Quercus rubra; Eau disponible
FG : Climatologie dynamique; Facteur milieu; Fagaceae; Dicotyledones; Angiospermae; Spermatophyta
ED : Heat; Increase; Medium enrichment; Soils; Plant juvenile growth stage; Climate; Drought; Global change; Warming; Climate change; Growth; Inhibition; Photosynthesis; Carbon dioxide; Quercus rubra; Water availability
EG : Dynamical climatology; Environmental factor; Fagaceae; Dicotyledones; Angiospermae; Spermatophyta
SD : Calor; Aumentación; Enriquecimiento medio; Suelo; Estado juvenil planta; Clima; Sequedad; Cambio global; Calefacción; Cambio climático; Crecimiento; Inhibición; Fotosíntesis; Carbono dióxido; Quercus rubra; Disponibilidad del agua
LO : INIST-27882.354000508214960170
ID : 13-0089003

Links to Exploration step

Pascal:13-0089003

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The effect of heat waves, elevated [CO
<sub>2</sub>
] and low soil water availability on northern red oak (Quercus rubra L.) seedlings</title>
<author>
<name sortKey="Bauweraerts, Ingvar" sort="Bauweraerts, Ingvar" uniqKey="Bauweraerts I" first="Ingvar" last="Bauweraerts">Ingvar Bauweraerts</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratory of Plant Ecology, Department of Applied Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653</s1>
<s2>Ghent, 9000</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wertin, Timothy M" sort="Wertin, Timothy M" uniqKey="Wertin T" first="Timothy M." last="Wertin">Timothy M. Wertin</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia</s1>
<s2>Athens, Georgia 30602</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ameye, Maarten" sort="Ameye, Maarten" uniqKey="Ameye M" first="Maarten" last="Ameye">Maarten Ameye</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratory of Plant Ecology, Department of Applied Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653</s1>
<s2>Ghent, 9000</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Anne Mcguire, Mary" sort="Anne Mcguire, Mary" uniqKey="Anne Mcguire M" first="Mary" last="Anne Mcguire">Mary Anne Mcguire</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia</s1>
<s2>Athens, Georgia 30602</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Teskey, Robert O" sort="Teskey, Robert O" uniqKey="Teskey R" first="Robert O." last="Teskey">Robert O. Teskey</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia</s1>
<s2>Athens, Georgia 30602</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Steppe, Kathy" sort="Steppe, Kathy" uniqKey="Steppe K" first="Kathy" last="Steppe">Kathy Steppe</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratory of Plant Ecology, Department of Applied Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653</s1>
<s2>Ghent, 9000</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0089003</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0089003 INIST</idno>
<idno type="RBID">Pascal:13-0089003</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000019</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">The effect of heat waves, elevated [CO
<sub>2</sub>
] and low soil water availability on northern red oak (Quercus rubra L.) seedlings</title>
<author>
<name sortKey="Bauweraerts, Ingvar" sort="Bauweraerts, Ingvar" uniqKey="Bauweraerts I" first="Ingvar" last="Bauweraerts">Ingvar Bauweraerts</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratory of Plant Ecology, Department of Applied Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653</s1>
<s2>Ghent, 9000</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wertin, Timothy M" sort="Wertin, Timothy M" uniqKey="Wertin T" first="Timothy M." last="Wertin">Timothy M. Wertin</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia</s1>
<s2>Athens, Georgia 30602</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ameye, Maarten" sort="Ameye, Maarten" uniqKey="Ameye M" first="Maarten" last="Ameye">Maarten Ameye</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratory of Plant Ecology, Department of Applied Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653</s1>
<s2>Ghent, 9000</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Anne Mcguire, Mary" sort="Anne Mcguire, Mary" uniqKey="Anne Mcguire M" first="Mary" last="Anne Mcguire">Mary Anne Mcguire</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia</s1>
<s2>Athens, Georgia 30602</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Teskey, Robert O" sort="Teskey, Robert O" uniqKey="Teskey R" first="Robert O." last="Teskey">Robert O. Teskey</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia</s1>
<s2>Athens, Georgia 30602</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Steppe, Kathy" sort="Steppe, Kathy" uniqKey="Steppe K" first="Kathy" last="Steppe">Kathy Steppe</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratory of Plant Ecology, Department of Applied Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653</s1>
<s2>Ghent, 9000</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Global change biology : (Print)</title>
<title level="j" type="abbreviated">Glob. chang. biol. : (Print)</title>
<idno type="ISSN">1354-1013</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Global change biology : (Print)</title>
<title level="j" type="abbreviated">Glob. chang. biol. : (Print)</title>
<idno type="ISSN">1354-1013</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon dioxide</term>
<term>Climate</term>
<term>Climate change</term>
<term>Drought</term>
<term>Global change</term>
<term>Growth</term>
<term>Heat</term>
<term>Increase</term>
<term>Inhibition</term>
<term>Medium enrichment</term>
<term>Photosynthesis</term>
<term>Plant juvenile growth stage</term>
<term>Quercus rubra</term>
<term>Soils</term>
<term>Warming</term>
<term>Water availability</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Chaleur</term>
<term>Augmentation</term>
<term>Enrichissement milieu</term>
<term>Sol</term>
<term>Stade juvénile plante</term>
<term>Climat</term>
<term>Sécheresse</term>
<term>Changement global</term>
<term>Réchauffement</term>
<term>Changement climatique</term>
<term>Croissance</term>
<term>Inhibition</term>
<term>Photosynthèse</term>
<term>Dioxyde de carbone</term>
<term>Quercus rubra</term>
<term>Eau disponible</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The frequency and intensity of heat waves are predicted to increase. This study investigates whether heat waves would have the same impact as a constant increase in temperature with the same heat sum, and whether there would be any interactive effects of elevated [CO
<sub>2</sub>
] and soil moisture content. We grew Quercus rubra seedlings in treatment chambers maintained at either ambient or elevated [CO
<sub>2</sub>
] (380 or 700 μmol CO
<sub>2</sub>
mol
<sup>-1</sup>
) with temperature treatments of ambient, ambient +3 °C, moderate heat wave (+6 °C every other week) or severe heat wave (+12 °C every fourth week) temperatures. Averaged over a 4-week period, and the entire growing season, the three elevated temperature treatments had the same average temperature and heat sum. Half the seedlings were watered to a soil water content near field capacity, half to about 50% of this value. Foliar gas exchange measurements were performed morning and afternoon (9:00 and 15:00 hours) before, during and after an applied heat wave in August 2010. Biomass accumulation was measured after five heat wave cycles. Under ambient [CO
<sub>2</sub>
] and well-watered conditions, biomass accumulation was highest in the +3 °C treatment, intermediate in the +6 °C heat wave and lowest in the +12 °C heat wave treatment. This response was mitigated by elevated [CO
<sub>2</sub>
]. Low soil moisture significantly decreased net photosynthesis (A
<sub>net</sub>
) and biomass in all [CO
<sub>2</sub>
] and temperature treatments. The +12 °C heat wave reduced afternoon A
<sub>net</sub>
by 23% in ambient [CO
<sub>2</sub>
]. Although this reduction was relatively greater under elevated [CO
<sub>2</sub>
], A
<sub>net</sub>
values during this heat wave were still 34% higher than under ambient [CO
<sub>2</sub>
]. We concluded that heat waves affected biomass growth differently than the same amount of heat applied uniformly over the growing season, and that the plant response to heat waves also depends on [CO
<sub>2</sub>
] and soil moisture conditions.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1354-1013</s0>
</fA01>
<fA03 i2="1">
<s0>Glob. chang. biol. : (Print)</s0>
</fA03>
<fA05>
<s2>19</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>The effect of heat waves, elevated [CO
<sub>2</sub>
] and low soil water availability on northern red oak (Quercus rubra L.) seedlings</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BAUWERAERTS (Ingvar)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WERTIN (Timothy M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>AMEYE (Maarten)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ANNE MCGUIRE (Mary)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>TESKEY (Robert O.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>STEPPE (Kathy)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratory of Plant Ecology, Department of Applied Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653</s1>
<s2>Ghent, 9000</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia</s1>
<s2>Athens, Georgia 30602</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>517-528</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27882</s2>
<s5>354000508214960170</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/2</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0089003</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Global change biology : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The frequency and intensity of heat waves are predicted to increase. This study investigates whether heat waves would have the same impact as a constant increase in temperature with the same heat sum, and whether there would be any interactive effects of elevated [CO
<sub>2</sub>
] and soil moisture content. We grew Quercus rubra seedlings in treatment chambers maintained at either ambient or elevated [CO
<sub>2</sub>
] (380 or 700 μmol CO
<sub>2</sub>
mol
<sup>-1</sup>
) with temperature treatments of ambient, ambient +3 °C, moderate heat wave (+6 °C every other week) or severe heat wave (+12 °C every fourth week) temperatures. Averaged over a 4-week period, and the entire growing season, the three elevated temperature treatments had the same average temperature and heat sum. Half the seedlings were watered to a soil water content near field capacity, half to about 50% of this value. Foliar gas exchange measurements were performed morning and afternoon (9:00 and 15:00 hours) before, during and after an applied heat wave in August 2010. Biomass accumulation was measured after five heat wave cycles. Under ambient [CO
<sub>2</sub>
] and well-watered conditions, biomass accumulation was highest in the +3 °C treatment, intermediate in the +6 °C heat wave and lowest in the +12 °C heat wave treatment. This response was mitigated by elevated [CO
<sub>2</sub>
]. Low soil moisture significantly decreased net photosynthesis (A
<sub>net</sub>
) and biomass in all [CO
<sub>2</sub>
] and temperature treatments. The +12 °C heat wave reduced afternoon A
<sub>net</sub>
by 23% in ambient [CO
<sub>2</sub>
]. Although this reduction was relatively greater under elevated [CO
<sub>2</sub>
], A
<sub>net</sub>
values during this heat wave were still 34% higher than under ambient [CO
<sub>2</sub>
]. We concluded that heat waves affected biomass growth differently than the same amount of heat applied uniformly over the growing season, and that the plant response to heat waves also depends on [CO
<sub>2</sub>
] and soil moisture conditions.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A14B01</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E02D10</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Chaleur</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Heat</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Calor</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Augmentation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Increase</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Aumentación</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Enrichissement milieu</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Medium enrichment</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Enriquecimiento medio</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Sol</s0>
<s2>NT</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Soils</s0>
<s2>NT</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Suelo</s0>
<s2>NT</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Stade juvénile plante</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Plant juvenile growth stage</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Estado juvenil planta</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Climat</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Climate</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Clima</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Sécheresse</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Drought</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Sequedad</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Changement global</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Global change</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Cambio global</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Réchauffement</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Warming</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Calefacción</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Changement climatique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Climate change</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Cambio climático</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Croissance</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Growth</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Crecimiento</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Inhibition</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Inhibition</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Inhibición</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Photosynthèse</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Photosynthesis</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Fotosíntesis</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Dioxyde de carbone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>41</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Carbon dioxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>41</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Carbono dióxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>41</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Quercus rubra</s0>
<s2>NS</s2>
<s5>49</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Quercus rubra</s0>
<s2>NS</s2>
<s5>49</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Quercus rubra</s0>
<s2>NS</s2>
<s5>49</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Eau disponible</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Water availability</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Disponibilidad del agua</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Climatologie dynamique</s0>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Dynamical climatology</s0>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Climatología dinámica</s0>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Facteur milieu</s0>
<s5>17</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Environmental factor</s0>
<s5>17</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Factor medio</s0>
<s5>17</s5>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Fagaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Fagaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Fagaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fN21>
<s1>063</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 13-0089003 INIST</NO>
<ET>The effect of heat waves, elevated [CO
<sub>2</sub>
] and low soil water availability on northern red oak (Quercus rubra L.) seedlings</ET>
<AU>BAUWERAERTS (Ingvar); WERTIN (Timothy M.); AMEYE (Maarten); ANNE MCGUIRE (Mary); TESKEY (Robert O.); STEPPE (Kathy)</AU>
<AF>Laboratory of Plant Ecology, Department of Applied Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653/Ghent, 9000/Belgique (1 aut., 3 aut., 6 aut.); Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia/Athens, Georgia 30602/Etats-Unis (2 aut., 4 aut., 5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Global change biology : (Print); ISSN 1354-1013; Royaume-Uni; Da. 2013; Vol. 19; No. 2; Pp. 517-528; Bibl. 1 p.1/2</SO>
<LA>Anglais</LA>
<EA>The frequency and intensity of heat waves are predicted to increase. This study investigates whether heat waves would have the same impact as a constant increase in temperature with the same heat sum, and whether there would be any interactive effects of elevated [CO
<sub>2</sub>
] and soil moisture content. We grew Quercus rubra seedlings in treatment chambers maintained at either ambient or elevated [CO
<sub>2</sub>
] (380 or 700 μmol CO
<sub>2</sub>
mol
<sup>-1</sup>
) with temperature treatments of ambient, ambient +3 °C, moderate heat wave (+6 °C every other week) or severe heat wave (+12 °C every fourth week) temperatures. Averaged over a 4-week period, and the entire growing season, the three elevated temperature treatments had the same average temperature and heat sum. Half the seedlings were watered to a soil water content near field capacity, half to about 50% of this value. Foliar gas exchange measurements were performed morning and afternoon (9:00 and 15:00 hours) before, during and after an applied heat wave in August 2010. Biomass accumulation was measured after five heat wave cycles. Under ambient [CO
<sub>2</sub>
] and well-watered conditions, biomass accumulation was highest in the +3 °C treatment, intermediate in the +6 °C heat wave and lowest in the +12 °C heat wave treatment. This response was mitigated by elevated [CO
<sub>2</sub>
]. Low soil moisture significantly decreased net photosynthesis (A
<sub>net</sub>
) and biomass in all [CO
<sub>2</sub>
] and temperature treatments. The +12 °C heat wave reduced afternoon A
<sub>net</sub>
by 23% in ambient [CO
<sub>2</sub>
]. Although this reduction was relatively greater under elevated [CO
<sub>2</sub>
], A
<sub>net</sub>
values during this heat wave were still 34% higher than under ambient [CO
<sub>2</sub>
]. We concluded that heat waves affected biomass growth differently than the same amount of heat applied uniformly over the growing season, and that the plant response to heat waves also depends on [CO
<sub>2</sub>
] and soil moisture conditions.</EA>
<CC>002A14B01; 001E02D10</CC>
<FD>Chaleur; Augmentation; Enrichissement milieu; Sol; Stade juvénile plante; Climat; Sécheresse; Changement global; Réchauffement; Changement climatique; Croissance; Inhibition; Photosynthèse; Dioxyde de carbone; Quercus rubra; Eau disponible</FD>
<FG>Climatologie dynamique; Facteur milieu; Fagaceae; Dicotyledones; Angiospermae; Spermatophyta</FG>
<ED>Heat; Increase; Medium enrichment; Soils; Plant juvenile growth stage; Climate; Drought; Global change; Warming; Climate change; Growth; Inhibition; Photosynthesis; Carbon dioxide; Quercus rubra; Water availability</ED>
<EG>Dynamical climatology; Environmental factor; Fagaceae; Dicotyledones; Angiospermae; Spermatophyta</EG>
<SD>Calor; Aumentación; Enriquecimiento medio; Suelo; Estado juvenil planta; Clima; Sequedad; Cambio global; Calefacción; Cambio climático; Crecimiento; Inhibición; Fotosíntesis; Carbono dióxido; Quercus rubra; Disponibilidad del agua</SD>
<LO>INIST-27882.354000508214960170</LO>
<ID>13-0089003</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/CheneBelgiqueV2/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000019 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000019 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    CheneBelgiqueV2
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:13-0089003
   |texte=   The effect of heat waves, elevated [CO2] and low soil water availability on northern red oak (Quercus rubra L.) seedlings
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Wed Mar 22 20:06:11 2017. Site generation: Wed Mar 6 16:09:04 2024